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Abstract
This article deals with the generalization of natural convection flow of
Cu – Al2O3 – H2O hybrid nanofluid in two infinite vertical parallel plates. To
demonstrate the flow phenomena in two parallel plates of hybrid nanofluids, the
Brinkman type fluid model together with the energy equation is considered. The
Caputo–Fabrizio fractional derivative and the Laplace transform technique are used
to developed exact analytical solutions for velocity and temperature profiles. The
general solutions for velocity and temperature profiles are brought into light through
numerical computation and graphical representation. The obtained results show that
the velocity and temperature profiles show dual behaviors for 0 < α < 1 and 0 < β < 1
where α and β are the fractional parameters. It is noticed that, for a shorter time, the
velocity and temperature distributions decrease with increasing values of the
fractional parameters, whereas the trend reverses for a longer time. Moreover, it is
found that the velocity and temperature profiles oppositely behave for the volume
fraction of hybrid nanofluids.
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1 Introduction
In recent decades, it was acknowledged that fractional operators are appropriate tools for
differentiation as compared to the local differentiation particularly in physical real word
problems. These fractional operators can be constructed by the convolutions of the local
derivative as the kernel of fractional operators; various kernels for fractional operators
have been suggested in the literature but the most common is the power law kernel (x–α),
which is used in the construction of Riemann–Liouville and Caputo fractional operators
(see [1], p. 65–106). However, the exponential decay law exp(–αx) was used by Caputo and
Fabrizio (see [2], p. 1–13). Atangana and Baleanu developed fractional operators in the
Caputo and Riemann–Liouville sense using the generalized Mittag–Leffler law Eα(–φxα)
as a kernel (see [3], p. 763–769). All these fractional operators have some shortcomings
and challenges but at the same time this area is growing fast, and researchers devoted their
attention to this field (see [4–10] and the references therein).
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It is important to mention here that fractional order calculus has many applications in
almost every field of science and technology which includes diffusion, relaxation process,
control, electrochemistry and viscoelasticity (see [11], p. 79–85). Zafar and Fetecau ([12],
p. 2789–2769) applied Caputo–Fabrizio fractional derivative to the flow of Newtonian
viscous fluid flowing over the infinite vertical plate. Markis et al. ([13], p. 1663–1679) an-
alyzed the flow of a fractional Maxwell’s fluid. According to their report, the fractional
results showed excellent agreement with experimental work by adjusting the fractional
parameter. Alkahtani and Atangana ([14], p. 106–113) used different fractional operators
to analyze the memory effect in a potential energy field caused by a charge. They pre-
sented some novel numerical approaches to the solutions of a fractional system of equa-
tions. Vieru et al. ([15], p. 85–96) presented exact solutions for the time-fraction model of
viscous fluid flow near a vertical plate taking into consideration mass diffusion and New-
tonian heating. Abro et al. ([16], p. 1–10) presented exact analytical solutions for the flow
of an Oldroyd-B fluid in a horizontal circular pipe. Jain ([17], p. 1–11) introduced a novel
and powerful numerical scheme and implemented to different fractional order differential
equations. Some other interesting and significant studies on fractional derivatives can be
found in [18–26] and the references therein.

The nanofluid is an innovation of nanotechnology to overcome the problems of heat
transport in many engineering and industrial sectors. A detailed discussion on nanoflu-
ids with a list of applications is reported by Wang et al. ([27], p. 1–19) in a review paper.
Sheikholeslam et al. ([28], p. 71–82) numerically studied the shape effect and the external
magnetic field effect on the F3O4 – H20 nanofluid inside a porous enclosure. Hassanan et
al. ([29], p. 482–488) developed exact solutions for nanofluids with different nanoparticles
for the unsteady flow of a micropolar fluid. The literature of nanofluids has exponentially
increased and has reached a next level by introducing hybrid nanofluids which are the sus-
pensions of two or more types of nanoparticles in the composite form with low concentra-
tion. Hybrid nanofluids are introduced to overcome the drawbacks of single nanoparticle
suspensions and connect the synergetic effect of nanoparticles. The hybrid nanofluid is
branded to further improve the thermal conductivity and heat transport, which leads to
industrial and engineering applications with low cost (see [30], p. 262–273). Hussain et
al. ([31], p. 1054–1066) carried out an entropy generation analysis on a hybrid nanofluid
in a cavity. Farooq et al. ([32], p. 1–14) presented a numerical study on hybrid nanofluids
keeping into consideration suction/injection, entropy generation, and viscous dissipation.

