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Abstract
This paper investigates a class of nonlinear dynamic integral inequalities with mixed
nonlinearities in two independent variables. The obtained results can be utilized to
study the boundedness of partial dynamic systems on time scales. At the end, an
example is presented to illustrate the main results.
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1 Introduction
The theory and application of time scales was introduced by Hilger [1] and Bohner et al.
[2]. At present, there exist various research branches of time scales theory such as oscilla-
tion [3–6], stability [7], and boundedness [8]. For the study of time scales theory, integral
inequalities are usually used to investigate the boundedness of dynamic systems. In recent
years, different types of integral inequalities have been widely studied [9–26]. For example,
the sublinear integral inequality

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )u(ξ , τ ) + h(ξ , τ )uλ1

(
σ (ξ ), τ

)]
�τ�ξ , 0 < λ1 < 1,

was investigated in [11]. Later, Sun et al. [12] studied the integral inequality

u(t) ≤ a(t) + b(t)
∫ t

t0

[
f (s)u(s) + h1(s)uλ1

(
σ (s)

)
– h2(s)uλ2

(
σ (s)

)]
�s, 0 < λ1 < 1 < λ2,

which was generalized to the more general nonlinear case by Tian et al. [13]. The following
integral inequality

up(t) ≤ a(t) + b(t)
∫ t

t0

[
f (s)up(s) + h1(s)uq(s) – h2(s)ur(s)

]
ds

+ c(t)
∑

t0<ti<t
βixm(ti – 0), 0 < q < p < r

was considered in [14], and the theoretical results can provide the bounds for a class of dy-
namic systems with mixed nonlinearities and impulsive effects. Very recently, Boudeliou
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[25] investigated a class of nonlinear integral inequalities in two independent variables
and their applications. Up to now, two dimensional integral inequalities with mixed non-
linearities have received less attention.

In this paper, we investigate the integral inequalities with mixed nonlinearities and for-
ward jump operators, which can be used to estimate the bounds of the solutions to a class
of partial dynamic systems on time scales. Consider the integral inequalities

up(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + h1(ξ , τ )uλ1

(
σ (ξ ), τ

)

– h2(ξ , τ )uλ2
(
σ (ξ ), τ

)]
�τ�ξ , (1.1)

up(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + h1(ξ , τ )uλ1

(
σ (ξ ), τ

)

– h2(ξ , τ )uλ2
(
σ (ξ ), τ

)
+ h3(ξ , τ )uλ3

(
ξ ,σ (τ )

)

– h4(ξ , τ )uλ4
(
ξ ,σ (τ )

)]
�τ�ξ , (1.2)

and

up(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + h1(ξ , τ )uλ1

(
σ (ξ ), τ

)

– h2(ξ , τ )uλ2
(
σ (ξ ), τ

)
+ h3(ξ , τ )uλ3

(
ξ ,σ (τ )

)
– h4(ξ , τ )uλ4

(
ξ ,σ (τ )

)

+ h5(ξ , τ )uλ5
(
σ (ξ ),σ (τ )

)
– h6(ξ , τ )uλ6

(
σ (ξ ),σ (τ )

)]
�τ�ξ , (1.3)

where p ≥ q > 0 and 0 < λi < p < λi+1 (i = 1, 3, 5) are real constants, u, a, b, f , hi (i =
1, 2, . . . , 6) : T× T̃→R+ are rd-continuous functions.

Inequalities (1.1)–(1.3) can be applied to the following partial dynamic system:

u�t�s (t, s) = F
(
t, s, u(t, s), u

(
σ (t), s

)
, u

(
t,σ (s)

)
, u

(
σ (t),σ (s)

))
(1.4)

with boundary conditions u(t, s0) = α(t), u(t0, s) = β(s), and u(t0, s0) = u0. Integrating (1.4)
yields

u(t, s) = α(t) + β(s) – u0

+
∫ t

t0

∫ s

s0

F
(
ξ , τ , u(ξ , τ ), u

(
σ (ξ ), τ

)
, u

(
ξ ,σ (τ )

)
, u

(
σ (ξ ),σ (τ )

))
�τ�ξ .

It is not difficult to apply the theoretical results to estimate the bounds of the above system.

