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Abstract
New exact solutions of the space–time conformable Caudrey–Dodd–Gibbon (CDG)
equation have been derived by implementing the conformable derivative. The
generalized Riccati equation mapping method is applied to figure out twenty-seven
forms of exact solutions, which are soliton, rational, and periodic ones. Also, for some
suitable values of parameters, the exact solutions are found, namely dark, bell type,
periodic, soliton, singular soliton, and several others, by using the conformable
derivative. These types of solutions have not been proclaimed so far. 2D and 3D
graphical patterns of some solutions are also given for clarification of physical
features. The conformable derivative is one of the excellent choices to solve the
nonlinear conformable problems arising in theory of solitons and many other areas.
The results are new and very interesting for the large community of researchers
working in the field of mathematics and mathematical physics.
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1 Introduction
Fractional calculus [1, 2] containing differential equations of fractional order in numer-
ous physical phenomena has put a revolutionary impact since these particular equations
reflect generalization of evolution equations of integer order. Derivatives and integrals of
real fractional order or complex order can be applied in many fields. These fields are geo-
chemistry, plasma physics, mechanics, control theory, optical fibers, solid state physics,
system identification, chemical kinematics, biogenetics, etc. These phenomena involve
diffusion, dispersion, dissipation convection, and reaction.

Finding the extraction of exact traveling wave solutions of nonlinear differential equa-
tions has become very important for discussing wave phenomena of nonlinear nature.
Many analytical, approximate and numerical techniques have been used for finding ex-
act solutions of nonlinear differential equations including homotopy analysis transform
method [3], homotopy analysis samadu transform method [4], fractional homotopy anal-
ysis transform method [5], the differential transform method [6], F-expansion method [7],
first integral method [8], fractional sub-equation method [9], sine-cosine method [10],
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variational iteration method [11, 12], exponential rational function method [13, 14], exp-
function method [15–18], ( G′

G )-expansion method [19–21], exp(–φ(ξ ))-expansion method
[22], tan( Φ(ξ )

2 ) expansion method [23, 24], modified trial equation method [25, 26], etc.
Some recent advancements include fractional nonlinear dynamics [27], new fractional or-
der view of HIV and CD4+ T-cells [28], life cycle involving poor nutrition [29], and con-
trol theory [30]. Further, a new analysis regarding Mittag-Leffler type kernel [31], study
of computer viruses [32] are the recent advancements in fractional derivatives and their
applications.

To seek out exact solutions of some nonlinear evolutions equations (NEEs), a Ric-
cati equation mapping method is introduced by considering the nonlinear ODE: ϕ(ξ ) =
r + pϕ(ξ ) + qϕ2(ξ ). This approach was formulated from the ( G′

G ) method by utilizing
Cole–Hopf transformation and yielded many solutions as compared to the ( G′

G )-expansion
method. The generalized Riccati equation mapping is simple, straightforward, convenient
for homogeneous balancing order and in working out a system of algebraic equations and
can produce a variety of exact solutions of differential equations. This work discovers
twenty-seven types of different solutions comprising hyperbolic, periodic, and rational
solutions.

In [33], Khalil introduced the notion of conformable derivative, suitably compatible with
integer order derivative and satisfying some conventional properties such as the chain
rule. Atangana discussed some features of this particular derivative in [34]. The author
presented proofs of linked theorems and gave new definitions. This operator is also in-
vestigated in [35, 36], leading to fruitful discussion. By using sub-equation method in
conjunction with conformable operator, Rezazadeh in [37] found solutions of traveling
wave form for conformable generalized Kuramoto–Sivashinsky equation. The resulting
solutions were presented in hyperbolic and trigonometric forms. In [38], the authors ex-
tracted exact solutions of conformable regularized long-wave equations, while some other
analytical techniques are given in [39, 40]. A new form of conformable derivative is pro-
posed by Atangana [41] referred to as beta fractional operator, overcoming the limitation
of conformable derivative.

In this work, we focus on the relatively modern fractional differentiation known as
Atangana–Baleanu fractional differentiation [42]. Abdon Atangana, an African researcher
and mathematician, presented his new idea of fractional operators. This particular work
attracted many investigators to apply it to a number of problems of practical applications.
Atangana et al. gave new properties of the conformable fractional operator or deriva-
tive. Abdon Atangana and Dumitru Baleanu studied the Mittag-Lefler function which is
a more generalized function. Consequently, they introduced a fractional derivative, based
on non-local kernel, describing complex nonlinear applied problems of complex nature.
The power and exponential decay law was also considered. This new version derivative is
found to be more appealing and advantageous than the already established ones.

The solutions of space–time conformable Caudrey–Dodd–Gibbon (CDG) equation are
sought by different methods, e.g., Wazwaz [43] used the tanh method to obtain solitary
wave solutions. Zhou et al. [44] applied the exp-function method to derive generalized
solitary solution. In 2011 [45], the authors obtained traveling wave solutions by the ( G′

G )-
expansion method. By studying the generalized Riccati equation mapping method [46], the
conformable derivative of Atangana’s version finds the hyperbolic, rational, and trigono-
metric solutions of (CDG) equation, not brought to light before in the literature so far.
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Next section therefore gives some new solutions of traveling wave form of the space–time
conformable Caudrey–Dodd–Gibbon (CDG) equation.

Analysis of the generalized Riccati equation mapping is presented in Sect. 2. We have
implemented the same mapping for attaining new exact soliton solutions to the time and
space conformable Caudrey–Dodd–Gibbon (CDG) equation in Sect. 3. Physical interpre-
tation and comparison will be presented in Sects. 4 and 5, whereas the last section includes
our conclusion.

2 The improved generalized Riccati equation mapping method
The focal steps of this technique [47–49] are as follows.

Step 1. We consider the conformable differential equation including independent vari-
ables x1, x2, . . . , xm, t and some unknown function u:

p
(
u, A

0 Dα
t u, A

0 Dα
x1 u, A

0 Dα
x2 u, A

0 Dα
x3 u, . . . , A

0 D2α
t u, A

0 D2α
x1 u, A

0 D2α
x2 u, . . .

)
= 0, (1)

where A
0 Dα

t and A
0 Dα

x are known as Atangana’s conformable differential operators.
Step 2. For the said operator, we use the variable transformation:

u(x1, x2, . . . , xm, t) = U(ξ ),

ξ =
χ1
α

(
x1 +

1
Γ (α)

)α

+
χ2
α

(
x2 +

1
Γ (α)

)α

+ · · · +
χm
α

(
xm +

1
Γ (α)

)α

+
λ

α

(
t +

1
Γ (α)

)α

,

(2)

where the constants λ and χ i are to be determined. The conformable differential equation
(1) leads to the nonlinear conformable ODE for u(x, t) = u(ξ ):

R = R
(
u(ξ ), u′(ξ ), u′′(ξ ), . . .