In the existing literature, experimental, theoretical and numerical studies on hybrid
nanofluids are very limited. A study of a hybrid nanofluid fluid with exact solutions and
the Caputo fractional derivative even does not exist. So, there is an urgent need to con-
tribute to the literature of hybrid nanofluids using the application of fractional differential
equations. Motivated by the above discussion, the present study focused on the heat trans-
fer in hybrid nanofluid in two vertical parallel plates using fractional derivative approach.
A water-based hybrid nanofluid is characterized here with composite hybrid nanoparticles
of cupper (Cu) and alumina (Al2O3). The fractional Brinkman type fluid model with phys-
ical initial and boundary conditions is considered for the flow phenomena. The Laplace
transform technique is used to obtain exact analytical solutions for the velocity and tem-
perature profiles. Using the properties of the Caputo–Fabrizio fractional derivative the
obtained solutions are reduced to the classical form for α = 1 and β = 1. To explore the
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physical aspect of the flow parameters the solutions are numerically computed and plotted
in different graphs with a physical explanation.

2 Problem’s description
Let us consider the unsteady free convection flow of a generalized incompressible hybrid
nanofluid in two infinite vertical parallel plates at a distance d. The plates are taken along
the x-axis and the y-axis is chosen normal to it. At t ≤ 0, the plates and fluid are at rest
with ambient temperature T0. After t = 0+, the temperature of the plate at y = d rises or
lowers from T0 to TW due to which the free convection takes place. At this moment, the
fluid starts motion in the x– direction due to the temperature gradient which gives rise to
the buoyancy forces. The Brinkman type fluid model is utilized to describe flow phenom-
ena of the hybrid nanofluid. Under the assumptions of ([33], p. 1472–1488) the governing
equations of the Cu – Al2O3 – H2O hybrid nanofluid are given by

ρhnf

(
∂u(y, t)

∂t
+ β∗

b u(y, t)
)

= μhnf
∂2u(y, t)

∂y2 + g(ρβT )hnf
(
T(y, t) – T0

)
, (1)

(ρCp)hnf
∂T(y, t)

∂t
= khnf

∂2T(y, t)
∂y2 + Q0(T – T0), (2)

together with the following appropriate initial and boundary conditions:

u(y, 0) = 0, T(y, 0) = T0, ∀y ≥ 0, (3)

u(0, t) = 0, T(0, t) = T0 for t > 0
u(d, t) = 0, T(d, t) = TW for t > 0

}
, (4)

where ρhnf is the density, u(y, t) is the velocity, β∗
b is the Brinkmann parameter, μhnf is the

dynamic viscosity, βhnf is the volumetric thermal expansion, (Cp)hnf is the specific heat,
T(y, t) is the temperature, khnf is the thermal conductivity and Q0 is the heat generation
of the hybrid nanofluid.

3 Thermophysical properties of hybrid nanofluid
This section demonstrates the modification of thermophysical properties of a conven-
tional nanofluid and a hybrid nanofluid Cu – Al2O3 – H2O in a spherical shape.

3.1 The effective density
The effective density ρnf of conventional nanofluid is defined by Aminossadati and
Ghasemi (see [34], p. 630–640) and can be expressed as

ρnf = (1 – φ)ρf + φρs, (5)

where φ is the volume concentration of the nanoparticles, ρf and ρs are the densities of the
base fluid and solid particles respectively. The mathematical expression for the effective
density of the hybrid nanofluid can be obtained by modifying Eq. (5) (see [31], p. 1054–
1066):

ρhnf = (1 – φhnf )ρf + φAl2O3ρAl2O3 + φCuρCu, (6)
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where ρhnf is the density of the hybrid nanofluid, φhnf is the volume concentration of solid
particles such that φhnf = φAl2O3 + φCu, ρf is the density of the base fluid, φAl2O3 is the
volume concentration of alumina, ρAl2O2 is the density of alumina, φCu is the volume con-
centration of cupper and ρCu is the density of cupper.

3.2 The effective dynamic viscosity
The dynamics viscosity μnf of an ordinary nanofluid is expressed by Brinkman (see [35],
p. 571) by

μnf =
μf

(1 – φ)2.5 , (7)

which leads to the following modified form for a hybrid nanofluid:

μhnf =
μf

{1 – (φAl2O3 + φCu)}2.5 . (8)

3.3 The effective volumetric thermal expansion and heat capacitance
The thermal expansion and heat capacitance are, respectively, defined by Bourantas and
Loukopoulos (see [36], p. 35–41) in the form

(βTρ)nf = (1 – φ)(βTρ)f + φ(βTρ)s, (9)

