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Abstract
Fractional derivatives with three parameter generalized Mittag-Leffler kernels and
their properties are studied. The corresponding integral operators are obtained with
the help of Laplace transforms. The action of the presented fractional integrals on the
Caputo and Riemann type derivatives with three parameter Mittag-Leffler kernels is
analyzed. Integration by parts formulas in the sense of Riemann and Caputo are
proved and then used to formulate the fractional Euler–Lagrange equations with an
illustrative example. Certain nonconstant functions whose fractional derivatives are
zero are determined as well.
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1 Basics and preliminaries
Fractional calculus is an emerging field with several real world applications in various areas
of science and engineering [1–13].

Recently, generalized versions of the standard classical fractional derivatives and their
discrete versions (see, for example, Refs. [14–19]) are required by a better description of
the dynamics of so-called complex systems. The extension of these fractional operators
with nonsingular kernels and the Lyapunov type inequalities and their discrete versions
have been later investigated in [20–23]. Further, the monotonicity analysis of such dis-
crete fractional operators has been also studied in [24, 25]. Thus, we have to investigate if
the new fractional derivative with Mittag-Leffler kernel can be used properly for treating
the control problems and if it can be used successfully to produce new fractional Euler–
Lagrange equations. As it can be seen, these types of equations contain two types of deriva-
tives, the left and right ones, and they are new types of equations. The solutions of these
types of equations were used successfully to treat several complex oscillatory systems [26–
33]. In fact, the fractional variational principles provided the scientific community with a
new type of Euler–Lagrange equations which opened new directions in the field of nu-
merical analysis.

Keeping the above mentioned things in our minds, we discuss in our manuscript
the fractional operators with three parameter generalized Mittag-Leffler kernels and we
present the integration by parts formulas, and finally we obtain the related fractional
Euler–Lagrange equations. Therefore, we generalize the results obtained in [15, 17]. The
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defined fractional derivatives depend on a limiting approach of weighted versions of Prab-
hakar fractional integrals [34] with the help of delta Dirac functions. Prabhakar fractional
integrals were investigated in [35] as well.

We recall that the Q-operator action, (Qf )(t) = f (a + b – t), was utilized earlier in frac-
tional calculus [1–4] to relate left and right type fractional integrals and derivatives. Then,
recently, it has been employed to relate left and right fractional sums and differences [36,
37]. In our article, we will use the action of Q-operator in order to define and to confirm
our definitions of fractional derivatives with Mittag-Leffler function kernels.

Definition 1 The Mittag-Leffler function of one parameter is written as

Eα(λ, z) = Eα

(
λzα

)
=

∞∑

k=0

λk zαk

Γ (αk + 1)
,

(
0 �= λ ∈R, z ∈ C; Re(α) > 0

)
, (1)

and the expression of the one with two parameters α and β has the following form:

Eα,β (λ, z) = zβ–1Eα,β
(
λzα

)
=

∞∑

k=0

λk zαk+β–1

Γ (αk + β)
,

(
0 �= λ ∈ R, z,β ∈C; Re(α) > 0

)
, (2)

where Eα,1(λ, z) = Eα(λ, z).

We recall that the formula of the generalized ML of three parameters is

Eσ
α,β (z) =

∞∑

k=0

(σ )k
zk

k!Γ (αk + β)
, (3)

where (σ )k = σ (σ + 1) · · · (σ + k – 1) is the Pochhammer symbol. Notice that (1)k = k! so
that E1

α,β(z) = Eα,β(z).
Using a modified version, the following is the ML function of three parameters:

Eσ
α,β (λ, z) =

∞∑

k=0

λk(σ )k
zαk+β–1

k!Γ (αk + β)
. (4)

Definition 2 Let s ∈R and f1, g1 : [a,∞) →R be functions. The convolution of f1 with g1

starting from a is written as

(f1 ∗ g1)(t) =
∫ t

a
g1(t – s + a)f1(s) ds, (5)

and the Laplace transform starting from a of f1 as

{
Laf1(t)

}
(z) =

∫ ∞

a
f1(t)e–z(t–a) dt.

When a = 0, we use L instead of La.

