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Abstract
According to the principle of conservation of mass and the fractional Fick’s law, a new
two-sided space-fractional diffusion equation was obtained. In this paper, we present
two accurate and efficient numerical methods to solve this equation. First we discuss
the alternating-direction finite difference method with an implicit Euler method
(ADI–implicit Euler method) to obtain an unconditionally stable first-order accurate
finite difference method. Second, the other numerical method combines the ADI
with a Crank–Nicolson method (ADI–CN method) and a Richardson extrapolation to
obtain an unconditionally stable second-order accurate finite difference method.
Finally, numerical solutions of two examples demonstrate the effectiveness of the
theoretical analysis.

Keywords: Two-dimensional two-sided space-fractional diffusion equations; The
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1 Introduction
According to the principle of conservation of mass, the equation of continuity form is
given by

∂u(x, t)
∂t

+
∂Q(x, t)

∂x
= f (x, t), (1.1)

where u(x, t) is the distribution function of the diffusing quantity, Q(x, t) is the diffusion
flux, and f (x, t) is the source term. Then we modified the classical Fick’s law by

Q(x, t) = –C(x)
∂

∂x

∫ x

a
K+(x, ξ )u(ξ , t) dξ – D(x)

∂

∂x

∫ b

x
K–(x, ξ )u(ξ , t) dξ , (1.2)

where C(x) and D(x) are nonnegative diffusion coefficients, K+(x, ξ ) and K–(x, ξ ) are the
kernel functions defined by

⎧⎨
⎩

K+(x, ξ ) = 1
�(1–α) (x – ξ )–α , a ≤ ξ ≤ x;

K–(x, ξ ) = 1
�(1–α) (ξ – x)–α , x ≤ ξ ≤ b,

(1.3)
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where 0 < α < 1. Combining Eqs. (1.1)–(1.3), we can get a one-dimensional two-sided
space-fractional diffusions equation [1]:

∂u(x, t)
∂t

=
∂

∂x

(
C(x)

∂αu(x, t)
∂xα

– D(x)
∂αu(x, t)
∂(–x)α

)
+ f (x, t),

a ≤ x ≤ b, 0 < α < 1, t > 0. (1.4)

In this paper, we discuss the two-dimensional two-sided space-fractional diffusion equa-
tion as follows:

∂u(x, y, t)
∂t

=
∂

∂x

(
Cx(x, y)

∂αu(x, y, t)
∂xα

– Dx(x, y)
∂αu(x, y, t)

∂(–x)α

)

+
∂

∂y

(
Cy(x, y)

∂βu(x, y, t)
∂yβ

– Dy(x, y)
∂βu(x, y, t)

∂(–y)β

)

+ f (x, y, t), (x, y) ∈ �, t > 0, (1.5)

subject to the initial condition

u(x, y, 0) = φ(x, y), (x, y) ∈ �̄, (1.6)

and the zero Dirichlet boundary conditions

u(a1, y, t) = u(a2, y, t) = u(x, b1, t) = u(x, b2, t) = 0, t ≥ 0, (1.7)

where � = (a1, a2) × (b1, b2) is a rectangular domain, 0 < α,β < 1, Cx(x, y), Dx(x, y), Cy(x, y),
and Dy(x, y) are the nonnegative diffusion coefficients, f (x, y, t) is the source term. The
∂γ u(x,y,t)

∂xγ , ∂γ u(x,y,t)
∂(–x)γ (γ = α or β) are respectively the left and right Riemann–Liouville frac-

tional derivatives [2, 3] which are defined by

∂γ u(x, y, t)
∂xγ

=
1

�(1 – γ )
∂

∂x

∫ x

a1

u(s, y, t)
(x – s)γ

ds, (1.8)

∂γ u(x, y, t)
∂(–x)γ

=
–1

�(1 – γ )
∂

∂x

∫ a2

x

u(s, y, t)
(s – x)γ

ds. (1.9)

The definitions of ∂γ u(x,y,t)
∂yγ , ∂γ u(x,y,t)

∂(–y)γ are similar to the definitions of the x direction. As
we cannot easily get the explicit analytical solutions of the fractional equations, so many
researchers resort to their numerical solutions [4–10].

Moreover, a second-order method which combines the alternating-direction implicit
approach with the Crank–Nicolson discretization and the Richardson extrapolation for
the two-dimensional fractional diffusion equations was studied in [11]. Chen et al. [12]
studied preconditioned iterative methods for the linear system arising in the numeri-
cal discretization of a two-dimensional space-fractional diffusion equation. Chen et al.
[13] discussed the practical alternating-directions implicit method to solve the two-
dimensional two-sided space fractional convection diffusion equation on a finite domain.
Liu et al. [14] developed an alternating-direction implicit method for the two-dimensional
Riesz space fractional diffusion equations with a nonlinear reaction term. Zeng et al. [15]
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proposed a Crank–Nicolson alternating-direction implicit Galerkin–Legendre spectral
method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equa-
tions. Feng et al. [16] presented a second-order method for the space fractional diffusion
equation with variable coefficient. Moroney et al. [17] developed a fast Poisson precondi-
tioner for the efficient numerical solution of a class of two-sided nonlinear space-fractional
diffusion equations. Chen et al. [18] proposed a fast finite difference approximation for
identifying parameters in a two-dimensional space-fractional nonlocal model.

