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Abstract
We apply the tools of functional analysis to investigate the existence and uniqueness
of solutions for multi-scale stochastic fractional neutral networks. By constructing a
descent Lyapunov functional, the asymptotic stability of the solution of the given
problem is also studied. Finally, we present two examples to illustrate the
effectiveness of the theory.
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1 Introduction
The growing interest in the subject of fractional calculus owes to its wide applications in
many real world phenomena, such as anomalous diffusion [1, 2], random and disordered
media [3, 4], finance [5–7], electrical circuits [8], automatic control system [9], etc. In
contrast to the classical calculus, the tools of fractional calculus characterize the evolution
process more precisely and give rise to more realistic mathematical modeling of physical
problems.

Fractional neutral networks are now considered as powerful tools as they can model
simple systems [10, 11], or produce a content-addressable memory using the collective
properties of the neutral networks [12]. In order to enhance the essential performance
of neutral activity, the existence and stability of the solutions of the neutral networks is
the first prerequisite. In the last few years, several results on this topic were obtained.
Examples include finite-time stability [13], asymptotic stability [9, 14–16], exponential
stability [9, 17], and Mittag-Leffler stability [18–21]. The general method for analyzing
the stability is based on Lyapunov’s method (including the first and second methods of
Lyapunov) and other mathematical techniques.

Multi-scale stochastic fractional differential systems recently received considerable at-
tention, for instance, see [6, 9, 22]. In a recent article, Ding and Nieto [23] obtained the
analytical solution of multi-time scale fractional stochastic differential equations governed
by fractional Brownian noise. In recent years, many researchers have shown their inter-
est in investigating stochastic systems. For some important results on the existence and
uniqueness of solutions to such systems, we refer the reader to the articles [24–27].
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In this paper, we investigate neutral networks modeled by the following multi-time scale
fractional stochastic differential system:

dY (t) + dI1–α
0+

(
A1Y (t) – Y0

)
=

(
A2Y (t) + f

(
Y (t)

))
dt + Π (t) dA2(t),

Y (0) = Y0,
(1.1)

where I1–α
0+ is the Riemann–Liouville fractional integral operator, 1

2 < α ≤ 1, A1,A2 ∈
R

n ×R
n, f : Rn → R

n is a nonlinear function, Π (t) is a matrix describing intensity of the
perturbation, A2 denotes Brownian noise on [0, T] (see [23]), and Y0 is a real-valued ran-
dom variable on a complete probability space (Ω ,F ,P). If Π ≡ 0 and Y0 is constant, then
system (1.1) becomes a deterministic system and reduces to a multi-time scale fractional
differential system.

We arrange the rest of this paper as follows. In Sect. 2, we recall some preliminary con-
cepts of Brownian noise and fractional calculus related to our work. Section 3 contains
the main results. An example illustrating the obtained theory is presented in Sect. 4. Con-
cluding remarks are given in Sect. 5.

2 Preliminaries
In this section, we outline some preliminary concepts of fractional calculus [28] and Brow-
nian noise [29, 30] related to our work.

Definition 2.1 Let α > 0 and f : (0,∞) → R be integrable. Then the Riemann–Liouville
fractional integral of order α for the function f is defined as

Iα
0+ f (t) =

1
Γ (α)

∫ t

0
(t – τ )α–1f (τ ) dτ , t > 0,

where Γ (·) is the gamma function.

It is well known that the following properties hold for the Riemann–Liouville fractional
integral operators [19, 31]:

(i) (Iα
0+ f )(t) is nondecreasing with respect to f ;

(ii) Iα
0+ is compact, and σ (Iα

0+ ) = {0}, where σ is the spectral set of the operator Iα
0+ ;

(iii) Iα
0+Iβ

0+ = Iβ

0+Iα
0+ = Iα+β

0+ ;
(iv) for the real-valued continuous function f ,

∥
∥Iα

0+ f
∥
∥ ≤ Iα

0+‖f ‖, (2.1)

where α,β > 0 and ‖ · ‖ denotes an arbitrary norm.