Depending on Definition 2, we can prove the following a-convolution Laplace identity
that we shall use throughout this article.
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Proposition 1 For f , g defined on [a,∞) we conclude that

(
La(f ∗ g)

)
(z) = (Laf )(z)(Lag)(z). (6)

Proof The proof is straightforward and can be achieved by using definition and inter-
changing the orders of the integrals. �

2 Generalized fractional derivatives with singular ML kernels with three
parameters

Definition 3 The generalized ABR and ABC fractional derivatives with kernel Eγ
α,μ(λ, t),

where 0 < α < 1, Re(μ) > 0, γ ∈R, and λ = –α
1–α

, are defined respectively by

(ABC
a Dα,μ,γ f

)
(x) =

B(α)
1 – α

∫ x

a
Eγ

α,μ(λ, x – t)f ′(t) dt

=
B(α)
1 – α

Eγ
α,μ(λ, x – a) ∗ f ′(x). (7)

The right one by

(ABCDα,μ,γ
b f

)
(x) =

–B(α)
1 – α

∫ b

x
Eγ

α,μ(λ, t – x)f ′(t) dt (8)

and

(ABR
a Dα,μ,γ f

)
(x) =

B(α)
1 – α

d
dx

∫ x

a
Eγ

α,μ(λ, x – t)f (t) dt

=
B(α)
1 – α

d
dx

Eγ
α,μ(λ, x – a) ∗ f (x). (9)

The right one by

(ABRDα,μ,γ
b f

)
(x) =

–B(α)
1 – α

d
dx

∫ b

x
Eγ

α,μ(λ, t – x)f (t) dt. (10)

Here B(0) = B(1) = 1. Simply B(α) can be chosen as 1.

Remark 1 Note that the above generalized type fractional derivatives have singular kernels
for 0 < μ < 1. However, the one parameter ML function kernel defined in [15] is nonsin-
gular. Also, the limiting process α,μ,γ → 1 gives the ordinary derivative.

Theorem 1 ([35]) For ρ,μ,γ ,ν,σ ,λ ∈C (Re(ρ), Re(μ), Re(ν) > 0), we have

∫ x

0
(x – t)μ–1Eγ

ρ,μ
(
λ[x – t]ρ

)
tν–1Eσ

ρ,ν
(
λtρ

)
dt = xμ+ν–1Eγ +σ

ρ,μ+ν

(
λxρ

)
. (11)

Particularly, if γ = 1, μ = 1, and ρ = α, we have

∫ x

0
Eα

(
λ[x – t]α

)
tν–1Eσ

α,ν
(
λtα

)
dt = xνE1+σ

α,1+ν

(
λxα

)
. (12)
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Remark 2 If we utilize the modified notation of ML, then (11) becomes

∫ x

0
Eγ

ρ,μ(λ, x – t)Eσ
ρ,ν(λ, t) dt = Eγ +σ

ρ,μ+ν(λ, x), (13)

and (12) is written as

∫ x

0
Eα(λ, x – t)Eσ

α,ν(λ, t) dt = E1+σ
α,1+ν(λ, x). (14)

For α,μ,γ ,λ ∈C (Re(α) > 0), and n ∈N, we conclude that [3]

(
d
dz

)n[
Eγ

α,μ(λ, z)
]

= Eγ
α,μ–n(λ, z). (15)

Now, from (13) and (15), we see that

ABR
0 Dα,μ,γ [

Eσ
α,ν(λ, x)

]
=

B(α)
1 – α

d
dx

[
Eγ +σ

α,μ+ν(λ, x)
]

=
B(α)
1 – α

Eγ +σ
α,ν+μ–1(λ, x), (16)

and

ABC
0 Dα,μ,γ [

Eσ
α,ν(λ, x)

]
=

B(α)
1 – α

∫ x

0
Eγ

α,μ(λ, x – t)
d
dt

[
Eσ

α,ν(λ, t)
]

dt

=
B(α)
1 – α

Eγ +σ
α,ν+μ–1(λ, x). (17)

Remark 3 Noting that

E0
α,ν+μ–1(λ, x) =

xν+μ–2

Γ (ν + μ – 1)
→ 0, ν → 1 – μ, 0 < μ ≤ 1,

from (16) and (17) for σ = –γ , it implies that

Gγ (x) =
1 – α

B(α)
E–γ

α,ν(λ, x), ν → 1 – μ

is a nonzero function such that its ABR and ABC derivatives are zero. By inspection we
report that the function G(x) tends to 1 as μ → 1– and α → 1 with γ = 1. Also, it is of in-
terest to study the fractional polynomial function Gγ (x) with γ = 1, 2, 3, . . . (see Example 1
below).