(ρCp)nf = (1 – φ)(ρCp)f + φ(ρCp)s, (10)

with the following altered form for a hybrid nanofluid:

(ρβT )hnf = (1 – φhnf )(ρβT )f + φAl2O3 (ρβt)Al2O3 + φCu(ρβT )Cu, (11)

(ρCp)hnf = (1 – φhnf )(ρCp)f + φAl2O3 (ρCp)Al2O3 + φCu(ρCp)Cu. (12)

3.4 The effective thermal conductivity
The effective thermal conductivity for a conventional nanofluid is based on Maxwell’s
model (see [37], p. 87–92), which is defined by

Knf

Kf
=

ks + 2kf – 2φ(ks – kf )
ks + 2kf + 2φ(ks – kf )

, (13)

where Knf is the thermal conductivity of the nanofluid, Ks is the thermal conductivity of
solid nanometer-sized particles and Kf is the thermal conductivity of the base fluid. For
the hybrid nanofluid, Maxwell’s model can be modified:

khnf

kf
=

φAl2O3 kAl2O3 +φCukCu
φhnf

+ 2kf + 2(φAl2O3 kAl2O3 + φCukCu) – 2kf φhnf

φAl2O3 kAl2O3 +φCukCu
φhnf

+ 2kf – (φAl2O3 kAl2O3 + φCukCu) – 2kf φhnf

. (14)

It is important to highlight here that by making φAl2O3 = 0 or φCu = 0 the effective ther-
mophysical properties of the hybrid nanofluid presented in Eqs. (8), (11), (12) and (14)
can be reduced to the effective thermophysical properties of a conventional nanofluid pre-
sented in Eqs. (7), (9), (10) and (13), respectively. Furthermore, the typo mistake made in
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Table 1 Numerical values of thermophysical properties of base fluid and nanoparticles

Material Base fluid Nanoparticles

H2O Al2O3 Cu

ρ (kg/m3) 997.1 3970 8933
Cp (J/kgK) 4179 765 385
K (W/mK) 0.613 40 400
βT × 10–5 (K–1) 21 0.85 1.67
Pr 6.2 – –

[31], p. 1054–1066) and [32], p. 1–14 has been corrected here in the expression of the
thermal conductivity for the hybrid nanofluid. The numerical values of the base fluid and
nanoparticles are given in Table 1.

4 Generalization of local model
In this section, the dimensional system is first transformed to dimensionless form using
non-similarity variables to reduce the number of variables and get rid of units. The dimen-
sionless system is then artificially converted to time-fractional form or generalized form
using the Caputo–Fabrizio fractional operator (see [2], p. 1–13). It is worth to mention
here that the fractional models are more general and convenient in the description of flow
behavior and memory effect. Moreover, the results obtained from the fractional model
are additionally realistic because by adjusting the fractional parameter the obtained re-
sults can be compared with experimental data to reach excellent agreement as obtained
by Markis et al. (see [13], p. 1663–1679). Now introducing the following non-similarity
dimensionless variables:

v =
d
νf

u, ξ =
y
d

, τ =
νf

d2 t, θ =
T – T0

TW – T0
,

into Eqs. (1)–(4) yields the following:

a0

(
∂v(ξ , τ )

∂τ
+ βbv(ξ , τ )

)
= a1

∂2v(ξ , τ )
∂ξ 2 + a2 Gr θ (ξ , τ ), (15)

a3 Pr
∂θ (ξ , τ )

∂τ
= λhnf

∂2θ (ξ , τ )
∂ξ 2 + Qθ (ξ , τ ), (16)

v(ξ , 0) = 0, θ (ξ , 0) = 0, ∀ξ ≥ 0, (17)

v(0, τ ) = 0, θ (0, τ ) = 0 for τ > 0
v(1, τ ) = 0, θ (1, τ ) = 1 for t > 0

}
, (18)

where

βb =
d2β∗

b
ν2

f
, Gr =

d3g(βT )f

ν2
f

(TW – T0), Pr =
(μCp)f

kf
,

Q =
d2Q0

kf
, λhnf =

khnf

kf
, a0 = (1 – φ) +

φAl2O3ρAl2O3 + φCuρCu

ρf
,

a1 =
1

{1 – (φAl2O3 + φCu)}2.5 a2 = (1 – φ) +
φAl2O3 (ρβt)Al2O3 + φCu(ρβT )Cu

(ρβT )f
,
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a3 = (1 – φ) +
φAl2O3 (ρCp)Al2O3 + φCu(ρCp)Cu