)
= 0, (3)

where u′(ξ ) = du(ξ )
dξ

indicates a derivative in terms of ξ .
Step 3. We consider an assumption that the solution of Eq. (3) can be given by a polyno-

mial in φ(ξ ) as follows:

u(ξ ) =
n∑

i=–n

aiφ(ξ )i, (4)

where ai (i = 0,±1,±2, . . . ,±n) are constants, which are to be determined provided ai �= 0.
The function φ = φ(ξ ) satisfies the Riccati differential equation [49]

φ′(ξ ) = r + pφ(ξ ) + φ(ξ )2. (5)

Step 4. Positive integer N is found by using homogeneous balance between the nonlinear
term and the highest order derivatives in Eq. (3).

Step 5. Plugging Eq. (4) along with Eq. (5) into Eq. (3), followed by collecting all the same
order terms φi together, we get the polynomial equation in φi and φ–i, where (i = 0, 1, 2, . . .).
Equalizing coefficients of the resulting polynomial to zero, we get an over-determined
system of algebraic equations for ai, where i = 0,±1,±2, . . . ,±n.
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Step 6. By using Maple, we work out the system described in Step 5 for obtaining ai,
where i = 0,±1,±2, . . . ,±n. We plug the obtained values in Eq. (4) along with solutions
of Eq. (5) using the transformation in Eq. (2) to obtain several exact solutions of Eq. (1).
For general solutions of Eq. (1), the generalized Riccati equation mapping technique gives
twenty-seven solutions of the Riccati equation in Eq. (5) presenting four different families
[49] as follows.

Family 1: When p2 – 4qr > 0 and pq �= 0 or qr �= 0, the hyperbolic function solutions of
Eq. (5) are as follows:

φ1(ξ ) = –
1

2q

[
p +

√
p2 – 4qr tanh

(√
p2 – 4qr

2
ξ

)]
,

φ2(ξ ) = –
1

2q

[
p +

√
p2 – 4qr coth

(√
p2 – 4qr

2
ξ

)]
,

φ3(ξ ) = –
1

2q
[
p +

√
p2 – 4qr

(
tanh

(√
p2 – 4qrξ

) ± i sech
(√

p2 – 4qrξ
))]

,

φ4(ξ ) = –
1

2q
[
p +

√
p2 – 4qr

(
coth

(√
p2 – 4qrξ

) ± csch
(√

p2 – 4qrξ
))]

,

φ5(ξ ) = –
1

4q

[
2p +

√
p2 – 4qr

(
tanh

(√
p2 – 4qr

4
ξ

)
± coth

(√
p2 – 4qr

4
ξ

))]
,

φ6(ξ ) =
1

2q

[
–p +

√
(A2 + B2)(p2 – 4qr) – A

√
p2 – 4qr cosh(

√
p2 – 4qrξ )

A sinh(
√

p2 – 4qrξ ) + B

]
,

φ7(ξ ) =
1

2q

[
–p –

√
(B2 – A2)(p2 – 4qr) + A

√
p2 – 4qr sinh(

√
p2 – 4qrξ )

A cosh(
√

p2 – 4qrξ ) + B

]
,

where two non-zero real constants A and B satisfy B2 – A2 > 0,

φ8(ξ ) =
2r cosh(

√
p2–4qr

2 ξ )
√

p2 – 4qr sinh(
√

p2–4qr
2 ξ ) – p cosh(

√
p2–4qr

2 ξ )
,

φ9(ξ ) =
–2r sinh(

√
p2–4qr

2 ξ )

p sinh(
√

p2–4qr
2 ξ ) –

√
p2 – 4qr cosh(

√
p2–4qr

2 ξ )
,

φ10(ξ ) =
2r cosh(

√
p2 – 4qrξ )

√
p2 – 4qr sinh(

√
p2 – 4qrξ ) – p cosh(

√
p2 – 4qrξ ) ± i

√
p2 – 4qr

,

φ11(ξ ) =
2r sinh(

√
p2 – 4qrξ )

–p sinh(
√

p2 – 4qrξ ) +
√

p2 – 4qr cosh(
√

p2 – 4qrξ ) ± √
p2 – 4qr

,

φ12(ξ ) =
4r sinh(

√
p2–4qr

4 ξ ) cosh(
√

p2–4qr
4 ξ )

⎛

⎝ –2p sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

+ 2
√

p2 – 4qr cosh2(
√

p2–4qr
4 ξ ) –

√
p2 – 4qr

⎞

⎠

.

Family 2: When p2 – 4qr < 0 and pq �= 0 or qr �= 0, the trigonometric solutions of Eq. (5)
are as follows:

φ13(ξ ) =
1

2q

[
–p +

√
4qr – p2 tan

(√
4qr – p2

2
ξ

)]
,
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φ14(ξ ) = –
1

2q

[
p +

√
4qr – p2 cot

(√
4qr – p2

2
ξ

)]
,

φ15(ξ ) =
1

2q
[
–p +

√
4qr – p2

(
tan

(√
4qr – p2ξ

) ± sec
(√

4qr – p2ξ
))]

,

φ16(ξ ) = –
1

2q
[
p +

√
4qr – p2

(
cot

(√
4qr – p2ξ

) ± csc
(√

4qr – p2ξ
))]

,

φ17(ξ ) =
1

4q

[
–2p +

√
4qr – p2

(
tan

(√
4qr – p2

4
ξ

)
– cot

(√
4qr – p2

4
ξ

))]
,

φ18(ξ ) =
1

2q

[
–p +

±√
(A2 – B2)(4qr – p2) – A

√
4qr – p2 cos(

√
4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

]
,

φ19(ξ ) =
1

2q

[
–p –

√
(A2 – B2)(4qr – p2) + A

√
4qr – p2 cos(

√
4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

]
,

where two non-zero real constants A and B satisfy A2 – B2 > 0,

φ20(ξ ) = –
2r cos(

√
4qr–p2

2 ξ )
√

4qr – p2 sin(
√

4qr–p2

2 ξ ) + p cos(
√

4qr–p2

2 ξ )
,

φ21(ξ ) =
2r sin(

√
4qr–p2

2 ξ )