Now, we solve the equation (ABR
a Dα,μ,γ f )(t) = u(t) with γ = 1 to find the fractional integral

operator of two parameters. After we perform the Laplace transform to both sides, we
utilize the convolution identity in Proposition 1 and make use of the fact that

(
LaEγ

α,β (λ, t – a)
)
(s) = s–β

[
1 – λs–α

]–γ ,

and that f (t) is continuous at a to have

(
La

ABR
a Dα,μ,1f (t)

)
(s) =

B(α)
1 – α

(
La

d
dt

[
f (t) ∗ Eα,μ(λ, t – a)

])
(s)
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=
B(α)
1 – α

s.s–μ
[
1 – λs–α

]–1F(s) – 0

= U(s), (18)

where U(s) = (Lau(t))(s), F(s) = (Laf (t))(s), and λ = –α
1–α

. From which it follows that

F(s) =
1 – α

B(α)
sμ–1[1 – λs–α

]
U(s) = sμ–1

[
1 – α

B(α)
+

α

B(α)
s–α

]
U(s).

Utilizing the inverse Laplace, we see that

f (t) =
1 – α

B(α)
(

aI1–μu
)
(t) +

α

B(α)
(

aI1–μ+αu
)
(t).

As a result, we have the following definition.

Definition 4 Let f be a continuous function defined on an interval [a, b] and assume 0 <
α ≤ 1, μ > 0. Then the left and right fractional integrals of two parameters α and μ are
defined respectively by

(AB
a Iα,μu

)
(t) =

1 – α

B(α)
(

aI1–μu
)
(t) +

α

B(α)
(

aI1–μ+αu
)
(t) (19)

and

(ABIα,μ
b u

)
(t) =

1 – α

B(α)
(
I1–μ

b u
)
(t) +

α

B(α)
(
I1–μ+α

b u
)
(t), (20)

where (aIαu)(t) and (Iα
b u)(t) are the left and right Riemann fractional integrals.

Remark 4 Note that if μ tends to 1 in Definition 4, we have (AB
a Iα,1u)(t) = (AB

a Iαu)(t) and
(ABIα,1

b u)(t) = (ABIα
b u)(t). The case of finding explicit formulas for the left and right AB

fractional integrals of order α, μ, γ when γ �= 1 has not been treated above. However, it
is possible to formulate the particular cases γ = 2, 3, 4, . . . with the help of Laplace trans-
forms. In fact, the AB fractional integrals of order 0 < α ≤ 1, μ > 0, γ = 1, 2, . . . , are given
by

(AB
a Iα,μ,γ u

)
(t) =

γ∑

i=0

(
γ

i

)
αi

B(α)(1 – α)i–1

(
aIαi+1–μu

)
(t) (21)

and

(ABIα,μ,γ
b u

)
(t) =

γ∑

i=0

(
γ

i

)
αi

B(α)(1 – α)i–1

(
Iαi+1–μ

b u
)
(t). (22)

From [15] we recall the following:

(ABC
0 Dαf

)
(t) =

(ABR
0 Dαf

)
(t) –

B(α)
1 – α

f (0)Eα(λ, t). (23)
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Actually, the a-version is (f is regular at a)

(ABC
a Dαf

)
(t) =

(ABR
a Dαf

)
(t) –

B(α)
1 – α

f (a)Eα(λ, t – a) (24)

and the b-right fractional version is

(ABCDα
b f

)
(t) =

(ABRDα
b f

)
(t) –

B(α)
1 – α

f (b)Eα(λ, b – t). (25)

More generally, we can state and give proof of the following.