2 Preliminaries
Let R = (–∞, +∞) and R+ = [0, +∞). Both T and T̃ are arbitrary time scales. Tk is defined
as follows: if T has a left-scattered maximum m, then T

k = T– {m}; otherwise, Tk = T. Crd

and C+
rd are the sets of all rd-continuous functions and positive rd-continuous functions,

respectively. � represents the set of all rd-continuous and regressive functions, and �+ =
{p ∈ � : 1 + μ(t)p(t) > 0, t ∈ T}. σ (t) = inf{s ∈ T : s > t}, μ(t) = σ (t) – t, and ⊕ is defined as
(p ⊕ q)(t) = p(t) + q(t) + μ(t)p(t)q(t), t ∈ T.

Next, some lemmas are introduced.
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Lemma 2.1 Let u be a nonnegative function, 0 < λ1 < p < λ2, h1 ≥ 0, h2 > 0, k1 > 0, and
k2 ≥ 0. Then, for i = 1, 2,

(–1)i+1hiuλi + (–1)ikiup ≤ θi(λi, hi, ki, p),

where

θi(λi, hi, ki, p) = (–1)i
(

λi

p
– 1

)(
λi

p

) λi
p–λi

h
p

p–λi
i k

λi
λi–p

i .

Proof Define Fi(u) = (–1)i+1hiuλi + (–1)ikiup. Then Fi(u) reaches the maximum value at
u = ( λihi

kip
)

1
p–λi and

(Fi)max = (–1)i
(

λi

p
– 1

)(
λi

p

) λi
p–λi

h
p

p–λi
i k

λi
λi–p

i for i = 1, 2.

This completes the proof. �

Lemma 2.2 ([2]) Assume that u, b ∈ Crd, a ∈ �+. Then

u�(t) ≤ a(t)u(t) + b(t), t ≥ t0, t ∈ T
k

implies

u(t) ≤ u(t0)ea(t, t0) +
∫ t

t0

b(τ )ea
(
t,σ (τ )

)
�τ , t ≥ t0, t ∈ T

k .

Lemma 2.3 ([10]) Let a ≥ 0 and p ≥ q > 0. Then, for any K > 0,

aq/p ≤ q
p

K (q–p)/pa +
p – q

p
Kq/p.

3 Main results
Theorem 3.1 Suppose k1(t, s), k2(t, s) ∈ C+

rd are defined on T × T̃ satisfying k12(t, s) =
k1(t, s) – k2(t, s) ≥ 0 and

μ(t)
∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ < 1.

Then inequality (1.1) yields

u(t, s) ≤
{

a(t, s) + b(t, s)
∫ t

t0

(
1 + μ(τ )B1(τ , s)

)
C1(τ , s)e(A1⊕B1)(τ ,s)

(
t,σ (τ )

)
�τ

}1/p

(3.1)

for any K > 0, (t, s) ∈ T× T̃, where

A1(t, s) =
q
p

K (q–p)/p
∫ s

s0

b(t, τ )f (t, τ )�τ ,
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B1(t, s) =

∫ s
s0

b(σ (t), τ )k12(t, τ )�τ

1 – μ(t)
∫ s

s0
b(σ (t), τ )k12(t, τ )�τ

,

and

C1(t, s) =
∫ s

s0

[
a
(
σ (t), τ

)
k12(t, τ ) +

(
q
p

K (q–p)/pa(t, τ ) +
p – q

p
Kq/p

)
f (t, τ )

]
�τ

+
2∑

i=1

∫ s

s0

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)
�τ .

Proof Based on (1.1) and Lemma 2.1, we obtain

up(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + h1(ξ , τ )uλ1

(
σ (ξ ), τ

)

– h2(ξ , τ )uλ2
(
σ (ξ ), τ

)]
�τ�ξ

≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + k12(ξ , τ )up(σ (ξ ), τ

)

+
2∑

i=1

θi
(
λi, hi(ξ , τ ), ki(ξ , τ ), p

)]
�τ�ξ .

Define v(t, s) by

v(t, s) =
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + k12(ξ , τ )up(σ (ξ ), τ

)

+
2∑

i=1

θi
(
λi, hi(ξ , τ ), ki(ξ , τ ), p

)]
�τ�ξ .