–p sin(
√

4qr–p2

2 ξ ) +
√

4qr – p2 cos(
√

4qr–p2

2 ξ )
,

φ22(ξ ) = –
2r cos(

√
4qr – p2ξ )

√
4qr – p2 sin(

√
4qr – p2ξ ) + p cos(

√
4qr – p2ξ ) ± √

4qr – p2
,

φ23(ξ ) =
2r sin(

√
4qr – p2ξ )

–p sin(
√

4qr – p2ξ ) +
√

4qr – p2 cos(
√

4qr – p2ξ ) ± √
4qr – p2

,

φ24(ξ ) =
4r sin(

√
4qr–p2

4 ξ ) cos(
√

4qr–p2

4 ξ )
⎛

⎝ –2p sin(
√

4qr–p2

2 ξ ) cos(
√

4qr–p2

4 ξ )

+ 2
√

4qr – p2 cos2(
√

4qr–p2

4 ξ ) –
√

4qr – p2

⎞

⎠

.

Family 3: When r = 0 and pq �= 0, the solutions of Eq. (5) are as follows:

φ25(ξ ) = –
pd

q(d + cosh(pξ ) – sinh(pξ ))
,

φ26(ξ ) =
–p(cosh(pξ ) + sinh(pξ ))

q(d + cosh(pξ ) – sinh(pξ ))
,

where d in the above solution is an arbitrary constant.
Family 4: When r = p = 0 and q �= 0, the rational solution of Eq. (5) is

φ27(ξ ) = –
1

qξ + c
,

where c in the above solution is an arbitrary constant.
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3 Space–time conformable Caudrey–Dodd–Gibbon equation
Consider the space–time conformable Caudrey–Dodd–Gibbon (CDG) equation [44] via
Atangana’s conformable derivative in the form

A
0 Dα

t u + A
0 D5α

x u + 30u A
0 D3α

x u + 30 A
0 Dα

x u A
0 D2α

x u + 180u2 A
0 Dα

x u = 0. (6)

We first transfer Eq. (6) from FPDE to the following nonlinear conformable ordinary dif-
ferential equation by using the variable transformation and integrating once

u(x, t) = u(ξ ),

ξ =
χ

α

(
x +

1
Γ (α)

)α

+
λ

α

(
t +

1
Γ (α)

)α

,
(7)

in the following form:

60χu3(ξ ) + λu(ξ ) + 30χ3u(ξ )u′′(ξ ) + u′′′′(ξ )χ5 = 0, (8)

where u′ = du
dξ

.
Here, positive integer number M is found by using the homogeneous balance between

the highest order derivative u′′′′ and a nonlinear term of the highest order u(ξ )u′′(ξ )
present in Eq. (8), we get M = 2.

Suppose that the solution of Eq. (8) has the following form:

u(ξ ) = a–2φ(ξ )–2 + a–1φ(ξ )–1 + a0 + a1φ(ξ ) + a2φ(ξ )2. (9)

Substituting Eq. (9) along with Eq. (5) into Eq. (8), we obtain a polynomial in φi(ξ ), where
(i = –6, –5, –4, . . . , 6). Setting all terms of the like power to zero, we get a system of algebraic
equations. Solving the set of over-determined algebraic equations by Maple, we come up
with different solutions. Implementing these solutions then into Eq. (6), we justify the
solutions to be exact.

Case 1:

a0 = –χ2qr, a1 = –χ2pq, a–1 = 0, a–2 = 0,

a2 = –χ2q2, λ = –χ5(p2 – 4qr
)2.

(10)

Inserting these values into Eq. (9) by using Families 1–4 of Eq. (5) and Eq. (7), we obtain
the hyperbolic, periodic, and rational solutions as follows.

Family 1: When p2 – 4qr > 0 and pq �= 0 or qr �= 0, the hyperbolic function solutions of
Eq. (6) are as follows:

u1,1(ξ ) = –χ2qr – χ2pq
(

–
1

2q

(
p +

√
p2 – 4qr tanh

(√
p2 – 4qr

2
ξ

)))

– χ2q2
(

–
1

2q

(
p +

√
p2 – 4qr tanh

(√
p2 – 4qr

2
ξ

)))2

, (11)
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u1,2(ξ ) = –χ2qr – χ2pq
(

–
1

2q

(
p +

√
p2 – 4qr coth

(√
p2 – 4qr

2
ξ

)))

– χ2q2
(

–
1

2q

(
p +

√
p2 – 4qr coth

(√
p2 – 4qr

2
ξ

)))2

, (12)

u1,3(ξ ) = –χ2qr

– χ2pq

(

–
1

2q

[
p +

√
p2 – 4qr

(tanh(
√

p2 – 4qrξ ) ± i sech(
√

p2 – 4qrξ ))

])

– χ2q2

(

–
1

2q

[
p +

√
p2 – 4qr

(tanh(
√

p2 – 4qrξ ) ± i sech(
√

p2 – 4qrξ ))

])2

, (13)

u1,4(ξ ) = –χ2qr

– χ2pq

(

–
1

2q

[
p +

√
p2 – 4qr

(coth(
√

p2 – 4qrξ ) ± csch(
√

p2 – 4qrξ ))

])

– χ2q2

(

–
1

2q

[
p +

√
p2 – 4qr

(coth(
√

p2 – 4qrξ ) ± csch(
√

p2 – 4qrξ ))

])2

, (14)

u1,5(ξ )

= –χ2qr

– χ2pq
(

–
1

4q

[
2p +

√
p2 – 4qr

(
tanh

(√
p2 – 4qr

4
ξ

)
± coth

(√
p2 – 4qr

4
ξ

))])

– χ2q2
(

–
1

4q

[
2p +

√
p2 – 4qr

(
tanh

(√
p2 – 4qr

4
ξ

)
± coth

(√
p2 – 4qr

4
ξ

))])2

,

(15)

u1,6(ξ )

= –χ2qr

– χ2pq
(

1
2q

[
–p +

√
(A2 + B2)(p2 – 4qr) – A

√
p2 – 4qr cosh(

√
p2 – 4qrξ )