Definition 2.2 The Riemann–Liouville fractional derivative of order α ∈ (m – 1, m],
m ∈N

+ for a function f ∈ C([0, T]) is defined as

Dα
0+ f (t) =

1
Γ (m – α)

dm

dtm

∫ t

0
(t – τ )m–α–1f (τ ) dτ , t > 0,
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while the Caputo fractional derivative (CDα
0+ f )(t) of order α > 0 is defined by

(CDα
0+ f

)
(t) = Dα

0+

(

f (t) –
m–1∑

i=0

f (i)(0)
i!

ti

)

, t > 0. (2.2)

Note that, if f (i)(0) = 0, i = 0, 1, . . . , m – 1, then (CDα
0+ f )(t) coincides with (Dα

0+ f )(t). More-
over, the Riemann–Liouville fractional derivative cannot be used in some physical prob-
lems as it requires the knowledge of the noninteger order derivatives of the function at
t = 0+. On the other hand, this issue does not arise in the application of Caputo fractional
derivative.

On the other hand, if f is continuously differentiable up to order m, then the Caputo
fractional derivative can be defined as

(CDα
0+ f

)
(t) =

1
Γ (m – α)

∫ t

0
(t – τ )m–α–1f (m)(τ ) dτ , t > 0, m – 1 < α ≤ m, m ∈N

+,

which is known as a smooth fractional derivative.

Property 2.1 Let m – 1 < α ≤ m, where m ∈N
+. Then the following formulae hold:

(
Dα

0+Iα
0+ f

)
(t) = f (t),

(
Iα

0+ Dα
0+ f

)
(t) = f (t) –

m∑

k=1

(Im–α
0+ f )(m–k)(0+)
Γ (α – k + 1)

tα–k , t > 0.

The Laplace transforms of the Riemann–Liouville fractional derivative and Caputo
derivative are

(
LDα

0+ f
)
(s) = sα(Lf )(s) –

m–1∑

i=0

si(Dα–i–1
0+ f

)(
0+)

, t > 0, m – 1 < α ≤ m, m ∈N
+.

(
LCDα

0+ f
)
(s) = sα(Lf )(s) –

m–1∑

i=0

sα–i–1f (i)(0+)
, t > 0, m – 1 < α ≤ m, m ∈N

+.

Contrary to the Riemann–Liouville fractional derivative, one can notice that only integer
order derivatives of function f appear in the Laplace transform of the Caputo fractional
derivative.

In relation to the Brownian noise, let us recall the Itô formula.

Lemma 2.3 (Itô formula) Let Y (t) be such that dY (t) = u(t) dt + v(t) dA2(t), where u, v are
given functions. Furthermore, assume that f ′(Y ) and f ′′(Y ) exist and are continuous for
Y ∈R. Then

df
(
Y (t)

)
=

(
f ′(Y (t)

)
u(t) +

1
2

f ′′(Y (t)
)
v2(t)

)
dt + f ′(Y (t)

)
v(t) dA2(t).

Now we give a generalized form of the Itô formula [24] and an integral inequality with
singular kernel [32].

Lemma 2.4 Let 1
2 < α < 1, and Y (t) satisfy

dY (t) = b(t, Y ) dt + σ1(t, Y ) dA2(t) + σ2(dt)α .
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Furthermore, let V ∈ C(R+ × R
n,Rm) be such that Vt , VY , VYY exist and are continuous

for (t, Y ) ∈R+ ×R
n, where VY is an m × n Jacobian matrix of V (t, Y ) and VYY is an m × n

Hessian matrix whose elements are m-dimensional vectors. Then

dV (t, Y ) =
(

Vt(t, Y ) + VY (t, Y )b(t, Y ) +
1
2
σ1(t, Y )TVYY (t, Y )σ1(t, Y )

)
dt

+ VY (t, Y )σ1(t, Y ) dA2(t) + VY (t, Y )σ2(t, Y )(dt)α . (2.3)

Lemma 2.5 Let 0 < β < 1, and consider the time interval [0, T), where T < ∞. Assume
that a is a nonnegative locally integrable function on [0, T), and b and g are nonnegative
nondecreasing continuous functions defined on [0, T), with both bounded by a positive con-
stant M. If v(t) is nonnegative and locally integrable on [0, T) satisfying

v(t) ≤ a(t) + b(t)
∫ t

0
v(τ ) dτ + g(t)

∫ t

0
(t – τ )β–1v(τ ) dτ ,

then

v(t) ≤ a(t) +
∞∑

n=1

n∑

i=0

(
n
i

)

bn–i(t)gi(t)
(Γ (β))β

Γ (iβ + n – i)

∫ t

0
(t – τ )iβ–(i+1–n)a(τ ) dτ .