However, less focus has been on the variable coefficients FDE in a conservative form.
The diffusion coefficient is generally space- or time- dependent in practical problems. In
the numerical aspect of these two-sided space-fractional diffusion equations in one di-
mension, Chen et al. [1] developed a fast semi-implicit difference method for a nonlinear
one-dimensional two-sided space-fractional diffusion equation with variable diffusivity
coefficients. Feng et al. [19] presented a new finite volume method for a one-dimensional
two-sided space-fractional diffusion equation. Feng et al. [20] discussed a fast second-
order accurate method for a one-dimensional two-sided space-fractional diffusion. To
our knowledge, the study on the finite difference method computation of these two-sided
space-fractional diffusion equations in two dimensions is limited. This motivates us to
develop the alternating-direction finite difference methods for this two-dimensional two-
sided space-fractional diffusion equation in this paper.

The rest of the paper is organized as follows. In Sect. 2, we begin with some notations
and properties. In Sect. 3, we present an ADI–implicit Euler method for this equation and
its theory analysis. In Sect. 4, we present an ADI–CN method for this equation and its
theory analysis. In Sect. 5, we present numerical experiments to check the accuracy of
these methods.

2 Notations and properties
For the numerical approximation of the implicit difference method, we define a uniform
grid of mesh point (xi, yj, tk), xi = a1 + ih1 for i = 0, 1, . . . , Nx; yj = b1 + jh2 for j = 0, 1, . . . , Ny;
tk = kτ , where h1 = b1–a1

Nx
, h2 = b2–a2

Ny
, τ are the mesh-width in the x–, y–, and the time

direction, respectively. Let Ci,j = Cx(xi, yj), Di,j = Dx(xi, yj), C̄i,j = Cy(xi, yj), D̄i,j = Dy(xi, yj),
f k
i,j = f (xi, yj, tk). Denote Uk

i,j, uk
i,j to be the exact and numerical solutions at the mesh point

(xi, yj, tk), respectively. We use the shifted left Grünwald formula and the standard right
Grünwald formula to approximate the left and right Riemann–Liouville fractional deriva-
tives, respectively [21, 22]. We have the following formulae:

∂γ u(xi, yj, tk)
∂xγ

=
1

hγ
1

i+1∑
s=0

g(γ )
s uk

i+1–s,j + O(h1),

∂γ u(xi, yj, tk)
∂(–x)γ

=
1

hγ
1

Nx–i∑
s=0

g(γ )
s uk

i+s,j + O(h1),

where g(μ)
s (μ = α or β) are the normalized Grünwald weights [23]

g(μ)
s = (–1)u

(
μ

s

)
.

The formulae of the y direction are similar to the formulae of the x direction.
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Lemma 1 ([23]) The normalized Grünwald weights g(μ)
s when 0 < μ < 1 satisfy the proper-

ties:
(i)

∑∞
j=0 g(μ)

0 = 0;
(ii) g(μ)

0 = 1, g(μ)
j < 0 for j ≥ 1;

(iii)
∑n

j=0 g(μ)
j > 0 for any n ≥ 1;

(iv) g(μ)
j+1 – g(μ)

j = g(μ+1)
j+1 for j ≥ 1;

(v)
∑n

j=0 g(μ+1)
j < 0 for any n ≥ 1.

Define the following finite difference operators:

δα,xuk
i,j =

1
hα+1

1

[ i∑
s=0

(
Ci,jg(α)

i+1–s – Ci–1,jg(α)
i–s

)
uk

s,j + Ci,jg(α)
0 uk

i+1,j

]

+
1

hα+1
1

[ Nx∑
s=i

(
Di–1,jg(α)

s–i+1 – Di,jg(α)
s–i

)
uk

s,j

+ Di–1,jg(α)
0 uk

i–1,j

]
, (2.1)

δβ ,yuk
i,j =

1
hβ+1

2

[ j∑
s=0

(
C̄i,jg(β)

j+1–s – C̄i,j–1g(β)
j–s

)
uk

i,s + C̄i,jg(β)
0 uk

i,j+1

]

+
1

hβ+1
2

[ Ny∑
s=j

(
D̄i,j–1g(β)

s–j+1 – D̄i,jg(β)
s–j

)
uk

i,s

+ D̄i,j–1g(β)
0 uk

i,j–1

]
. (2.2)

3 ADI–implicit Euler method and its theory analysis
In this paper, we use the backward Euler scheme for the first-order time derivative. We
use the shifted left Grünwald formulae and the standard right Grünwald formulae to ap-
proximate the left and right Riemann–Liouville fractional derivatives, respectively [1, 20].
We get a discrete approximation for Eq. (1.5) at the mesh point (xi, yj, tk):

uk
i,j – uk–1

i,j

τ
≈ 1

h1

(
Cx(x, yj)

∂αu(x, yj, tk)
∂xα

– Dx(x, yj)
∂αu(x, yj, tk)

∂(–x)α

)∣∣∣∣
xi

xi–1

+
1
h2

(
Cy(xi, y)

∂βu(xi, y, tk)
∂yβ

– Dy(xi, y)
∂βu(xi, y, tk)

∂(–y)β

)∣∣∣∣
yj

yj–1

+ f k
i,j.