A sinh(
√

p2 – 4qrξ ) + B

])

– χ2q2
(

1
2q

[
–p +

√
(A2 + B2)(p2 – 4qr) – A

√
p2 – 4qr cosh(

√
p2 – 4qrξ )

A sinh(
√

p2 – 4qrξ ) + B

])2

,

(16)

u1,7(ξ )

= –χ2qr

– χ2pq
(

1
2q

[
–p –

√
(B2 – A2)(p2 – 4qr) + A

√
p2 – 4qr sinh(

√
p2 – 4qrξ )

A cosh(
√

p2 – 4qrξ ) + B

])

– χ2q2
(

1
2q

[
–p –

√
(B2 – A2)(p2 – 4qr) + A

√
p2 – 4qr sinh(

√
p2 – 4qrξ )

A cosh(
√

p2 – 4qrξ ) + B

])2

,

(17)

where A and B are two non-zero real constants satisfying B2 – A2 > 0

u1,8(ξ ) = –χ2qr
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– χ2pq
( 2r cosh(

√
p2–4qr

2 ξ )
√

p2 – 4qr sinh(
√

p2–4qr
2 ξ ) – p cosh(

√
p2–4qr

2 ξ )

)

– χ2q2
( 2r cosh(

√
p2–4qr

2 ξ )
√

p2 – 4qr sinh(
√

p2–4qr
2 ξ ) – p cosh(

√
p2–4qr

2 ξ )

)2

, (18)

u1,9(ξ ) = –χ2qr

– χ2pq
( –2r sinh(

√
p2–4qr

2 ξ )

p sinh(
√

p2–4qr
2 ξ ) –

√
p2 – 4qr cosh(

√
p2–4qr

2 ξ )

)

– χ2q2
( –2r sinh(

√
p2–4qr

2 ξ )

p sinh(
√

p2–4qr
2 ξ ) –

√
p2 – 4qr cosh(

√
p2–4qr

2 ξ )

)2

, (19)

u1,10(ξ )

= –χ2qr

– χ2pq
(

2r cosh(
√

p2 – 4qrξ )
√

p2 – 4qr sinh(
√

p2 – 4qrξ ) – p cosh(
√

p2 – 4qrξ ) ± i
√

p2 – 4qr

)

– χ2q2
(

2r cosh(
√

p2 – 4qrξ )
√

p2 – 4qr sinh(
√

p2 – 4qrξ ) – p cosh(
√

p2 – 4qrξ ) ± i
√

p2 – 4qr

)2

,

(20)

u1,11(ξ )

= –χ2qr

– χ2pq
(

2r sinh(
√

p2 – 4qrξ )
–p sinh(

√
p2 – 4qrξ ) +

√
p2 – 4qr cosh(

√
p2 – 4qrξ ) ± √

p2 – 4qr

)

– χ2pq
(

2r sinh(
√

p2 – 4qrξ )
–p sinh(

√
p2 – 4qrξ ) +

√
p2 – 4qr cosh(

√
p2 – 4qrξ ) ± √

p2 – 4qr

)2

,

(21)

u1,12(ξ ) = –χ2qr – χ2pq

×

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

4r sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

–2p sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

+ 2
√

p2 – 4qr cosh2(
√

p2–4qr
4 ξ ) –

√
p2 – 4qr

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

– χ2q2

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

4r sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

–2p sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

+ 2
√

p2 – 4qr cosh2(
√

p2–4qr
4 ξ ) –

√
p2 – 4qr

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

2

. (22)
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Family 2: When p2 – 4qr < 0 and pq �= 0 or qr �= 0, the trigonometric solutions of Eq. (6)
are as follows:

u1,13(ξ ) = –χ2qr – χ2pq
(

1
2q

(
–p +

√
4qr – p2 tan

(√
4qr – p2

2
ξ

)))

– χ2q2
(

1
2q

(
–p +

√
4qr – p2 tan

(√
4qr – p2

2
ξ

)))2

, (23)

u1,14(ξ ) = –χ2qr – χ2pq
(

–
1

2q

(
p +

√
4qr – p2 cot

(√
4qr – p2

2
ξ

)))

– χ2q2
(

–
1

2q

(
p +

√
4qr – p2 cot

(√
4qr – p2

2
ξ

)))2

, (24)

u1,15(ξ ) = –χ2qr

– χ2pq
(

1
2q

[
–p +

√
4qr – p2

(
tan

(√
4qr – p2ξ

) ± sec
(√

4qr – p2ξ
))]

)

– χ2q2
(

1
2q

[
–p +

√
4qr – p2

(
tan

(√
4qr – p2ξ

) ± sec
(√

4qr – p2ξ
))]

)2

,

(25)

u1,16(ξ ) = –χ2qr

– χ2pq
(

–
1

2q
[
p +

√
4qr – p2

(
cot

(√
4qr – p2ξ

) ± csc
(√

4qr – p2ξ
))])

– χ2q2
(

–
1

2q
[
p +

√
4qr – p2

(
cot

(√
4qr – p2ξ

) ± csc
(√

4qr – p2ξ
))])2

,

(26)

u1,17(ξ )

= –χ2qr

– χ2pq
(

1
4q

[
–2p +

√
4qr – p2

(
tan

(√
4qr – p2

4
ξ

)
– cot

(√
4qr – p2

4
ξ

))])

– χ2q2
(

1
4q

[
–2p +

√
4qr – p2

(
tan

(√
4qr – p2

4
ξ

)
– cot

(√
4qr – p2

4
ξ

))])2

,

(27)

u1,18(ξ )

= –χ2qr

– χ2pq
(

1
2q

[
–p +

±√
(A2 – B2)(4qr – p2) – A

√
4qr – p2 cos(

√
4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

])

– χ2q2
(

1
2q

[
–p +

±√
(A2 – B2)(4qr – p2) – A

√
4qr – p2 cos(

√
4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

])2

,

(28)

u1,19(ξ )

= –χ2qr
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– χ2pq
(

1
2q

[
–p –

√
(A2 – B2)(4qr – p2) + A

√
4qr – p2 cos(

√
4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

])

– χ2q2
(

1
2q

[
–p –

√
(A2 – B2)(4qr – p2) + A

√
4qr – p2 cos(

√
4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

])2

,

(29)

where A and B are two non-zero real constants satisfying A2 – B2 > 0,

u1,20(ξ ) = –χ2qr

– χ2pq
(

–
2r cos(

√
4qr–p2

2 ξ )
√

4qr – p2 sin(
√

4qr–p2

2 ξ ) + p cos(
√

4qr–p2

2 ξ )