(ρCp)f
,

is the dimensionless Brinkman type fluid parameter, the thermal Grashof number, the
Prandtl number and heat generation parameter, respectively. Here λhnf , a0, a1, a2 and a3

are the constant terms produced during the calculation. The time-fractional form of
Eqs. (15) and (16) in terms of Caputo–Fabrizio fractional operator is given by

a0

a1

CF Dα
τ v(ξ , τ ) +

a0

a1
βbv(ξ , τ ) =

∂2v(ξ , τ )
∂ξ 2 +

a2

a1
Gr θ (ξ , τ ), (19)

a3 Pr CF Dβ
τ θ (ξ , τ ) = λhnf

∂2θ (ξ , τ )
∂ξ 2 + Qθ (ξ , τ ), (20)

where CF Dα
τ v(ξ , τ ), and CF Dβ

τ θ (ξ , τ ) is for the Caputo–Fabrizio fractional operators of frac-
tional order α and β . Equations (19) and (20) are the Caputo–Fabrizio generalized form
of Eqs. (15) and (16), while the initial and boundary conditions will remain the same as in
Eqs. (17) and (18). The Caputo–Fabrizio fractional operator is defined by (see [2], p. 1–13)

CF Dδ
t f (t) =

N(δ)
1 – δ

∫ t

0
exp

(
–

δ(t – τ )
1 – δ

)
∂f (τ )
∂τ

dτ , 0 < δ < 1, (21)

which is the convolution product of the function N(δ)
1–δ

exp(– δt
1–δ

) and f (t) of fractional order
δ. In this study the following two properties of Caputo–Fabrizio fractional operator will
be utilized.

1. Property 1: According to Losanda and Nieto (see [38], p. 87–92) N(δ) is the
normalization function such that

N(1) = N(0) = 1. (22)

2. Property 2: taking into consideration Eq. (22), the Laplace transform of Eq. (21) yields

L
{CF Dδ

t f (t)
}

(q) =
qf̄ (q) – f (0)
(1 – δ)q + δ

, 0 < δ < 1, (23)

such that

lim
δ→1

[
L
{CF Dδ

t f (t)
}

(q)
]

= lim
δ→1

{
qf̄ (q) – f (0)
(1 – δ)q + δ

}
= qf̄ (q) – f (0) = L

{
∂f (t)
∂t

}
, (24)

where f̄ (q) is the Laplace transform of f (t) and f (0) is the initial value of the function.

5 Solution of the problem
To solve Eqs. (19) and (20) the Laplace transform method L{f (t)}(q) = f̄ (q) =

∫ ∞
0 f (t)e–qt dt,

will be applied by using the corresponding initial and boundary conditions from Eqs. (17)
and (18) to develop exact analytical solutions for the velocity and temperature profiles.
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5.1 Solutions of the energy equation
Applying the Laplace transform to Eq. (20) keeping in mind the definition and properties
of the Caputo–Fabrizio fractional operator defined in Eq. (21)–(24) and using the corre-
sponding initial condition from Eq. (17) yield

a3 Pr
qθ (ξ , τ ) – θ (ξ , 0)

(1 – β)q + β
= λhnf

d2θ̄ (ξ , q)
∂ξ 2 + Qθ̄ (ξ , q), 0 < β < 1, (25)

and after further simplification of Eq. (25)

d2θ̄ (ξ , q)
∂ξ 2 –

b4q – b1b3

q + b1
= 0, 0 < β < 1, (26)

with transformed boundary conditions

v̄(0, q) = 0, θ̄ (0, q) = 0 for q > 0
v̄(1, q) = 0, θ̄ (1, q) = 1

q for q > 0

}
, (27)

where

b0 =
1

1 – β
, b1 = b0β , b2 =

a3 Pr

λhnf
, b3 =

Q
λhnf

, b4 = b0b2 – b3.

The exact solution of Eq. (26) using the corresponding boundary conditions from
Eq. (27) is given by

θ̄ (ξ , q) =
1
q

(
sinh ξ

√
b4q – b1b3

q + b1

)(
sinh

√
b4q – b1b3

q + b1

)–1

, 0 < β < 1. (28)

Equation (28) represents the solutions of the energy equation in the Laplace transformed
domain. In order to invert the Laplace transform, this equation can be written in a more
suitable and simplified form:

θ̄ (ξ , q) =
∞∑

n=0

(
1
q

e
–(1+2n–ξ )

√
b4q–b1b3

q+b1 –
1
q

e
–(1+2n+ξ )

√
b4q–b1b3

q+b1

)
, 0 < β < 1. (29)

Let us consider

θ̄ (ξ , q) = θ̄1(ξ , q) – θ̄2(ξ , q), 0 < β < 1, (30)

where

θ̄1(ξ , q) =
∞∑

n=0

1
q

e
–(1+2n–ξ )