It is easy to obtain that v(t, s) ≥ 0 for (t, s) ∈ T× T̃, v(t, s) is nondecreasing with respect to
t and s, and

u(t, s) ≤ (
a(t, s) + b(t, s)v(t, s)

)1/p. (3.2)

Taking the derivative of v(t, s) with respect to t, we get

v�t (t, s) =
∫ s

s0

[
f (t, τ )uq(t, τ ) + k12(t, τ )up(σ (t), τ

)

+
2∑

i=1

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)]
�τ . (3.3)

Based on Lemma 2.3, for any K > 0,

uq(t, τ ) ≤ (
a(t, τ ) + b(t, τ )v(t, τ )

)q/p

≤ q
p

K (q–p)/p(a(t, τ ) + b(t, τ )v(t, τ )
)

+
p – q

p
Kq/p. (3.4)
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Inequalities (3.2)–(3.4) yield

v�t (t, s) ≤
∫ s

s0

[
f (t, τ )

(
q
p

K (q–p)/p(a(t, τ ) + b(t, τ )v(t, τ )
)

+
p – q

p
Kq/p

)

+ k12(t, τ )
(
a
(
σ (t), τ

)
+ b

(
σ (t), τ

)
v
(
σ (t), τ

))]
�τ

+
2∑

i=1

∫ s

s0

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)
�τ

≤
(

q
p

K (q–p)/p
∫ s

s0

b(t, τ )f (t, τ )�τ

)
v(t, s)

+
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
v
(
σ (t), s

)

+
∫ s

s0

[
a
(
σ (t), τ

)
k12(t, τ ) +

(
q
p

K (q–p)/pa(t, τ ) +
p – q

p
Kq/p

)
f (t, τ )

]
�τ

+
2∑

i=1

∫ s

s0

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)
�τ

= A1(t, s)v(t, s) +
B1(t, s)

1 + μ(t)B1(t, s)
v
(
σ (t), s

)
+ C1(t, s),

which implies that

v�t (t, s) ≤ (A1 ⊕ B1)(t, s)v(t, s) +
(
1 + μ(t)B1(t, s)

)
C1(t, s).

Based on Lemma 2.2 and v(t0, s) = 0, we can deduce that

v(t, s) ≤
∫ t

t0

(
1 + μ(τ )B1(τ , s)

)
C1(τ , s)e(A1⊕B1)(τ ,s)

(
t,σ (τ )

)
�τ .

This combined with (3.2) yields (3.1). The proof is completed. �

Remark 3.1 Letting p = q = 1 and h2(t, s) ≡ 0, the inequality in Theorem 3.1 reduces to
[11, Theorem 3.1].

Theorem 3.2 Assume ki(t, s) ∈ C+
rd, i = 1, 2, 3, 4, are defined on T × T̃ satisfying k12(t, s) =

k1(t, s) – k2(t, s) ≥ 0, k34(t, s) = k3(t, s) – k4(t, s) ≥ 0, and

μ(t)
∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ < 1.

Then inequality (1.2) implies

u(t, s) ≤
{

a(t, s) + b(t, s)
∫ t

t0

(
1 + μ(τ )B2(τ , s)

)
C2(τ , s)e(A2⊕B2)(τ ,s)

(
t,σ (τ )

)
�τ

}1/p

(3.5)

for any K > 0, (t, s) ∈ T× T̃, where

k̄�τ
34 (t, τ ) = max

{
0, k�τ

34 (t, τ )
}

,
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A2(t, s) =
∫ s

s0

(
q
p

K (q–p)/pb(t, τ )f (t, τ ) +
k34(t,σ (τ ))b(t,σ (τ ))

1 + μ(τ )b(t,σ (τ ))
+ k̄�τ

34 (t, τ )
)

�τ + k34(t, s),

B2(t, s) =

∫ s
s0

b(σ (t), τ )k12(t, τ )�τ

1 – μ(t)
∫ s

s0
b(σ (t), τ )k12(t, τ )�τ

,

and

C2(t, s) =
∫ s

s0

[
a
(
σ (t), τ

)
k12(t, τ ) +

a(t,σ (τ ))k34(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

+
(

q
p

K (q–p)/pa(t, τ ) +
p – q

p
Kq/p

)
f (t, τ )

]
�τ

+
2∑

i=1

∫ s

s0

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)
�τ

+
4∑

i=3

∫ s

s0

θi

(
λi, hi(t, τ ),

ki(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

, p
)

�τ .