3 Main results
3.1 Existence and uniqueness of solutions for FNN
Let C((0, T], L2(Ω ;Rn)) = C((0, T], L2(Ω ,F ,P;Rn)) denote the Banach space of all contin-
uous functions from (0, T] into L2(Ω ;Rn) equipped with the sup norm. In our analysis, E
stands for the mathematical expectation.

Now we state the assumption needed in the sequel.

Condition 3.1 Let f (Y (t)) be a real-valued continuous function, and there exist positive
constants L, M such that

∥∥f
(
Y1(t)

)
– f

(
Y2(t)

)∥∥ ≤ L
∥∥Y1(t) – Y2(t)

∥∥ ∀Y1, Y2 ∈ R
n,

and

∥
∥f

(
Y (t)

)∥∥2 ≤ M
∥
∥Y (t)

∥
∥2.

Theorem 3.1 Let f (Y ) satisfy Condition 3.1, and limT→∞ E
∫ T

0 ‖Π (t)‖2 dt < ∞. Then, for
any Y0 ∈ C((0, T], L2(Ω ,Rn)), system (1.1) has a unique solution.

Proof Note that system (1.1) is equivalent to the integral system

Y (t) = Y0

(
1 +

t1–α

Γ (2 – α)

)
–

1
Γ (1 – α)

∫ t

0
(t – τ )–αA1Y (τ ) dτ

+
∫ t

0

(
A2Y (τ ) + f

(
Y (τ )

))
dτ +

∫ t

0
Π (τ ) dA2(τ ). (3.1)

Thus we only need to prove that system (3.1) has a unique solution in the space
C((0, T], L2(Ω ;Rn)).
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Define an operator R on the space C((0, T], L2(Ω ;Rn)) as

(RY )(t) = Y0

(
1 +

t1–α

Γ (2 – α)

)
–

1
Γ (1 – α)

∫ t

0
(t – τ )–αA1Y (τ ) dτ

+
∫ t

0

(
A2Y (τ ) + f

(
Y (τ )

))
dτ +

∫ t

0
Π (τ ) dA2(τ ). (3.2)

Step 1. Here it will be shown that R maps C((0, T], L2(Ω ;Rn)) into itself. For sufficiently
small δ > 0, we apply the inequality |a+b|2 ≤ 2|a|2 +2|b|2 together with Hölder’s inequality
to obtain

E

∥
∥∥
∥

∫ t+δ

0
(t + δ – s)α–1A1Y (s) ds –

∫ t

0
(t – s)α–1A1Y (s) ds

∥
∥∥
∥

2

≤ 2
∫ t

0

∥
∥(t + δ – s)α–1 – (t – s)α–1∥∥2 ds ·E

∫ t

0

∥
∥A1Y (s)

∥
∥2 ds

+ 2
∫ t+δ

t

∥
∥(t + δ – s)α–1∥∥2 ds ·E

∫ t+δ

t

∥
∥A1Y (s)

∥
∥2 ds

=: I1 + I2.

For I1, supt∈(0,T] E‖Y (t)‖2 is bounded as Y ∈ C((0, T], L2(Ω ;Rn)). Since tα–1 ∈
L2((0, T],Rn), we have I1 → 0 as δ → 0. Similarly, for I2, we have

E

∫ t+δ

t
(t + δ – s)2α–2 ds ·E

∫ t+δ

t

∥
∥A1Y (s)

∥
∥2 ds ≤ sup

s∈(0,T]
E

(∥∥Y (s)
∥
∥2)‖A1‖2 δ2α

2α – 1
.

Since 1
2 < α < 1 and supt∈(0,T] E‖Y (t)‖2 is bounded, we have I2 → 0 as δ → 0. Therefore,

RY is a continuous stochastic process on (0, T] in the sense of mean square.
On the other hand, by Hölder’s inequality, we obtain the estimate

∥
∥(RY )(t)

∥
∥2 ≤ 4

((
Γ (2 – α) + t1–α

Γ (2 – α)

)2

‖u0‖2 +
1

Γ (1 – α)

∥∥
∥∥

∫ t

0
(t – s)–αA1Y (s) ds

∥∥
∥∥

2

+
∥∥
∥∥

∫ t

0

(
A2Y (s) + f

(
Y (s)

))
ds

∥∥
∥∥

2

+
∥∥
∥∥

∫ t

0
Π (s) dA2(s)

∥∥
∥∥

2)

≤ 4
((

Γ (2 – α) + t1–α

Γ (2 – α)

)2

‖u0‖2 +
1

Γ (1 – α)

(∫ t

0
(t – s)–α

∥
∥A1Y (s)