√
b4q–b1b3

q+b1 , 0 < β < 1, (31)

θ̄2(ξ , q) =
∞∑

n=0

1
q

e
–(1+2n+ξ )

√
b4q–b1b3

q+b1 , 0 < β < 1. (32)
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Upon taking the inverse Laplace transform, Eq. (30) yields

θ (ξ , τ ) = θ1(ξ , τ ) – θ2(ξ , τ ), 0 < β < 1, (33)

and to derive the functions θ1(ξ , τ ) and θ2(ξ , τ ), the compound formula for the Laplace
inversion is used. The function Φ̄(ξ , q) is chosen as

Φ̄(ξ , q) = e
–(1+2n–ξ )

√
b4q–b1b3

q+b1 = e(1+2n–ξ )
√

W1(q). (34)

According to Khan (see [39], p. 397–401), the inverse Laplace transform of the functions
Φ̄(ξ , q) can be obtained as

Φ(ξ , τ ) = L–1{Φ̄(ξ , q)
}

=
∫ ∞

0
f
(
(1 + 2n – ξ ), u

)
g(u, τ ) dτ , (35)

where

f
(
(1 + 2n – ξ ), u

)
=

(1 + 2n – ξ )
2u

√
πu

e– (1+2n–ξ )
4u , (36)

g(u, τ ) = e–b4uδ(τ ) – e–b4u
√

pu
τ

I1
√

puτe–b1τ . (37)

and

p = –b1(b3 + b4).

The values of functions f ((1 + 2n – ξ ), u) and g(u, τ ), defined in Eqs. (36) and (37), are
used in Eq. (35) yielding the following simplified form:

Φ(ξ , τ ) = e–(1+2n–ξ )
√

b4δ(τ ) –
(1 + 2n – ξ )√p

2
√

πτ
e–b1τ

∫ ∞

0

1
u

e– (1+2n–ξ )2
4u –b4uI1

√
puτ du. (38)

To evaluate the function θ1(ξ , τ ), we need to find the convolution product of L–1{ 1
q } = 1

and the function Φ̄(ξ , q) which yields

θ1(ξ , τ ) =
∞∑

n=0

(
e–(1+2n–ξ )

√
b4 –

∫ ∞

0

∫ τ

0

(1 + 2n – ξ )√p
2
√

πs
e–b1s

× 1
u

e– (1+2n–ξ )2
4u –b4uI1

√
pus du ds

)
. (39)

Similarly, the function θ2(ξ , τ ) is given by

θ1(ξ , τ ) =
∞∑

n=0

(
e–(1+2n+ξ )

√
b4 –

∫ ∞

0

∫ τ

0

(1 + 2n + ξ )√p
2
√

πs
e–b1s

× 1
u

e– (1+2n+ξ )2
4u –b4uI1

√
pus du ds

)
. (40)
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To reduce the solutions obtained in Eq. (33) to classical or local form, Eq. (24) is used
for the following.

For β → 1, Eq. (24) is used which reduced Eq. (25) to the following form:

d2θ̄ (ξ , q)
∂ξ 2 – (b2q + b2)θ̄ (ξ , q) = 0. (41)

With the solutions in the Laplace transform domain one finds

θ̄ (ξ , q) =
1
q

sinh ξ
√

b2q – b3

sinh
√

b2q – b3
. (42)

After further simplification, Eq. (42) takes the following form:

θ̄ (ξ , q) =
∞∑

n=0

(
1
q

e–(1+2n–ξ )
√

b2q–b3 –
1
q

e–(1+2n+ξ )
√

b2q–b3

)
, β = 1. (43)

Taking the inverse Laplace transform, Eq. (43) gives the following local solutions for the
temperature profile:

θ (ξ , τ ) = A1(ξ , τ ) – A2(ξ , τ ), β = 1, (44)

where

A1(ξ , τ ) =
1
2

∞∑
n=0

⎛
⎜⎜⎝

e
– (1+2n–ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

τ
–

√
– b3

b2
τ )

+ e
(1+2n–ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

τ
+

√
– b3

b2
τ )

⎞
⎟⎟⎠ , (45)

A2(ξ , τ ) =
1
2

∞∑
n=0

⎛
⎜⎜⎝

e
– (1+2n+ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

τ
–

√
– b3

b2
τ )

+ e
(1+2n+ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

τ
+

√
– b3

b2
τ )

⎞
⎟⎟⎠ . (46)