Theorem 2 (The relation between the generalized ABR and the generalized ABC frac-
tional derivatives) For any 0 < α < 1, μ > 0, γ ∈R, and f is regular at a, we have

• (ABC
a Dα,μ,γ f )(x) = (ABR

a Dα,μ,γ f )(x) – B(α)
1–α

f (a)Eγ
α,μ(λ, x – a),

• (ABCDα,μ,γ
b f )(x) = (ABRDα

b f )(x) – B(α)
1–α

f (b)Eγ
α,μ(λ, b – x),

where always λ = –α
1–α

.

Proof From the relations

La
{(ABR

a Dα,μ,γ f
)
(t)

}
(s) =

B(α)
1 – α

s1–μF(s)
[
1 – λs–α

]–γ (26)

and

La
{(ABC

a Dα,μ,γ f
)
(t)

}
(s) =

B(α)
1 – α

s1–μF(s)
[
1 – λs–α

]–γ –
B(α)
1 – α

f (a)s–μ
[
1 – λs–α

]–γ , (27)

we conclude that

La
{(ABC

a Dα,μ,γ f
)
(t)

}
(s) = La

{(ABR
a Dα,μ,γ f

)
(t)

}
(s) –

B(α)
1 – α

f (a)s–μ
[
1 – λs–α

]–γ . (28)

Applying the inverse Laplace to (28), we finish our conclusion in the first part. The second
part can be proved with the help of the first part as well as the Q-operator action. �

Using Theorem 2, (19), (20), and the identity (see [3] page 78 or Theorem 3 in [35])

(aIα(t – a)β–1Eγ

μ,β
[
λ(t – a)μ

]
(x) = (x – a)α+β–1Eγ

μ,α+β

[
λ(x – a)μ

]
, (29)

or in a modified version as

(aIαEγ

μ,β (λ, t – a)(x) = Eγ

μ,α+β (λ, x – a), (30)

we can conclude the following.

Proposition 2 For 0 < α < 1, μ > 0, γ = 1, we have

(AB
a Iα,μ,1ABC

a Dα,μ,1f
)
(x) = f (x) – f (a)Eα,1(λ, x – a) –

α

1 – α
f (a)Eα,α+1(λ, x – a)

= f (x) – f (a).
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Similarly,

(ABIα,μ
b

ABCDα,μ
b f

)
(x) = f (x) – f (b). (31)

In the proof of Proposition 2, we need to make use of the identity

Eα,1(λ, x – a) – λEα,α+1(λ, x – a) = 1. (32)

Remark 5 From Remark 4 with γ = 2, for 0 < α < 1, μ > 0, we have

(AB
a Iα,μ,2u

)
(t) =

1 – α

B(α)
(

aI1–μu
)
(t) +

2α

B(α)
(

aIα–μ+1u
)
(t)

+
α2

B(α)(1 – α)
(

aI2α–μ+1u
)
(t). (33)

In particular,

(AB
a Iα,1,2u

)
(t) =

1 – α

B(α)
u(t) +

2α

B(α)
(

aIαu
)
(t)

+
α2

B(α)(1 – α)
(

aI2αu
)
(t). (34)

Hence, we can generalize Proposition 2 for other values of γ as follows.

Proposition 3 For 0 < α < 1, μ > 0, γ = 2, and λ = –α
1–α

, we have

(AB
a Iα,μ,2ABC

a Dα,μ,2f
)
(x) = f (x) – f (a)[E2

α,1(λ, x – a) – 2λE2
α,α+1(λ, x – a)

+ λ2E2
α,2α+1(λ, x – a)

= f (x) – f (a)

×
[

1 +
∞∑

k=2

λk (x – a)αk

Γ (αk + 1)

(
(2)k

k!
–

2(2)k–1

(k – 1)!
+

(2)k–2

(k – 2)!

)

︸ ︷︷ ︸
=0

]

= f (x) – f (a).

Similarly, by the action of the Q-operator, we have

(ABIα,μ,2
b

ABCDα,μ,2
b f

)
(x) = f (x) – f (b). (35)

More generally, if we proceed inductively on γ ∈N by making use of the identity

γ∑

i=0

(–1)i

(
γ

i

)
(γ )k–i

(k – i)!
= 0, ∀k ≥ γ , (36)

we can state the following γ -version of Proposition 2 and Proposition 3.