Proof Based on (1.2) and Lemma 2.1, we obtain

up(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + h1(ξ , τ )uλ1

(
σ (ξ ), τ

)

– h2(ξ , τ )uλ2
(
σ (ξ ), τ

)
+ h3(ξ , τ )uλ3

(
ξ ,σ (τ )

)
– h4(ξ , τ )uλ4

(
ξ ,σ (τ )

)]
�τ�ξ

≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + k12(ξ , τ )up(σ (ξ ), τ

)

+
k34(ξ ,σ (τ ))

1 + μ(τ )b(ξ ,σ (τ ))
up(ξ ,σ (τ )

)
+

2∑
i=1

θi
(
λi, hi(ξ , τ ), ki(ξ , τ ), p

)

+
4∑

i=3

θi

(
λi, hi(ξ , τ ),

ki(ξ ,σ (τ ))
1 + μ(τ )b(ξ ,σ (τ ))

, p
)]

�τ�ξ .

Define ω(t, s) by

ω(t, s) =
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + k12(ξ , τ )up(σ (ξ ), τ

)
+

k34(ξ ,σ (τ ))
1 + μ(τ )b(ξ ,σ (τ ))

up(ξ ,σ (τ )
)

+
2∑

i=1

θi
(
λi, hi(ξ , τ ), ki(ξ , τ ), p

)

+
4∑

i=3

θi

(
λi, hi(ξ , τ ),

ki(ξ ,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

, p
)]

�τ�ξ .

Then ω(t, s) ≥ 0 is nondecreasing with respect to t and s, and

u(t, s) ≤ (
a(t, s) + b(t, s)ω(t, s)

)1/p. (3.6)
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Taking the derivative of ω(t, s) with respect to t, we have

ω�t (t, s) =
∫ s

s0

[
f (t, τ )uq(t, τ ) + k12(t, τ )up(σ (t), τ

)
+

k34(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

up(t,σ (τ )
)

+
2∑

i=1

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)

+
4∑

i=3

θi

(
λi, hi(t, τ ),

ki(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

, p
)]

�τ . (3.7)

By Lemma 2.3,

uq(t, τ ) ≤ (
a(t, τ ) + b(t, τ )ω(t, τ )

)q/p

≤ q
p

K (q–p)/p(a(t, τ ) + b(t, τ )ω(t, τ )
)

+
p – q

p
Kq/p (3.8)

for any K > 0. It follows from (3.6)–(3.8) that

ω�t (t, s) ≤
∫ s

s0

[
f (t, τ )

(
q
p

K (q–p)/p(a(t, τ ) + b(t, τ )ω(t, τ )
)

+
p – q

p
Kq/p

)

+ k12(t, τ )
(
a
(
σ (t), τ

)
+ b

(
σ (t), τ

)
ω

(
σ (t), τ

))

+
k34(t,σ (τ ))

1 + μ(τ )b(t,σ (τ ))
(
a
(
t,σ (τ )

)
+ b

(
t,σ (τ )

)
ω

(
t,σ (τ )

))]
�τ

+
2∑

i=1

∫ s

s0

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)
�τ

+
4∑

i=3

∫ s

s0

θi

(
λi, hi(t, τ ),

ki(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

, p
)

�τ

≤
(

q
p

K (q–p)/p
∫ s

s0

b(t, τ )f (t, τ )�τ

)
ω(t, s)

+
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
ω

(
σ (t), s

)

+
∫ s

s0

b(t,σ (τ ))k34(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

ω
(
t,σ (τ )

)
�τ

+
∫ s

s0

[
a
(
σ (t), τ

)
k12(t, τ ) +

a(t,σ (τ ))k34(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

+
(

q
p

K (q–p)/pa(t, τ ) +
p – q

p
Kq/p

)
f (t, τ )

]
�τ

+
2∑

i=1

∫ s

s0

θi
(
λi, hi(t, τ ), ki(t, τ ), p

)
�τ

+
4∑

i=3

∫ s

s0

θi

(
λi, hi(t, τ ),

ki(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

, p
)

�τ

=
(

q
p

K (q–p)/p
∫ s

s0

b(t, τ )f (t, τ )�τ

)
ω(t, s)
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+
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
ω

(
σ (t), s

)

+
∫ s

s0

b(t,σ (τ ))k34(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

ω
(
t,σ (τ )

)
�τ + C2(t, s).