5.2 Solution of momentum equation
Applying the Laplace transform on Eq. (19) using the corresponding initial condition from
Eq. (15) yields

a0

a1

qv̄(ξ , q) – v(ξ , 0)
(1 – α)q + α

+
a0

a1
βbv̄(ξ , q) =

d2v̄(ξ , q)
dξ 2 +

a2

a1
Gr θ̄ (ξ , τ ). (47)

After further simplification of Eq. (47)

d2v̄(ξ , q)
dξ 2 –

d5q + d1d3

q + d1
v̄(ξ , q) = –d4θ̄ (ξ , q), (48)

where

d0 =
1

1 – α
, d1 = αd0, d2 =

a0

a1
, d3 = d2βb,

d4 =
a2

a1
Gr, d5 = d0d2 + d3.
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In the Laplace transform domain, the exact solution of Eq. (48) is given by

v̄(ξ , q) =
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

sinh ξ

√
d5q+d1d3

q+d1

sinh
√

d5q+d1d3
q+d1

–
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

sinh ξ

√
b4q–b1b3

q+b1

sinh
√

b4q–b1b3
q+b1

, (49)

where

W1(q) =
d5q + d1d3

q + d1
, d6 = b4 – d5,

d7 = b4d1 – b1(b3 + d5), d8 = –b1d1(b3 + d3).

In order to find the inverse Laplace transform, Eq. (49) can be written in a more conve-
nient and simplified form as

v̄(ξ , q) =
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

∞∑
n=0

(
e

–(1+2n–ξ )
√

d5q+d1d3
q+d1 – e

–(1+2n+ξ )
√

d5q+d1d3
q+d1

)

–
(q + b1)(q + b1)

(d6q2 + d7q + d8)q

∞∑
n=0

(
e

–(1+2n–ξ )
√

b4q–b1b3
q+b1 – e

–(1+2n+ξ )
√

b4q–b1b3
q+b1

)
,

0 < α,β < 1. (50)

Let us consider

v̄(ξ , q) = v̄1(ξ , q) × {
v̄2(ξ , q) – v̄3(ξ , q)

}
– v̄1(ξ , q)

× {
v̄4(ξ , q) – v̄5(ξ , q)

}
, 0 < α,β < 1. (51)

Here

v̄1(ξ , q) =
(q + b1)(q + b1)

(d6q2 + d7q + d8)
, (52)

v̄2(ξ , q) =
1
q

∞∑
n=0

e
–(1+2n–ξ )

√
d5q+d1d3

q+d1 , (53)

v̄3(ξ , q) =
1
q

∞∑
n=0

e
–(1+2n+ξ )

√
d5q+d1d3

q+d1 , (54)

v̄4(ξ , q) =
1
q

∞∑
n=0

e
–(1+2n–ξ )

√
b4q–b1b3

q+b1 , (55)

v̄5(ξ , q) =
1
q

∞∑
n=0

e
–(1+2n+ξ )

√
b4q–b1b3

q+b1 , (56)
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and taking the inverse Laplace transform yields

v(ξ , τ ) = v1(ξ , τ ) ∗ {
v2(ξ , τ ) – v3(ξ , τ )

}
– v1(ξ , τ ) ∗ {

v4(ξ , τ ) – v5(ξ , τ )
}

, 0 < α,β < 1, (57)

where ∗ represents a convolution product and the terms v2(ξ , τ ), v3(ξ , τ )v4(ξ , τ ) and
v5(ξ , τ ) are given by

v2(ξ , τ ) =
∞∑

n=0

{
e–(1+2n–ξ )

√
d5δ(τ )

–
(1 + 2n – ξ )√p2

2
√

πτ
e–d1τ

∫ ∞

0

1
u

e– (1+2n–ξ )2
4u –b4uI1

√
p2uτ du

}
, (58)

v3(ξ , τ ) =
∞∑

n=0

{
e–(1+2n+ξ )

√
d5δ(τ )

–
(1 + 2n + ξ )√p2

2
√

πτ
e–d1τ

∫ ∞

0

1
u

e– (1+2n+ξ )2
4u –b4uI1

√
p2uτ du

}
, (59)

v4(ξ , τ ) =
∞∑

n=0

{
e–(1+2n–ξ )

√
b4δ(τ )

–
(1 + 2n – ξ )√p2

2
√

πτ
e–b1τ

∫ ∞

0

1
u

e– (1+2n–ξ )2
4u –b4uI1

√
p2uτ du

}
, (60)

v(ξ , τ ) =
∞∑

n=0

{
e–(1+2n+ξ )

√
b4δ(τ )

–
(1 + 2n + ξ )√p2

2
√

πτ
e–b1τ

∫ ∞

0

1
u

e– (1+2n+ξ )2
4u –b4uI1

√
p2uτ du

}
, (61)

where

p2 =
d1d3 – d5d1

d2
1

.