Abdeljawad and Baleanu Advances in Difference Equations        (2018) 2018:468 Page 8 of 15

Theorem 3 For 0 < α < 1, μ > 0, γ ∈N, and λ = –α
1–α

, we have

(AB
a Iα,μ,γ ABC

a Dα,μ,γ f
)
(x) = f (x) – f (a)

γ∑

k=0

(–1)kλkEγ

α,αk+1(λ, x – a)

= f (x) – f (a). (37)

Similarly, by using Q-operator, we get

(ABIα,μ,γ
b

ABCDα,μ,γ
b f

)
(x) = f (x) – f (b)

γ∑

k=0

(–1)kλkEγ

α,αk+1(λ, b – x) (38)

= f (x) – f (b). (39)

3 Integration by parts
Below we shall deal with integration by parts for fractional integrals (AB

a Iα,μ,γ u)(t) and
derivatives (AB

a Dα,μ,γ u)(t) of orders 0 < α < 1, Re(μ) > 0, γ = 1, 2, 3, . . . . The extension for
arbitrary γ is still open since there is no explicit formula for the integral operator in case
γ /∈N.

Below we discuss the following function spaces: For p ≥ 1 and 0 < α < 1, μ > 0, γ ∈ C,
we define

(AB
a Iα,μ,γ )

(Lp) =
{

f : f = AB
a Iα,μ,γ ϕ,ϕ ∈ Lp(a, b)

}
(40)

and

(ABIα,μ,γ
b

)
(Lp) =

{
f : f = ABIα,μ,γ

b φ,φ ∈ Lp(a, b)
}

. (41)

The discussion in the previous section shows that

(AB
a Dα,μ,γ AB

a Iα,μ,γ u
)
(t) = u(t)

and

(ABDα,μ,γ
b

ABIα,μ,γ
b u

)
(t) = u(t).

We next prove that (AB
a Iα,μ,γ ABR

a Dα,μ,γ f )(t) = f (t) and

(ABIα,μ,γ
b

ABRDα,μ,γ
b f

)
(t) = f (t),

thus the function spaces (AB
a Iα,μ,γ )(Lp) and (ABIα,μ,γ

b )(Lp) are nonempty.

Theorem 4 Let 0 < α < 1, μ > 0, γ ∈ N, then the functions (ABR
a Dα,μ,γ f )(t) and

(ABRDα,μ,γ
b f )(t) satisfy the equations

(AB
a Iα,μ,γ g

)
(t) = f (t),

(ABIα,μ,γ
b g

)
(t) = f (t),

respectively.
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Proof Below we discuss the proof for the left case only. Using the Q-operator, the right
case can be proved easily. With the help of the definition we show that the first equation
is equivalent to

γ∑

k=0

(
γ

k

)
αk

(1 – α)k–1B(α)
(

aIαk–μ+1g
)
(t) = f (t).

For γ = 1, the Laplace transform gives us the following:

sμ–1
[

1 – α

B(α)
+

α

B(α)
s–α

]
G(s) = F(s),

from which it follows that

G(s) =
B(α)F(s)

sμ–1(1 – α + αs–α)
=

(
La

ABR
a Dα,μ.1f

)
(s).

After that, the Laplace inverse implies that g(t) = (ABR
a Dα,μ.1f )(t).

For γ = 2, the Laplace transform gives

[
1 +

2αs–α

1 – α
+

α2

(1 – α)2 s–2α

]
G(s) = s1–μ B(α)

1 – α
F(s),

from which it follows by (26) with γ = 2 that

G(s) =
B(α)F(s)

sμ–1(1 – α)(1 – 2λs–α + λ2s–2α)
=

(
La

ABR
a Dα,μ.2f

)
(s).