∥
∥ds

)2

+
(∫ t

0

∥∥A2Y (s) + f
(
Y (s)

)∥∥ds
)2

+
∥∥∥
∥

∫ t

0
Π (s) dA2(s)

∥∥∥
∥

2)

≤ 4
((

Γ (2 – α) + t1–α

Γ (2 – α)

)2

‖u0‖2

+
(

t2(1–α)

Γ (2 – α)
‖A1‖2 +

(‖A2‖2 + M
)
t
)

sup
0≤s≤t

∥∥Y (s)
∥∥2

+
∥∥
∥∥

∫ t

0
Π (s) dA2(s)

∥∥
∥∥

2)
.
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Taking the expectation of the both sides of the above inequality and using Itô’s isometry,
we get

E
∥
∥(RY )(t)

∥
∥2 ≤ 4

((
Γ (2 – α) + t1–α

Γ (2 – α)

)2

E‖u0‖2

+
(

t2(1–α)

Γ (2 – α)
‖A1‖2 +

(‖A2‖2 + M
)
t
)
E sup

0≤s≤t

∥
∥Y (s)

∥
∥2

+ E

∫ t

0

∥
∥Π (s)

∥
∥2 ds

)
.

As 1
2 < α < 1, supt∈(0,T] E‖(RY )(t)‖2 < ∞ for any Y ∈ C((0, T], L2(Ω ;Rn)). So the operator

R maps C((0, T],Rn) into itself.
Step 2. We show that the sequence {Y (k)} is a Cauchy sequence with

Y (k+1)(t) = Y0

(
1 +

t1–α

Γ (2 – α)

)
–

1
Γ (1 – α)

∫ t

0
(t – τ )–αA1Y (k)(τ ) dτ

+
∫ t

0

(
A2Y (k)(τ ) + f

(
Y (k)(τ )

))
dτ +

∫ t

0
Π (τ ) dA2(τ ), k = 0, 1, 2, . . . .

Letting Y (0)(t) ≡ Y0 and using Condition 3.1 and Hölder’s inequality, we obtain

∥∥Y (k+1)(t) – Y (k)(t)
∥∥2 ≤ 3

Γ (1 – α)

∥
∥∥
∥

∫ t

0
(t – s)–αA1

(
Y (k–1)(s) – X(k)(s)

)
ds

∥
∥∥
∥

2

+ 3
∥∥
∥∥

∫ t

0
A2

(
Y (k)(s) – Y (k–1)(s)

)
ds

∥∥
∥∥

2

+ 3
∥∥
∥∥

∫ t

0

(
f
(
Y (k)(s)

)
– f

(
Y (k–1)(s)

))
ds

∥∥
∥∥

2

≤ 3‖A1‖2t1–α

Γ (2 – α)

∫ t

0
(t – s)–α

∥
∥Y (k–1)(s) – Y (k)(s)

∥
∥2 ds

+ 3
(‖A2‖2 + L2)t

∫ t

0

∥∥Y (k–1)(s) – Y (k)(s)
∥∥2 ds. (3.3)

For convenience, we set

ε(k+1)(t) = E
∥∥Y (k+1)(s) – Y (k)(s)

∥∥2

and define two operators J1 and J2 as

(J1ϕ)(t) =
3‖A1‖2T1–α

Γ (2 – α)

∫ t

0
(t – s)–αϕ(s) ds,

(J2ϕ)(t) = 3
(‖B‖2 + L2)T

∫ t

0
ϕ(s) ds.

Then inequality (3.3) can be rewritten compactly as

ε(k+1)(t) ≤ (
(J1 + J2)ε(k))(t), t ∈ (0, T].
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It follows from Property 2.1 that J1 and J2 are nondecreasing with respect to ϕ ∈
C((0, T],R), and so the above inequality reduces to

ε(k+1)(t) ≤ (
(J1 + J2)kε(0))(t), k = 1, 2, . . . .

From the fact that the operators J1 and J2 commute and are compact on C([0, T],R), it
follows that σ (J1) = σ (J2) = {0}, where σ (·) represents the spectral set of the operator.
Thus the sequence {Y (k)} is a Cauchy sequence, and the limit Y of {Y (k)} corresponds to a
solution of system (1.1).