)

– χ2q2
(

–
2r cos(

√
4qr–p2

2 ξ )
√

4qr – p2 sin(
√

4qr–p2

2 ξ ) + p cos(
√

4qr–p2

2 ξ )

)2

, (30)

u1,21(ξ ) = –χ2qr

– χ2pq
( 2r sin(

√
4qr–p2

2 ξ )

–p sin(
√

4qr–p2

2 ξ ) +
√

4qr – p2 cos(
√

4qr–p2

2 ξ )

)

– χ2q2
( 2r sin(

√
4qr–p2

2 ξ )

–p sin(
√

4qr–p2

2 ξ ) +
√

4qr – p2 cos(
√

4qr–p2

2 ξ )

)2

, (31)

u1,22(ξ ) = –χ2qr

– χ2pq
(

–
2r cos(

√
4qr – p2ξ )

√
4qr – p2 sin(

√
4qr – p2ξ ) + p cos(

√
4qr – p2ξ ) ± √

4qr – p2

)

– χ2q2
(

–
2r cos(

√
4qr – p2ξ )

√
4qr – p2 sin(

√
4qr – p2ξ ) + p cos(

√
4qr – p2ξ ) ± √

4qr – p2

)2

,

(32)

u1,23(ξ ) = –χ2qr

– χ2pq
(

2r sin(
√

4qr – p2ξ )
–p sin(

√
4qr – p2ξ ) +

√
4qr – p2 cos(

√
4qr – p2ξ ) ± √

4qr – p2

)

– χ2q2
(

2r sin(
√

4qr – p2ξ )
–p sin(

√
4qr – p2ξ ) +

√
4qr – p2 cos(

√
4qr – p2ξ ) ± √

4qr – p2

)2

,

(33)

u1,24(ξ ) = –χ2qr

– χ2pq

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

4r sin(
√

4qr–p2

4 ξ ) cos(
√

4qr–p2

4 ξ )

–2p sin(
√

4qr–p2

2 ξ ) cos(
√

4qr–p2

4 ξ )

+ 2
√

4qr – p2 cos2(
√

4qr–p2

4 ξ ) –
√

4qr – p2

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠
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– χ2q2

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

4r sin(
√

4qr–p2

4 ξ ) cos(
√

4qr–p2

4 ξ )

–2p sin(
√

4qr–p2

2 ξ ) cos(
√

4qr–p2

4 ξ )

+ 2
√

4qr – p2 cos2(
√

4qr–p2

4 ξ ) –
√

4qr – p2

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

2

. (34)

Family 3: When r = 0 and pq �= 0, the solutions of Eq. (6) are as follows:

u1,25(ξ ) = –χ2qr – χ2pq
(

–
pd

q(d + cosh(pξ ) – sinh(pξ ))

)

– χ2q2
(

–
pd

q(d + cosh(pξ ) – sinh(pξ ))

)2

, (35)

u1,26(ξ ) = –χ2qr – χ2pq
(

–p(cosh(pξ ) + sinh(pξ ))
q(d + cosh(pξ ) – sinh(pξ ))

)

– χ2q2
(

–p(cosh(pξ ) + sinh(pξ ))
q(d + cosh(pξ ) – sinh(pξ ))

)2

. (36)

Family 4: When r = p = 0 and q �= 0, the rational solution of Eq. (6) is

u1,27(ξ ) = –χ2qr – χ2pq
(

–
1

qξ + c

)
– χ2q2

(
–

1
qξ + c

)2

, (37)

where ξ = χ

α
(x + 1

Γ (α) )α – χ5(p2–4qr)2

α
(t + 1

Γ (α) )α .
The graphical representation of solutions of Case 1 are given in Figs. 1–8.
Case 2:

a0 = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)
, a1 = 0,

a–1 = –χ2pr, a–2 = –χ2r2, a2 = 0, λ = –
1
8
χ5(p2 – 4qr

)2(
√

105 + 11).
(38)

Inserting these values into Eq. (9) along with Families 1–4 of Eq. (5) and Eq. (7), we obtain
the hyperbolic, periodic, and rational solutions as follows.

Family 1: When p2 – 4qr > 0 and pq �= 0 or qr �= 0, the hyperbolic function solutions of
Eq. (6) are as follows:

u2,1(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

2q

(
p +

√
p2 – 4qr tanh

(√
p2 – 4qr

2
ξ

)))–1

– χ2r2
(

–
1

2q

(
p +

√
p2 – 4qr tanh

(√
p2 – 4qr

2
ξ

)))–2

, (39)

u2,2(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

2q

(
p +

√
p2 – 4qr coth

(√
p2 – 4qr

2
ξ

)))–1

– χ2q2
(

–
1

2q

(
p +

√
p2 – 4qr coth

(√
p2 – 4qr

2
ξ

)))–2

, (40)
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(a) (b)

(c)

Figure 1 Dark soliton solution of u1,1(ξ )

(a) (b)

(c)

Figure 2 Singular soliton solution of u1,2(ξ )
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(a) (b)

(c)

Figure 3 Singular soliton solution of u1,5(ξ )

(a) (b)

(c)

Figure 4 Bell type soliton solution of u1,6(ξ )
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(a) (b)

(c)

Figure 5 Periodic solution of u1,13(ξ )

(a) (b)

(c)

Figure 6 Periodic solution of u1,17(ξ )
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(a) (b)

(c)

Figure 7 Periodic solution of u1,18(ξ )

(a) (b)

(c)

Figure 8 Periodic solution of u1,19(ξ )
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u2,3(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

2q
[
p +

√
p2 – 4qr

(
tanh

(√
p2 – 4qrξ

) ± i sech
(√

p2 – 4qrξ
))])–1

– χ2r2
(

–
1

2q
[
p +

√
p2 – 4qr

(
tanh

(√
p2 – 4qrξ

) ± i sech
(√

p2 – 4qrξ
))])–2

,

(41)

u2,4(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

2q
[
p +

√
p2 – 4qr

(
coth

(√
p2 – 4qrξ

) ± csch
(√

p2 – 4qrξ
))]