Now, the Laplace inverse gives g(t) = (ABR
a Dα,μ.2f )(t). If we proceed inductively on γ by

making use of (26) and (21), we conclude that g(t) = (ABR
a Dα,μ.γ f )(t). The right case follows

by the left case and the action of the Q-operator. �

Theorem 5 Let 0 < α < 1, μ > 0, γ ∈N, p ≥ 1, q ≥ 1, and 1
p + 1

q ≤ 1 + α (p �= 1 and q �= 1 in
the case 1

p + 1
q = 1 + α). Then

• If ϕ(x) ∈ Lp(a, b) and ψ(x) ∈ Lq(a, b), then

∫ b

a
ϕ(x)

(AB
a Iα,μ,γ ψ

)
(x) dx =

∫ b

a
ψ(x)

(ABIα,μ,γ
b ϕ

)
(x) dx (42)

and similarly,

∫ b

a
ϕ(x)

(ABIα,μ,γ
b ψ

)
(x) dx =

∫ b

a
ψ(x)

(AB
a Iα,μ,γ ϕ

)
(x) dx. (43)

• If f (x) ∈ ABIα,μ,γ
b (Lp) and g(x) ∈ AB

a Iα,μ,γ (Lq), then

∫ b

a
f (x)

(ABR
a Dα,μ,γ g

)
(x) dx =

∫ b

a

(ABRDα,μ,γ
b f

)
(x)g(x) dx
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and similarly,

∫ b

a
f (x)

(ABDα,μ,γ
b g

)
(x) dx =

∫ b

a
g(x)

(AB
a Dα,μ,γ f

)
(x) dx (44)

for f (x) ∈ AB
a Iα,μ,γ (Lp) and g(x) ∈ ABIα,μ,γ

b (Lq).

Proof
• The proof follows by (21), (22) and the integration by parts for (classical)

Riemann–Liouville fractional integrals.
• From the assumption and the first part, we have

∫ b

a
f (x)

(ABR
a Dα,μ,γ g

)
(x) dx =

∫ b

a

(ABIα,μ,γ
b φ

)
(x).

(ABR
a Dα,μ,γ ABR

a Iα,μ,γ ϕ
)
(x) dx

=
∫ b

a

(ABIα,μ,γ
b φ

)
(x).ϕ(x) dx

=
∫ b

a
φ(x).

(AB
a Iα,μ,γ ϕ

)
(x) dx

=
∫ b

a

(ABRDα,μ,γ
b f

)
(x)g(x) dx.

The fact that the fractional integral operator and the differential operator are inverses
to each other has been used (notice Theorem 4 and above it). �

From [35] recall the (left) generalized fractional integral operator

(
Eγ

ρ,μ,ω,a+ϕ
)
(x) =

∫ x

a
(x – t)μ–1Eγ

ρ,μ
[
ω(x – t)ρ

]
ϕ(t) dt, x > a

=
∫ x

a
Eγ

ρ,μ(ω, x – t)ϕ(t) dt, x > a. (45)

Thus, we define the (right) generalized fractional integral operator as

(
Eγ

ρ,μ,ω,b–ϕ
)
(x) =

∫ b

x
(t – x)μ–1Eγ

ρ,μ
[
ω(t – x)ρ

]
ϕ(t) dt, x < b (46)

=
∫ b

x
Eγ

ρ,μ(ω, t – x))ϕ(t) dt, x < b, (47)

where Eγ
ρ,μ(z) =

∑∞
k=0

(γ )kzk

Γ (ρk+μ)k! is the generalized Mittag-Leffler function which is defined
for complex ρ , μ, γ (Re(ρ) > 0) [3, 35].

Using notations (45) and (46) and with the help of Theorems 2 and 5, we can state the
following integration by parts theorem for the Caputo case.

Proposition 4 (Integration by parts for the Caputo type derivative ABC
a Dα,μ,γ ) Let 0 < α <

1, μ > 0, γ ∈N, then
•

∫ b
a (ABC

a Dα,μ,γ f )(t)g(t) =
∫ b

a f (t)(ABRDα,μ,γ
b g)(t) + B(α)

1–α
f (t)(Eγ

α,μ, –α
1–α ,b– g)(t)|ba.

•
∫ b

a (ABCDα
b f )(t)g(t) =

∫ b
a f (t)(ABR

a Dα,μ,γ g)(t) – B(α)
1–α

f (t)(Eγ

α,μ, –α
1–α ,a+ g)(t)|ba.
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4 The related fractional Euler–Lagrange equations
Below we investigate the corresponding Euler–Lagrange equations for a Lagrangian pos-
sessing the left new Caputo derivative with three parameter Mittag-Leffler kernel.