Note that

ω
(
t,σ (τ )

)
= ω(t, τ ) + μ(τ )ω�τ (t, τ ).

Therefore

ω�t (t, s) ≤
(

q
p

K (q–p)/p
∫ s

s0

b(t, τ )f (t, τ )�τ

)
ω(t, s)

+
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
ω

(
σ (t), s

)

+
∫ s

s0

b(t,σ (τ ))k34(t,σ (τ ))
1 + μ(τ )b(t,σ (τ ))

(
ω(t, τ ) + μ(τ )ω�τ (t, τ )

)
�τ + C2(t, s)

≤
(∫ s

s0

(
q
p

K (q–p)/pb(t, τ )f (t, τ ) +
b(t,σ (τ ))k34(t,σ (τ ))

1 + μ(τ )b(t,σ (τ ))

)
�τ

)
ω(t, s)

+
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
ω

(
σ (t), s

)

+
∫ s

s0

k34
(
t,σ (τ )

)
ω�τ (t, τ )�τ + C2(t, s).

Since

k34
(
t,σ (τ )

)
ω�τ (t, τ ) =

(
k34

(
t,σ (τ )

)
ω(t, τ )

)�τ – k�τ
34 (t, τ )ω(t, τ ),

we get

ω�t (t, s) ≤
(∫ s

s0

(
q
p

K (q–p)/pb(t, τ )f (t, τ ) +
b(t,σ (τ ))k34(t,σ (τ ))

1 + μ(τ )b(t,σ (τ ))

)
�τ

)
ω(t, s)

+
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
ω

(
σ (t), s

)

+
(

k34(t, s) +
∫ s

s0

k̄�τ
34 (t, τ )�τ

)
ω(t, s) + C2(t, s)

= A2(t, s)ω(t, s) +
B2(t, s)

1 + μ(t)B2(t, s)
ω

(
σ (t), s

)
+ C2(t, s),

which implies that

w�t (t, s) ≤ (A2 ⊕ B2)(t, s)w(t, s) +
(
1 + μ(t)B2(t, s)

)
C2(t, s).

By Lemma 2.2 and w(t0, s) = 0,

w(t, s) ≤
∫ t

t0

(
1 + μ(τ )B2(τ , s)

)
C2(τ , s)e(A2⊕B2)(τ ,s)

(
t,σ (τ )

)
�τ .

This combined with (3.6) yields (3.5), which completes the proof. �
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Theorem 3.3 If there exist ki(t, s) ∈ C+
rd, i = 1, 2, . . . , 6, defined on T× T̃ such that kij(t, s) =

ki(t, s) – kj(t, s) ≥ 0, j = i + 1, i = 1, 3, 5, and

μ(t)Λ(t, s) < 1,

then inequality (1.3) yields

u(t, s) ≤
{

a(t, s) + b(t, s)
∫ t

t0

(
1 + μ(τ )B3(τ , s)

)
C2(τ , s)e(A2⊕B2)(τ ,s)

(
t,σ (τ )

)
�τ

}1/p

(3.9)

for any K > 0, (t, s) ∈ T× T̃, where k̄�τ
56 (t, τ ) = max{0, k�τ

56 (t, τ )},

Λ(t, s) =
∫ s

s0

(
b
(
σ (t), τ

)
k12(t, τ ) +

b(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

+ k̄�τ
56 (t, τ )

)
�τ + k56(t, s),

A3(t, s) = A2(t, s), B3(t, s) =
Λ(t, s)

1 – μ(t)Λ(t, s)
,

C3(t, s) = C2(t, s) +
∫ s

s0

a(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

�τ

+
6∑

i=5

∫ s

s0

θi

(
λi, hi(t, τ ),

ki(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

, p
)

�τ ,

A2(t, s) and C2(t, s) are defined by Theorem 3.2.