)–1

– χ2r2
(

–
1

2q
[
p +

√
p2 – 4qr

(
coth

(√
p2 – 4qrξ

) ± csch
(√

p2 – 4qrξ
))]

)–2

,

(42)

u2,5(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

(

–
1

4q

[
2p +

√
p2 – 4qr

(tanh(
√

p2–4qr
4 ξ ) ± coth(

√
p2–4qr

4 ξ ))

])–1

– χ2r2

(

–
1

4q

[
2p +

√
p2 – 4qr

(tanh(
√

p2–4qr
4 ξ ) ± coth(

√
p2–4qr

4 ξ ))

])–2

, (43)

u2,6(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜
⎜⎜
⎜
⎝

1
2q

⎡

⎢
⎢⎢
⎢
⎣

–p +

√
(A2 + B2)(p2 – 4qr)

– A
√

p2 – 4qr cosh(
√

p2 – 4qrξ )

A sinh(
√

p2 – 4qrξ ) + B

⎤

⎥
⎥⎥
⎥
⎦

⎞

⎟
⎟⎟
⎟
⎠

–1

– χ2r2

⎛

⎜⎜
⎜⎜
⎝

1
2q

⎡

⎢⎢
⎢⎢
⎣

–p +

√
(A2 + B2)(p2 – 4qr)

– A
√

p2 – 4qr cosh(
√

p2 – 4qrξ )

A sinh(
√

p2 – 4qrξ ) + B

⎤

⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎠

–2

, (44)

u2,7(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜⎜
⎜⎜
⎝

1
2q

⎡

⎢⎢
⎢⎢
⎣

–p –

√
(B2 – A2)(p2 – 4qr)

+ A
√

p2 – 4qr sinh(
√

p2 – 4qrξ )

A cosh(
√

p2 – 4qrξ ) + B

⎤

⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎠

–1

– χ2r2

⎛

⎜
⎜⎜
⎜
⎝

1
2q

⎡

⎢
⎢⎢
⎢
⎣

–p –

√
(B2 – A2)(p2 – 4qr)

+ A
√

p2 – 4qr sinh(
√

p2 – 4qrξ )

A cosh(
√

p2 – 4qrξ ) + B

⎤

⎥
⎥⎥
⎥
⎦

⎞

⎟
⎟⎟
⎟
⎠

–2

, (45)
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where A and B are two non-zero real constants satisfying B2 – A2 > 0,

u2,8(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
( 2r cosh(

√
p2–4qr

2 ξ )
√

p2 – 4qr sinh(
√

p2–4qr
2 ξ ) – p cosh(

√
p2–4qr

2 ξ )

)–1

– χ2r2
( 2r cosh(

√
p2–4qr

2 ξ )
√

p2 – 4qr sinh(
√

p2–4qr
2 ξ ) – p cosh(

√
p2–4qr

2 ξ )

)–2

, (46)

u2,9(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
( –2r sinh(

√
p2–4qr

2 ξ )

p sinh(
√

p2–4qr
2 ξ ) –

√
p2 – 4qr cosh(

√
p2–4qr

2 ξ )

)–1

– χ2r2
( –2r sinh(

√
p2–4qr

2 ξ )

p sinh(
√

p2–4qr
2 ξ ) –

√
p2 – 4qr cosh(

√
p2–4qr

2 ξ )

)–2

, (47)

u2,10(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜
⎜⎜
⎜⎜
⎝

2r cosh(
√

p2 – 4qrξ )
√

p2 – 4qr
sinh(

√
p2 – 4qrξ ) – p cosh(

√
p2 – 4qrξ ) ± i

√
p2 – 4qr

⎞

⎟
⎟⎟
⎟⎟
⎠

–1

– χ2r2

⎛

⎜
⎜⎜
⎜⎜
⎝

2r cosh(
√

p2 – 4qrξ )
√

p2 – 4qr
sinh(

√
p2 – 4qrξ ) – p cosh(

√
p2 – 4qrξ ) ± i

√
p2 – 4qr

⎞

⎟
⎟⎟
⎟⎟
⎠

–2

, (48)

u2,11(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜⎜
⎜⎜
⎜
⎝

2r sinh(
√

p2 – 4qrξ )
–p sinh(

√
p2 – 4qrξ )

+
√

p2 – 4qr cosh(
√

p2 – 4qrξ ) ± √
p2 – 4qr

⎞

⎟⎟
⎟⎟
⎟
⎠

–1

– χ2r2

⎛

⎜⎜
⎜⎜
⎜
⎝

2r sinh(
√

p2 – 4qrξ )
–p sinh(

√
p2 – 4qrξ )

+
√

p2 – 4qr cosh(
√

p2 – 4qrξ ) ± √
p2 – 4qr

⎞

⎟⎟
⎟⎟
⎟
⎠

–2

, (49)

u2,12(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)
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– χ2pr

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

4r sinh(
√

p2–4qr
4 ξ ) cosh(

√
p2–4qr

4 ξ )

–2p sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

+ 2
√

p2 – 4qr cosh2(
√

p2–4qr
4 ξ ) –

√
p2 – 4qr

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

–1

– χ2r2

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

4r sinh(
√

p2–4qr
4 ξ ) cosh(

√
p2–4qr

4 ξ )

–2p sinh(
√

p2–4qr
2 ξ ) cosh(

√
p2–4qr

4 ξ )

+ 2
√

p2 – 4qr cosh2(
√

p2–4qr
4 ξ ) –

√
p2 – 4qr

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

–2

. (50)

Family 2: When p2 – 4qr < 0 and pq �= 0 or qr �= 0, the trigonometric solutions of Eq. (6)
are as follows:

u2,13(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

1
2q

(
–p +

√
4qr – p2 tan

(√
4qr – p2

2
ξ

)))–1

– χ2r2
(

1
2q

(
–p +

√
4qr – p2 tan

(√
4qr – p2

2
ξ

)))–2

, (51)

u2,14(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

2q

(
p +

√
4qr – p2 cot

(√
4qr – p2

2
ξ

)))–1

– χ2r2
(

–
1

2q

(
p +

√
4qr – p2 cot

(√
4qr – p2

2
ξ

)))–2

, (52)

u2,15(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

1
2q

[
–p +

√
4qr – p2

(
tan

(√
4qr – p2ξ

) ± sec
(√

4qr – p2ξ
))]