Theorem 6 Let 0 < α ≤ 1, μ > 0, γ ∈ N, and a < b be real numbers. Suppose that the
functional J : C2[0, b] →R, namely

J(f ) =
∫ b

0
L
(
t, f (t), ABC

a Dα,μ,γ f (t)
)

dt,

possesses a local extremum in S = {y ∈ C2[a, b] : y(a) = A, y(b) = B} at some f ∈ S, keeping
in mind that L : [a, b] ×R×R →R. Then

[
L1(s) + ABRDα,μ,γ

b L2(s)
]

= 0, for all s ∈ [a, b], (48)

where L1(s) = ∂L
∂f (s) and L2(s) = ∂L

∂ABC
a Dα,μ,γ f

(s).

Proof Let us suppose that J has local maximum in S at f . Thus, there exists ε > 0 fulfilling
J (̂f ) – J(f ) ≤ 0 for all f̂ ∈ S with ‖̂f – f ‖ = supt∈[a,b] |̂f (t) – f (t)| < ε. For any f̂ ∈ S, there is
η ∈ H = {y ∈ C2[a, b], y(a) = y(b) = 0} fulfilling f̂ = f + εη. As a result, the ε-Taylor theorem
provides the following:

L(t, f , f̂ ) = L
(
t, f + εη, ABC

a Dα,μ,γ f + εABC
a Dα,μ,γ η

)

= L
(
t, f , ABC

a Dα,μ,γ f
)

+ ε
[
ηL1 + ABC

a Dα,μ,γ ηL2
]

+ O
(
ε2).

Then

J (̂f ) – J(f ) =
∫ b

a
L
(
t, f̂ (t), ABC

a Dα,μ,γ f̂ (t)
)

–
∫ b

a
L
(
t, f (t), ABC

a Dα,μ,γ f (t)
)

= ε

∫ b

a

[
η(t)L1(t) +

(ABC
a Dα,μ,γ η

)
(t)L2(t)

]
+ O

(
ε2). (49)

Here δJ(η, y) =
∫ b

a [η(t)L1(t) + (ABC
0 Dα,μ,γ η)(t)L2(t)] dt represents the first variation of J .

After some calculations and using the integration by parts formula in Proposition 4, we
get

δJ(η, y) =
∫ b

a
η(s)

[
L1(s) + ABRDα,μ,γ

b L2(s)
]

+ η(t)
B(α)
1 – α

(
Eγ

α,μ, –α
1–α ,b– L2

)
(t)|ba = 0

for all η ∈ H , and hence the result follows by the fundamental lemma of calculus of varia-
tion. �

Here, the quantity (Eγ

α,μ, –α
1–α ,b– L2)(t)|ba = 0 above is named the natural boundary condi-

tion.
For the special case when the Lagrangian depends on the right Caputo derivative, we

have the following.
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Theorem 7 Let us consider 0 < α ≤ 1, μ > 0, γ ∈ N, and a1 < b1 be real numbers. Assume
that the functional J : C2[a1, b1] → R of the form

J(f ) =
∫ b1

a1

L
(
t, f (t), ABCDα,μ,γ

b1
f (t)

)
dt

possesses a local extremum in S = {y ∈ C2[a1, b1] : y(a1) = A, y(b1) = B} at some f ∈ S, where
L : [a1, b1] ×R×R→R. Then

[
L1(s) + ABR

a1 DαL2(s)
]

= 0 for all s ∈ [a1, b1], (50)

where L1(s) = ∂L
∂f (s) and L2(s) = ∂L

∂ABCDb1α,μ,γ f (s).

Proof The proof looks similar to Theorem 6. �

Example 1 We analyze the following example of physical interest by Theorem 6. Let us
consider J(y) =

∫ b
a [ 1

2 (ABC
a Dα,μ,γ y(t))2 – V (y(t))], where 0 < α < 1, μ > 0, γ ∈N and with y(a),

y(b) are assigned or with the natural boundary condition

(
Eγ

α,μ, –α
1–α ,b–

ABC
a Dα,μ,γ y(t)

)
(t)|ba = 0.

As a result, the related Euler–Lagrange equation becomes

(ABRDα,μ,γ
b

ABC
a Dα,μ,γ y

)
(s) –

dV
dy

(s) = 0 for all s ∈ [a, b].