Proof Combining (1.3) and Lemma 2.1, we get

up(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + h1(ξ , τ )uλ1

(
σ (ξ ), τ

)

– h2(ξ , τ )uλ2
(
σ (ξ ), τ

)
+ h3(ξ , τ )uλ3

(
ξ ,σ (τ )

)
– h4(ξ , τ )uλ4

(
ξ ,σ (τ )

)

+ h5(ξ , τ )uλ5
(
σ (ξ ),σ (τ )

)
– h6(ξ , τ )uλ6

(
σ (ξ ),σ (τ )

)]
�τ�ξ ,

≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + k12(ξ , τ )up(σ (ξ ), τ

)

+
k34(ξ ,σ (τ ))

1 + μ(τ )b(ξ ,σ (τ ))
up(ξ ,σ (τ )

)
+

k56(ξ ,σ (τ ))
1 + μ(τ )b(σ (ξ ),σ (τ ))

up(σ (ξ ),σ (τ )
)

+
2∑

i=1

θi
(
λi, hi(ξ , τ ), ki(ξ , τ ), p

)
+

4∑
i=3

θi

(
λi, hi(ξ , τ ),

ki(ξ ,σ (τ ))
1 + μ(τ )b(ξ ,σ (τ ))

, p
)

+
6∑

i=5

θi

(
λi, hi(ξ , τ ),

ki(ξ ,σ (τ ))
1 + μ(τ )b(σ (ξ ),σ (τ ))

, p
)]

�τ�ξ .

Define z(t, s) by

z(t, s) =
∫ t

t0

∫ s

s0

[
f (ξ , τ )uq(ξ , τ ) + k12(ξ , τ )up(σ (ξ ), τ

)

+
k34(ξ ,σ (τ ))

1 + μ(τ )b(ξ ,σ (τ ))
up(ξ ,σ (τ )

)
+

k56(ξ ,σ (τ ))
1 + μ(τ )b(σ (ξ ),σ (τ ))

up(σ (ξ ),σ (τ )
)
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+
2∑

i=1

θi
(
λi, hi(ξ , τ ), ki(ξ , τ ), p

)
+

4∑
i=3

θi

(
λi, hi(ξ , τ ),

ki(ξ ,σ (τ ))
1 + μ(τ )b(ξ ,σ (τ ))

, p
)

+
6∑

i=5

θi

(
λi, hi(ξ , τ ),

ki(ξ ,σ (τ ))
1 + μ(τ )b(σ (ξ ),σ (τ ))

, p
)]

�τ�ξ .

Then z(t, s) ≥ 0 is nondecreasing with respect to t and s, and

u(t, s) ≤ (
a(t, s) + b(t, s)z(t, s)

)1/p. (3.10)

Similar to the procedure of Theorem 3.2, we get

z�t (t, s) ≤ A2(t, s)z(t, s) +
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
z
(
σ (t), s

)
+ C2(t, s)

+
∫ s

s0

a(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

�τ

+
∫ s

s0

b(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

z
(
σ (t),σ (τ )

)
�τ

+
6∑

i=5

∫ s

s0

θi

(
λi, hi(t, τ ),

ki(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

, p
)

�τ

= A2(t, s)z(t, s) +
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
z
(
σ (t), s

)
+ C3(t, s)

+
∫ s

s0

b(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

z
(
σ (t),σ (τ )

)
�τ .

Note that

z
(
σ (t),σ (τ )

)
= z

(
σ (t), τ

)
+ μ(τ )z�τ

(
σ (t), τ

)
.

Therefore

z�t (t, s) ≤ A2(t, s)z(t, s) +
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
z
(
σ (t), s

)
+ C3(t, s)

+
(∫ s

s0

b(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

�τ

)
z
(
σ (t), s

)

+
∫ s

s0

k56
(
t,σ (τ )

)
z�τ

(
σ (t), τ

)
�τ

= A2(t, s)z(t, s) +
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ

)
z
(
σ (t), s

)
+ C3(t, s)

+
(∫ s

s0

b(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

�τ

)
z
(
σ (t), s

)
+ k56(t, s)z

(
σ (t), s

)