Finally, we establish the uniqueness of solutions. Let Y1, Y2 be two solutions to system
(1.1). In view of the elementary inequality |a + b + c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2, Condition 3.1,
and Hölder’s inequality, we find that

E
∥∥Y1(t) – Y2(t)

∥∥2 ≤ 3‖A1‖2t1–α

Γ (2 – α)

∫ t

0
(t – s)–α

E
∥∥Y1(s) – Y2(s)

∥∥2 ds

+ 3
(‖A2‖2 + L2)t

∫ t

0
E

∥
∥Y1(s) – Y2(s)

∥
∥2 ds,

which, by Lemma 2.5, leads to

E
(∥∥Y1(t) – Y2(t)

∥
∥2) = 0, t ∈ [0, T]. (3.4)

In consequence, we get Y1(t) = Y2(t) on [0, T] in the sense of mean square. Hence, system
(1.1) has a unique solution in the sense of mean square. This completes the proof. �

3.2 Asymptotic stability analysis
We analyze the asymptotic stability of system (1.1) via the Lyapunov functional method.
Let us first define the asymptotic stability.

Definition 3.2 The neutral networks driven by Brownian noise are called asymptotically
stable in the sense of mean square, provided that the solution Y (t, Y0) satisfies the inequal-
ity

lim
T→∞E

∫ T

0

∥∥Y (t, Y0)
∥∥2 dt < ∞.

In the following we study the asymptotic stability for the case Y0 = 0. There is no loss of
generality as any nonzero initial state can be shifted to the origin via a change of variables.
In case the initial state for system Y0 
= 0, we can introduce the change of variable Ŷ = Y –Y0

such that Ŷ0 = 0, and the new system has a zero initial state.

Theorem 3.3 Let A1 be a positive definite matrix and Y0 = 0. If there exists a positive
diagonal matrix P such that f (Y (t)) ≤ PY (t) and –μPTP – 2A2 – 2PT positive definite,
where μ > 0, then system (1.1) is asymptotically stable in the sense of mean square.
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Proof Choose a Lyapunov functional given by

V
(
t, Y (t)

)
= Y T(t)Y (t) +

2
Γ (1 – α)

∫ t

0
(t – τ )–αY T(τ )A1Y (τ ) dτ

+ μ

∫ t

0
f T(

Y (τ )
)
f
(
Y (τ )

)
dτ , (3.5)

where Y is the solution of system (1.1). Observe that V is nonnegative and positive definite.
Applying the generalized Itô formula in Lemma 2.4 to V , we obtain

dV
(
t, Y (t)

)
=

(
μf T(

Y (t)
)
f
(
Y (t)

)
–

2α

Γ (1 – α)

∫ t

0
(t – τ )–1–αXT(τ )A1Y (τ ) dτ

+ 2Y T(t)A2Y (t) + 2Y T(t)f
(
Y (t)

)
+

1
2
ΠT(t)Π (t)

)
dt

+ 2Y T(t)Π (t) dA2(t) –
2

Γ (2 – α)
Y T(t)A1Y (t)(dt)1–α . (3.6)

Furthermore, we have

V
(
t, Y (t)

)
= V (0, Y0) +

∫ t

0

(
μf T(

Y (τ )
)
f
(
Y (τ )

)
+ 2Y T(τ )A2Y (τ ) + 2Y T(τ )f

(
Y (τ )

))
dτ

+
2

Γ (1 – α)

∫ t

0
(t – τ )–αY T(τ )A1Y (τ ) dτ +

1
2

∫ t

0
ΠT(τ )Π (τ ) dτ

+ 2
∫ t

0
Y T(τ )Π (τ ) dA2(τ ) –

2
Γ (1 – α)

∫ t

0
(t – τ )–αY T(τ )A1X(τ ) dτ

= V (0, Y0) +
∫ t

0

(
μf T(

Y (τ )
)
f
(
Y (τ )

)
+ 2Y T(τ )A2Y (τ ) + 2Y T(τ )f

(
Y (τ )

))
dτ

+
1
2

∫ t

0
ΠT(τ )Π (τ ) dτ + 2

∫ t

0
Y T(τ )Π (τ ) dA2(τ )

≤ V (0, Y0) +
∫ t

0
Y T(τ )

(
μPTP + 2A2 + 2PT)

Y (τ ) dτ +
1
2

∫ t

0
ΠT(τ )Π (τ ) dτ

+ 2
∫ t

0
Y T(τ )Π (τ ) dA2(τ ). (3.7)

Note thatE
∫ T

0 ϕ(t) dA2(t) = 0. Taking the expectation of both sides of the above inequality
leads to

EV
(
t, X(t)