The term v1(ξ , τ ) is numerically obtained using Zakian’s algorithm. In the literature, it is
proven that the Zakian algorithm is a stable way for the inverse Laplace transform because
the truncated error for five multiple terms is negligible ([40], p. 83).

For the velocity profile, the local solutions can be recovered by making α,β → 1 in
Eq. (47) which leads to the following solutions in the Laplace transform domain:

v̄(ξ , q) =
d4

(b2 – d3)q – (b3 + d3)
1
q

sinh ξ
√

d2q + d3

sinh
√

d2q + d3

–
d4

(b2 – d3)q – (b3 + d3)
1
q

sinh ξ
√

b2q – b3

sinh
√

b2q – b33
, (62)

with the following simplified form:

v̄(ξ , q) =
d9

q2 + qd10

∞∑
n=0

(
e–(1+2n–ξ )

√
d2q+d3 – e–(1+2n+ξ )

√
d2q+d3

)
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–
d9

q2 + qd10

∞∑
n=0

(
e–(1+2n–ξ )

√
b2q–b3 – e–(1+2n+ξ )

√
b2q–b3

)
, α,β = 1, (63)

where

d9 =
d4

b2 – d2
, d10 =

b3 + d3

b2 – d2
.

The inverse Laplace transform of Eq. (63) yields

v(ξ , τ ) = B1(ξ , τ ) – B2(ξ , τ ) – B3(ξ , τ ) + B4(ξ , τ ), α,β = 1, (64)

where

B1(ξ , τ ) =
d10

2

∞∑
n=0

∫ τ

0
e–d7(τ–s)

⎛
⎜⎜⎝

e
– (1+2n–ξ )√

b2

√
d3
d2 erfc( (1+2n–ξ )

2
√

s –
√

d3
d2

s)

+ e
(1+2n–ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

s +
√

d3
d2

s)

⎞
⎟⎟⎠ ds, (65)

B2(ξ , τ ) =
d10

2

∞∑
n=0

∫ τ

0
e–d7(τ–s)

⎛
⎜⎜⎝

e
– (1+2n+ξ )√

b2

√
d3
d2 erfc( (1+2n–ξ )

2
√

s –
√

d3
d2

s)

+ e
(1+2n+ξ )√

b2

√
– d3

d2 erfc( (1+2n–ξ )
2
√

s +
√

d3
d2

s)

⎞
⎟⎟⎠ ds, (66)

B3(ξ , τ ) =
d10

2

∞∑
n=0

∫ τ

0
e–d7(τ–s)

⎛
⎜⎜⎝

e
– (1+2n–ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

s –
√

– b3
b2

s)

+ e
(1+2n–ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

s +
√

– b3
b2

s)

⎞
⎟⎟⎠ ds, (67)

B4(ξ , τ ) =
d10

2

∞∑
n=0

∫ τ

0
e–d7(τ–s)

⎛
⎜⎜⎝

e
– (1+2n+ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

s –
√

– b3
b2

s)

+ e
(1+2n+ξ )√

b2

√
– b3

b2 erfc( (1+2n–ξ )
2
√

s +
√

– b3
b2

s)

⎞
⎟⎟⎠ ds. (68)

6 Results and discussion
In this article, the idea of the fractional derivative is used for the generalization of the
free convection flow of the hybrid nanofluid. The governing equations of the Brinkman
type fluid along with the energy equation is fractionalized using the Caputo–Fabrizio frac-
tional derivative. The fractional PDEs are more general and are known as master PDEs.
The momentum and energy equations are solved analytically using the Laplace transform
technique. The obtained results are displayed in various graphs to study the influence of
the pertinent corresponding parameters, such as the fractional parameters α and β , the
volume fraction of hybrid nanofluid φhnf , the heat generation parameter Q, the Brinkman
parameter βb and the thermal Grashof number Gr on velocity and temperature profiles.