–
∫ s

s0

k�τ
56 (t, τ )z

(
σ (t), τ

)
�τ

≤ A2(t, s)z(t, s) +
(∫ s

s0

b
(
σ (t), τ

)
k12(t, τ )�τ +

∫ s

s0

b(σ (t),σ (τ ))k56(t,σ (τ ))
1 + μ(τ )b(σ (t),σ (τ ))

�τ
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+ k56(t, s) +
∫ s

s0

k̄�τ
56 (t, τ )�τ

)
z
(
σ (t), s

)
+ C3(t, s)

= A3(t, s)z(t, s) +
B3(t, s)

1 + μ(t)B3(t, s)
z
(
σ (t), s

)
+ C3(t, s),

i.e.,

z�t (t, s) ≤ (A3 ⊕ B3)(t, s)z(t, s) +
(
1 + μ(t)B3(t, s)

)
C3(t, s).

It follows from Lemma 2.2 that

z(t, s) ≤
∫ t

t0

(
1 + μ(τ )B3(τ , s)

)
C3(τ , s)e(A3⊕B3)(τ ,s)

(
t,σ (τ )

)
�τ

due to z(t0, s) = 0. This together with (3.10) yields (3.9). The proof is completed. �

Remark 3.2 The inequalities in Theorems 3.1–3.3 generalize the results in [12–14] to two
independent variables, which can be used to study the boundedness of dynamic systems.

Remark 3.3 The explicit bounds for inequalities (1.1)–(1.3) can be obtained by choosing
proper ki(t, s) (i = 1, 2, . . . , 6). For example, letting k1(t, s) = k2(t, s) > 0 and k5(t, s) = k6(t, s) >
0 yields Bi(t, s) = 0 in Theorems 3.1–3.3. Under this case, Theorems 3.1–3.3 possess sim-
pler forms.

4 Application
In this part, an example is presented to state the main results.

Example 4.1 Consider the partial dynamic system with positive and negative coefficients

⎧⎨
⎩

u�t�s (t, s) = f (t, s)u(t, s) + h1(t, s)u1/3(σ (t), s) – h2(t, s)u2(σ (t), s),

u(t, s0) = α(t), u(t0, s) = β(s), u(t0, s0) = u0,
(4.1)

where f , h1, h2 : T× T̃→R+ are right-dense continuous functions. System (4.1) possesses
sublinear and superlinear terms, which can be regarded as a class of dynamic systems with
mixed nonlinearities. By simple calculation, the solution of System (4.1) satisfies

∣∣u(t, s)
∣∣ ≤ a(t, s) +

∫ t

t0

eA(τ ,s)
(
t,σ (τ )

)
C(τ , s)�τ , (4.2)

where

a(t, s) =
∣∣α(t)

∣∣ +
∣∣β(s)

∣∣ + |u0|, A(t, s) =
1
3

K–2/3
∫ s

s0

f (t, τ )�τ ,

C(t, s) =
∫ s

s0

(
1
3

K–2/3a(t, τ )f (t, τ ) +
2
3

K1/3f (t, τ )
)

�τ

+
∫ s

s0

[
θ1

(
1
3

, h1(t, τ ), k1(t, τ ), 1
)

+ θ2
(
2, h2(t, τ ), k2(t, τ ), 1

)]
�τ
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for any K > 0 and any rd-continuous functions k1(t, s) > 0 and k2(t, s) ≥ 0 satisfying
k12(t, s) = k1(t, s) – k2(t, s) = 0 for (t, s) ∈ T× T̃.

Actually, integrating (4.1) generates

u(t, s) = α(t) + β(s) – u0

+
∫ t

t0

∫ s

s0

[
f (ξ , τ )u(ξ , τ ) + h1(ξ , τ )u1/3(σ (ξ ), τ

)
– h2(ξ , τ )u2(σ (ξ ), τ

)]
�τ�ξ .

Therefore,

∣∣u(t, s)
∣∣ ≤ a(t, s) +

∫ t

t0

∫ s

s0

[
f (ξ , τ )

∣∣u(ξ , τ )
∣∣ + h1(ξ , τ )

∣∣u(
σ (ξ ), τ

)∣∣1/3

– h2(ξ , τ )
∣∣u(

σ (ξ ), τ
)∣∣2]

�τ�ξ . (4.3)

By Theorem 3.1, (4.3) yields (4.2).
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