)–1

– χ2r2
(

1
2q

[
–p +

√
4qr – p2

(
tan

(√
4qr – p2ξ

) ± sec
(√

4qr – p2ξ
))])–2

,

(53)

u2,16(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

2q
[
p +

√
4qr – p2

(
cot

(√
4qr – p2ξ

) ± csc
(√

4qr – p2ξ
))])–1

– χ2r2
(

–
1

2q
[
p +

√
4qr – p2

(
cot

(√
4qr – p2ξ

) ± csc
(√

4qr – p2ξ
))]

)–2

,

(54)

u2,17(ξ )

= –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)
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– χ2pr
(

1
4q

[
–2p +

√
4qr – p2

(
tan

(√
4qr – p2

4
ξ

)
– cot

(√
4qr – p2

4
ξ

))])–1

– χ2r2
(

1
4q

[
–2p +

√
4qr – p2

(
tan

(√
4qr – p2

4
ξ

)
– cot

(√
4qr – p2

4
ξ

))])–2

,

(55)

u2,18(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜⎜⎜
⎜
⎝

1
2q

⎡

⎢⎢⎢
⎢
⎣

–p +

±√
(A2 – B2)(4qr – p2)

– A
√

4qr – p2 cos(
√

4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

⎤

⎥⎥⎥
⎥
⎦

⎞

⎟⎟⎟
⎟
⎠

–1

– χ2r2

⎛

⎜⎜
⎜⎜
⎝

1
2q

⎡

⎢⎢
⎢⎢
⎣

–p +

±√
(A2 – B2)(4qr – p2)

– A
√

4qr – p2 cos(
√

4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

⎤

⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎠

–2

, (56)

u2,19(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜
⎜⎜⎜
⎝

1
2q

⎡

⎢
⎢⎢⎢
⎣

–p –

√
(A2 – B2)(4qr – p2)

+ A
√

4qr – p2 cos(
√

4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

⎤

⎥
⎥⎥⎥
⎦

⎞

⎟
⎟⎟⎟
⎠

–1

– χ2r2

⎛

⎜⎜⎜
⎜
⎝

1
2q

⎡

⎢⎢⎢
⎢
⎣

–p –

√
(A2 – B2)(4qr – p2)

+ A
√

4qr – p2 cos(
√

4qr – p2ξ )

A sin(
√

4qr – p2ξ ) + B

⎤

⎥⎥⎥
⎥
⎦

⎞

⎟⎟⎟
⎟
⎠

–2

, (57)

where A and B are two non-zero real constants satisfying A2 – B2 > 0,

u2,20(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
2r cos(

√
4qr–p2

2 ξ )
√

4qr – p2 sin(
√

4qr–p2

2 ξ ) + p cos(
√

4qr–p2

2 ξ )

)–1

– χ2r2
(

–
2r cos(

√
4qr–p2

2 ξ )
√

4qr – p2 sin(
√

4qr–p2

2 ξ ) + p cos(
√

4qr–p2

2 ξ )

)–2

, (58)

u2,21(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
( 2r sin(

√
4qr–p2

2 ξ )

–p sin(
√

4qr–p2

2 ξ ) +
√

4qr – p2 cos(
√

4qr–p2

2 ξ )

)–1

– χ2r2
( 2r sin(

√
4qr–p2

2 ξ )

–p sin(
√

4qr–p2

2 ξ ) +
√

4qr – p2 cos(
√

4qr–p2

2 ξ )

)–2

, (59)
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u2,22(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜
⎜⎜
⎜
⎝

–
2r cos(

√
4qr – p2ξ )

√
4qr – p2

sin(
√

4qr – p2ξ ) + p cos(
√

4qr – p2ξ ) ± √
4qr – p2

⎞

⎟
⎟⎟
⎟
⎠

–1

– χ2r2

⎛

⎜⎜
⎜⎜
⎝

–
2r cos(

√
4qr – p2ξ )

√
4qr – p2

sin(
√

4qr – p2ξ ) + p cos(
√

4qr – p2ξ ) ± √
4qr – p2

⎞

⎟⎟
⎟⎟
⎠

–2

, (60)

u2,23(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜⎜
⎜⎜
⎝

2r sin(
√

4qr – p2ξ )
–p sin(

√
4qr – p2ξ )

+
√

4qr – p2 cos(
√

4qr – p2ξ ) ± √
4qr – p2

⎞

⎟⎟
⎟⎟
⎠

–1

– χ2r2

⎛

⎜
⎜⎜
⎜
⎝

2r sin(
√

4qr – p2ξ )
–p sin(

√
4qr – p2ξ )

+
√

4qr – p2 cos(
√

4qr – p2ξ ) ± √
4qr – p2

⎞

⎟
⎟⎟
⎟
⎠

–2

, (61)

u2,24(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

4r sin(
√

4qr–p2

4 ξ ) cos(
√

4qr–p2

4 ξ )

–2p sin(
√

4qr–p2

2 ξ ) cos(
√

4qr–p2

4 ξ )

+ 2
√

4qr – p2 cos2(
√

4qr–p2

4 ξ ) –
√

4qr – p2

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

–1

– χ2r2

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

4r sin(
√

4qr–p2

4 ξ ) cos(
√

4qr–p2

4 ξ )

–2p sin(
√

4qr–p2

2 ξ ) cos(
√

4qr–p2

4 ξ )

+ 2
√

4qr – p2 cos2(
√

4qr–p2

4 ξ ) –
√

4qr – p2

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

–2

. (62)

Family 3: When r = 0 and pq �= 0, the solutions of Eq. (6) are as follows:

u2,25(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
pd

q(d + cosh(pξ ) – sinh(pξ ))

)–1

– χ2r2
(

–
pd

q(d + cosh(pξ ) – sinh(pξ ))

)–2

, (63)
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u2,26(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–p(cosh(pξ ) + sinh(pξ ))
q(d + cosh(pξ ) – sinh(pξ ))

)–1

– χ2r2
(

–p(cosh(pξ ) + sinh(pξ ))
q(d + cosh(pξ ) – sinh(pξ ))

)–2

. (64)

Family 4: When r = p = 0 and q �= 0, the rational solution of Eq. (6) is

u2,27(ξ ) = –
1

120
χ2((p2 – 4qr

)√
105 + 15p2 + 60qr

)

– χ2pr
(

–
1

qξ + c

)–1

– χ2r2
(

–
1

qξ + c

)–2

, (65)

where ξ = χ

α
(x + 1

Γ (α) )α –
1
8 χ5(p2–4qr)2(

√
105+11)

α
(t + 1

Γ (α) )α .
The graphical representation of solutions of Case 2 are given in Figs. 9–14.