Figures 1(a) and (b) and 2(a) and (b) depict the impact of the fractional parameter α

and β on the velocity and temperature profiles. From these figures, it is noticed that the
velocity and the temperature profiles show the same trend for variations in the fractional
parameters. The velocity and temperature profiles exhibited increasing behavior for in-
creasing values of α, β for a longer time. When α,β are increased, the thickness of ther-
mal and momentum boundary layers are increased and become thickest at α,β = 1, which
corresponds to the increasing performance of the velocity and temperature profiles. This
trend of the fractional parameter is the same here for velocity and temperature profiles
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Figure 1 Variation in temperature profile against ξ
due to β

Figure 2 Variation in velocity profile against ξ due
to α and β

as reported by ([25], p. 7) for fractional nanofluids using the Caputo–Fabrizio fractional
derivatives. But this effect reverses for a shorter time in the case of fractional velocity and
temperature distributions.
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Figure 3 Variation in temperature profile against ξ
due to φhnf

Figure 4 Variation in velocity profile against ξ due
to φhnf

Figure 5 Compression of the temperature profile
against ξ for different nanofluids

The influence of φhnf on the velocity and temperature profiles is studied in Figs. 3 and
4. The trends of velocity and temperature profiles are opposite to each other. The hybrid
nanofluid velocity decreases with increasing φhnf . This can be physically justified as the
hybrid nanofluid became more viscous with increasing φhnf , which leads to a decrease
in the nanofluid velocity. Nevertheless, the temperature profile increases with increase
in φhnf when the temperature is less than 180°C. The is due to the thermal conductivity
enhancing with the enhancement of φhnf and the hybrid nanofluid conducting more heat
as a result of heat transfer increases, which leads to an increase in the temperature profile.

In Figs. 5 and 6 the temperature and velocity profiles are compared for Cu–Al2O3 –H2O,
Cu – H2O, Al2O3 – H2O and pure water. It is noticed that the temperature profile is higher
for Cu – H2O followed by Cu – Al2O3 – H2O, Al2O3 – H2O and pure water. This due to the
fact that the thermal conductivity of Cu is higher than hybrid nanoparticles, alumina, and
pure water. But the hybrid nanofluid is more stable. In the case of the velocity profile, the
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Figure 6 Compression of the temperature profile
against ξ for different nanofluids

Figure 7 Variation in temperature profile against ξ
due to Q

Figure 8 Variation in velocity profile against ξ due
to Q

velocity of Al2O3 – H2O is higher, followed by the velocity of Cu – Al2O3 – H2O, Cu – H2O
and pure water. It can be physically justified as the Al2O3 conducting a high quantity of
heat due to the effective thermal conductivity but being less dense. Therefore, the velocity
of Al2O3 – H2O is higher among all the fluids under consideration.

Figures 7 and 8 depict the influence of Q on velocity and temperature profiles. It is found
that the velocity and temperature distributions increase with increasing values of Q. When
a larger value is assigned to Q this means that the system absorbed more heat due to which
the intermolecular attractive force became weaker; as a result, the temperature and ve-
locity profiles increase. The effect of the Brinkman parameter is presented in Fig. 9. It is
noticed that the velocity distribution decreases with increasing values of βb. The higher
values βb correspond to stronger drag forces, which lead to the retardation of the velocity
profile. The same effect of βb is reported by [33].

The effect of Gr is studied in Fig. 10 for negative and positive values. Positive values of Gr

correspond to heating of the plate, while negative values correspond to cooling of the plate.
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Figure 9 Variation in velocity profile against ξ due
to βb

Figure 10 Variation in velocity profile against ξ due
to Gr

In this figure, it is noticed that for greater values of Gr the velocity profile shows an increas-
ing trend. This is because when Gr is increased the buoyancy forces become stronger due
to which more convection takes place; as a result, the velocity profile increases. But this
effect reverses for negative values of Gr due to cooling of the plate.

7 Concluding remarks
In this article, the idea of free convection is generalized using the Caputo–Fabrizio frac-
tional derivative. The natural convection flow of a hybrid nanofluid in two vertical infinite
parallel plates is studied. Exact analytical solutions are developed for temperature and
velocity profiles via the Laplace transform technique. The effects of various pertinent pa-
rameters are numerically studied through graphs and discuss physically. The major points
extracted from this study are as follows:

• The velocity and temperature profiles show an increasing behavior for increasing
values α and β being most dominant for α,β = 1 for a larger time. But this effect
reverses for a shorter time.

• The fractional velocity and temperature are more general. Hence, the numerical
values for v(ξ , τ ) and θ (ξ , τ ) can be calculated for any value of α and β such that
0 < α,β < 1.

• The temperature distribution shows a very similar variation for different shapes of the
hybrid nanoparticles, so the density of the nanoparticles is a significant factor as
compared to thermal conductivity.

• The velocity profile decreases with increasing values of φhnf but this effect is opposite
in the case of the temperature profile.
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• With increasing values of Gr, the free convection became dominant, increasing the
nanofluid velocity for positive values but this trend reverses for negative values of Gr.

• The velocity retards for larger values of βb due the enhancement in the drag forces.
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