We noticed that the Euler–Lagrange equations consist of composition of left and right
type fractional derivatives with three parameter ML-kernels (see [4] for more details).

• The free particle case corresponds to V ≡ 0. In this case we get

(ABRDα,μ,γ
b

ABC
a Dα,μ,γ y

)
(t) = 0.

By applying ABIα,μ,γ
b to both sides, we conclude that

(ABC
a Dα,μ,γ y

)
(t) = 0.

Then, by Remark 3, it implies that the solution is written as

y(t) = c1 + Gγ (x – a) = c1 +
1 – α

B(α)
E–γ

α,ν(λ, x – a), ν → 1 – μ, (51)

and hence using y(a) = A we obtain

y(t) = y(a) + Gγ (x – a). (52)

For example,

G1(x – a) =
1 – α

B(α)

[
(x – a)–μ

Γ (1 – μ)
– λ

(x – a)α–μ

Γ (α + 1 – μ)

]

=
1 – α

B(α)
(x – a)–μ

Γ (1 – μ)
+

α

B(α)
(x – a)α–μ

Γ (α + 1 – μ)
. (53)
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Notice that μ → 1– and a = 0 will result in the function g(x) = αxα–1

B(α)Γ (α) proposed in
[17]. We remark here that as alpha goes to one, we get the classical case. For γ = 2, we
have by (–2)0 = 1, (–2)1 = –2, (–2)2 = 2

G2(x – a) =
1 – α

B(α)

[
(x – a)–μ

Γ (1 – μ)
– 2λ

(x – a)α–μ

Γ (α + 1 – μ)

+ 2λ2 (x – a)2α–μ

Γ (2α + 1 – μ)

]

=
1 – α

B(α)
(x – a)–μ

Γ (1 – μ)
+ 2

α

B(α)
(x – a)α–μ

Γ (α + 1 – μ)

+
2α2

B(α)(1 – α)
(x – a)2α–μ

Γ (2α + 1 – μ)
. (54)

Hence, Gγ (x – a) is singular at α = 1 for γ = 2, 3, 4, . . . .
• Considering V (y) = cy2/2, the expression of the fractional Euler–Lagrange equation is

written as (ABRDα
b

ABC
a Dα,μ,γ y)(t) = cy(t). Then, applying ABIα,μ,γ

b and AB
a Iα,μ,γ

respectively together with use of Theorem 3, we obtain

y(t) = y(a) + c
(AB

a Iα,μ,γ ABIα,μ,γ
b y

)
(t), (55)

which contains, when α tends to 1, the classical case.

5 Conclusions
The fractional derivatives studied in [15, 17] are of interest for real world problems since
they contain nonsingular Mittag-Leffler kernels and their corresponding fractional inte-
grals are expressed by mean of the classical Riemann fractional integrals. They also obey
the action of Q-operator in studying the left and right fractional operators. In this article
we have generalized the results obtained in [15, 17] by defining fractional derivatives with
Mittag-Leffler kernels of three parameters 0 < α < 1, μ > 0, γ ∈R and then obtained their
corresponding fractional integrals when the function is regular at a (the non-regular case
is still open). Such kernels might be singular depending on the value of μ. For such frac-
tional derivatives either in Riemann (ABR) or Caputo (ABC) sense, we proved integration
by parts when γ ∈ N since we were able just to calculate the corresponding fractional inte-
grals by Laplace transforms. We have applied our integration by parts on a fractional vari-
ational problem with Lagrangian containing left or right ABC-derivatives, after which we
analyzed a detailed example of physical interest, where nonconstant solutions expressed
by means of Gγ (x – a), γ = 1, 2, . . . , have been obtained for zero potential Lagrangian. The
action of the corresponding proposed left and right fractional integrals on left and right
ABC derivatives has been studied with the surprising conclusion that this action does not
depend on the three parameters of the Mittag-Leffler kernel (see Theorem 3). This action
is useful to solve fractional dynamical systems with ABC derivatives. We have related the
ABR and ABC derivatives for arbitrary γ (see Theorem 2). All the results obtained in [15,
17] can be recovered by setting γ = μ = 1.
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