) ≤ EV (0, Y0) + E

∫ t

0
Y T(τ )

(
μPTP + 2A2 + 2PT)

Y (τ ) dτ

+
1
2
E

∫ t

0
ΠT(τ )Π (τ ) dτ . (3.8)

Let

Y T(t)
(
μPTP + 2A2 + 2PT)

Y (t) ≤ –λmin(Q)Y T(t)Y (t), (3.9)

where Q = –μPTP – 2A2 – 2PT is a positive definite matrix, and λmin(Q) stands for the
smallest eigenvalue of Q.
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From inequalities (3.8) and (3.9), we obtain

E

∫ T

0

∥
∥Y (t)

∥
∥2 dt ≤ E‖Y0‖2 + 1

2
∫ t

0 E‖Π (τ )‖2 dτ – EV (T , Y (T))
λ(Q)

≤ E‖Y0‖2 + 1
2
∫ t

0 E‖Π (τ )‖2 dτ

λ(Q)
< ∞, (3.10)

which accomplishes that system (1.1) is asymptotically stable in the sense of mean square.
The proof is finished. �

4 Numerical simulation
In this section, we give two examples to illustrate the effectiveness of the obtained stability
result.

Example 4.1 Consider two-neuron multi-scale neutral networks with Brownian noise.
The network parameters are chosen as follows:

A =

[
1 1
1 3

]

, B =

[
–3 –1
–1 –10

]

, Π (t) =

[ √
3

2 – 1
2

1
2

√
3

2

][
e–t

e–t

]

, (4.1)

and f (X(t)) = tanh(X(t)) = eX(t)–e–X(t)

eX(t)+e–X(t) , where X(t) = [X1(t), X2(t)]T. We set the initial state as
X0 = [0, 0]T.

Using the given data, one can find that A is positive definite, P = diag[1, 3], and the ma-
trix –PTP – 2B – 2PT is positive definite. Then, according to Theorem 3.3, system (1.1) is
asymptotically stable in the mean square sense. In order to illustrate the effectiveness of
the obtained stability result, we plot two figures Figs. 1–2. Figure 1 presents the standard
Brownian noise. Figure 2 is the solution of system (1.1). From Fig. 2, one can observe that
the numerical result is in agreement with the obtained stability result.

Figure 1 Standard Brownian noise
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Figure 2 Stability of system with standard
Brownian noise

Figure 3 Stability of system with standard
Brownian noise

Example 4.2 Consider three-neuron multi-scale neutral networks with Brownian noise.
The network parameters are chosen as follows:

A =

⎡

⎢
⎣

1 1 0
1 2 1
1 1 5

⎤

⎥
⎦ , B =

⎡

⎢
⎣

–2 –1 –1
–1 –12 0
–1 –3 –5

⎤

⎥
⎦ , Π (t) =

⎡

⎢
⎣

√
2

2 – 1
2 – 1

2
1
2

√
2

2 – 1
2

1
2

1
2

√
2

2

⎤

⎥
⎦

⎡

⎢
⎣

e–t

e–t

e–t

⎤

⎥
⎦ ,

(4.2)

and f (X(t)) = tanh(X(t)) = eX(t)–e–X(t)

eX(t)+e–X(t) , where X(t) = [X1(t), X2(t), X3(t)]T. We set the initial
state as X0 = [0, 0, 0]T.

Using the given data, one can find that A is positive definite, P = diag[1, 3, 2], and the
matrix –PTP – 2B – 2PT is positive definite. Then, according to Theorem 3.3, system (1.1)
is asymptotically stable in the mean square sense. The solution of system (1.1) is shown
in Fig. 3. From Fig. 3, one can observe that the numerical result agrees with the obtained
stability result.

5 Conclusions
In this work, we applied the operator theory and fixed point theory to obtain the existence
and uniqueness of solutions for a multi-scale stochastic fractional differential neutral net-
work under some simple conditions. Then we analyzed asymptotic stability of the network
by means of the first method of Lyapunov. The feasibility and effectiveness of the obtained
stability result is verified by numerical simulation.
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It is well known that the Mittag-Leffler stability and the exponential stability have faster
convergence rate than the asymptotic stability near the origin. In our future work, we plan
to investigate the stability of solutions to stochastic systems involving Caputo–Fabrizio
type fractional derivatives with the aid of the Lyapunov method and integral inequalities.
For some recent results on Caputo–Fabrizio differential equations, we refer the reader to
work of Baleanu and his co-workers in [33–39].
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