4 Discussion and physical interpretation
This section gives visualization of our obtained solutions of the space–time conformable
Caudrey–Dodd–Gibbon (CDG) equation. Using the generalized Riccati equation map-
ping (GREM) method, we came up with the solitary wave solutions of the (CDG) equation.
These are generalized and closed form solutions of traveling wave type. The solutions in-
clude singular soliton solution, soliton solution, dark soliton, periodic wave solution, and
bell shape soliton. For 2D graphical representation, we have opted for α = 0.4, 0.8, 1, while

(a) (b)

(c)

Figure 9 Bell type soliton solution of u2,1(ξ )
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(a) (b)

(c)

Figure 10 Singular soliton solution of u2,2(ξ )

(a) (b)

(c)

Figure 11 Solitary wave solution of u2,4(ξ )
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(a) (b)

(c)

Figure 12 Hyperbolic solution of u2,7(ξ )

(a) (b)

(c)

Figure 13 Trignometric solution of u2,13(ξ )
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(a) (b)

(c)

Figure 14 Trignometric solution of u2,19(ξ )

for 3D graphical representation, we have opted for α = 0.4, 1, depicted in Figs. 1–14, re-
spectively.

I. Fig. 1 gives a dark soliton solution of u1,1(ξ ) by considering p = 5, q = 2, r = 3, χ = 1
within the interval –10 ≤ x ≤ 10, 0 ≤ t < 10, and Fig. 2 gives a singular soliton
solution of u1,2(ξ ) with p = 2, q = 0.5, r = 1, χ = 1 within the interval –20 ≤ x ≤ 20,
0 ≤ t < 10. Figure 3 represents the singular soliton solution of u1,5(ξ ) by considering
p = 4, q = 0.5, r = 4, χ = 0.5 within the interval –30 ≤ x ≤ 30, 0 ≤ t < 5. The solutions
u1,6(ξ ) that describe the bell type soliton solution with p = 4, q = 3, r = –2, χ = 0.1,
A = 3, B = 2 for –30 ≤ x ≤ 30, 0 ≤ t < 100 are depicted in Fig. 4. The solutions
u1,13(ξ ) and u1,17(ξ ) describe the periodic solution with p = 3, q = 4, r = 1, χ = 0.5
within the interval –40 ≤ x ≤ 40, 0 ≤ t < 10 and p = 5, q = 3, r = 4, χ = 0.7 within the
interval –50 ≤ x ≤ 50, 0 ≤ t < 20, respectively. Figure 7 and Fig. 8 show the profile of
Eq. (28) and Eq. (29) which is periodic, by considering p = 4, q = 3, r = 2, χ = 0.4,
A = 5, B = 3 within the interval –30 ≤ x ≤ 30, 0 ≤ t < 10 and p = 2, q = 1, r = 3,
χ = 0.5, B = 1, A = 2 for –5 ≤ x ≤ 5, 0 ≤ t < 10, respectively.

II. Fig. 9 shows the graphical representation of a bell type soliton solution of u2,1(ξ )
with p = 4, q = 2, r = 1, χ = 0.3 for –5 ≤ x ≤ 5, 0 ≤ t < 30. The solution u2,2(ξ )
depicts the properties of a singular soliton solution of Eq. (40) with p = 3, q = 1, r = 1,
χ = 0.5 which are graphed in Fig. 10. Figure 11 represents the solitary wave solution
of u2,4(ξ ) by considering p = 5, q = 0.25, r = 0.5, χ = 0.2 within the interval
–10 ≤ x ≤ 10, 0 ≤ t < 10. The hyperbolic solution of Eq. (45) with p = 3, q = 0.5,
r = 2, χ = 0.5, A = 2, B = 5 for –20 ≤ x ≤ 20, 0 ≤ t < 10 is depicted in Fig. 12. The
trigonometric solution of u2,13(ξ ) and u2,19(ξ ) with p = 1, q = 3, r = 2, χ = 0.2 for



Bibi et al. Advances in Difference Equations         (2019) 2019:89 Page 25 of 27

–30 ≤ x ≤ 30, 0 ≤ t < 50 and p = 3, q = 4, r = 2, χ = 0.5, A = 5, B = 2 for
–10 ≤ x ≤ 10, 0 ≤ t < 5, respectively.

5 Comparison of the obtained solutions
In this section, we discuss and make a comparison of the exact solutions. We will find
the relationship between the exact solutions obtained by the generalized Riccati equa-
tion mapping method with Atangana–Baleanu fractional derivative applied on (CDG)
equation and the exact solutions obtained by other methods. To the best of our knowl-
edge, these exact solutions are new and not available in the literature. The tanh-coth [50]
method was applied to investigate the fifth order Caudrey–Dodd–Gibbon equation and
find out only four solutions. Neamaty et al. [51] executed the ( G′

G )-expansion method and
obtained only five travelling wave solutions. Yaslan et al. [52] investigated the same equa-
tion through the ( G′

G2 )-expansion method and obtained only six solutions. The obtained
solutions are expressed by hyperbolic, trigonometric, and rational solutions. However, we
have attained twenty-seven travelling wave solutions by applying the generalized Riccati
equation mapping method with Atangana–Baleanu fractional derivative. The obtained so-
lutions might be useful to analyze the physical significance. Furthermore, for the definite
values of the parameters, diverse known solitons, such as soliton, singular soliton, peri-
odic, bell type, and dark solutions, are originated. Therefore, we might conclude that our
obtained results are more general than those attained by other methods.

6 Conclusion
Generalized Riccati equation mapping approach is used to obtain periodic, hyperbolic,
and rational solutions of space–time conformable Caudrey–Dodd–Gibbon (CDG) equa-
tion. These solutions include solitary wave solutions, which are dark, singular, and bell
type soliton solutions, for suitable values of parameters. Our work (not reported yet in
the literature) successfully finds solutions by using the conformable derivative. All the so-
lutions are verified with the help of Maple 16. 2D and 3D graphical representations of some
solutions are illustrated for the fractional orders α = 0.4, 0.8, 1 and α = 0.4, 1, respectively.
This method can be very promising for nonlinear equations and their systems in the study
of mathematical physics.
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