We can obtain

uk
i,j – uk–1

i,j

τ
≈ 1

hα+1
1

[(
Ci,j

i+1∑
s=0

g(α)
s uk

i+1–s,j – Di,j

Nx–i∑
s=0

g(α)
s uk

i+s,j

)

–

(
Ci–1,j

i∑
s=0

g(α)
s uk

i–s,j – Di–1,j

Nx–i+1∑
s=0

g(α)
s uk

i+s–1,j

)]
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+
1

hβ+1
2

[(
C̄i,j

j+1∑
s=0

g(β)
s uk

i,j+1–s – D̄i,j

Ny–j∑
s=0

g(β)
s uk

i,j+s

)

–

(
C̄i,j–1

j∑
s=0

g(β)
s uk

i,j–s – D̄i,j–1

Ny–j+1∑
s=0

g(β)
s uk

i,j+s–1

)]
+ f k

i,j.

After some rearrangements, the implicit finite difference equation is given by

uk
i,j – uk–1

i,j

τ
=

1
hα+1

1

[(
Ci,j

i+1∑
s=0

g(α)
i+1–su

k
s,j – Di,j

Nx∑
s=i

g(α)
s–i u

k
s,j

)

–

(
Ci–1,j

i∑
s=0

g(α)
i–s uk

s,j – Di–1,j

Nx∑
s=i–1

g(α)
s–i+1uk

s,j

)]

+
1

hβ+1
2

[(
C̄i,j

j+1∑
s=0

g(β)
j+1–su

k
i,s – D̄i,j

Ny∑
s=j

g(β)
s–j uk

i,s

)

–

(
C̄i,j–1

j∑
s=0

g(β)
j–s uk

i,j–s – D̄i,j–1

Ny∑
s=j–1

g(β)
s–j+1uk

i,s

)]
+ f k

i,j. (3.1)

Equation (3.1) may be written as

uk
i,j –

τ

hα+1
1

[ i∑
s=0

(
Ci,jg(α)

i+1–s – Ci–1,jg(α)
i–s

)
uk

s,j + Ci,jg(α)
0 uk

i+1,j

]

–
τ

hα+1
1

[ Nx∑
s=i

(
Di–1,jg(α)

s–i+1 – Di,jg(α)
s–i

)
uk

s,j + Di–1,jg(α)
0 uk

i–1,j

]

–
τ

hβ+1
2

[ j∑
s=0

(
C̄i,jg(β)

j+1–s – C̄i,j–1g(β)
j–s

)
uk

i,s + C̄i,jg(β)
0 uk

i,j+1

]

–
τ

hβ+1
2

[ Ny∑
s=j

(
D̄i,j–1g(β)

s–j+1 – D̄i,jg(β)
s–j

)
uk

i,s + D̄i,j–1g(β)
0 uk

i,j–1

]

= uk–1
i,j + τ f k

i,j. (3.2)

Combining Eqs. (2.1)–(2.2), Eq. (3.2) can be written in the operator form

(1 – τδα,x – τδβ ,y)uk
i,j = uk–1

i,j + τ f k
i,j. (3.3)

In the following proposition, we show that this method defined by Eq. (3.2) is consistent
with model (1.5) of the order O(τ + h1 + h2).

Remark 1 The implicit difference scheme Eq. (3.2) can be rewritten as

uk
i,j –

τ

hα+1
1

[ i∑
s=0

(Ci,j – Ci–1,j)g(α)
i–s uk

s,j +
i+1∑
s=0

Ci,jg(α+1)
i+1–s uk

s,j

]

–
τ

hα+1
1

[ Nx∑
s=i

(Di–1,j – Di,j)g(α)
s–i u

k
s,j +

Nx∑
s=i–1

Di–1,jg(α+1)
s+1–i u

k
s,j

]
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–
τ

hα+1
2

[ j∑
s=0

(C̄i,j – C̄i,j–1)g(β)
j–s uk

i,s +
j+1∑
s=0

C̄i,jg(β+1)
j+1–s uk

i,s

]

–
τ

hβ+1
2

[ Ny∑
s=j

(D̄i,j–1 – D̄i,j)g(β)
s–j uk

i,s +
Ny∑

s=j–1

D̄i,j–1g(β+1)
s+1–j uk

i,s

]

= uk–1
i,j + τ f k

i,j. (3.4)

Theorem 1 The implicit Euler method defined by Eq. (3.2) is consistent with model
Eq. (1.5) of the order O(τ + h1 + h2).

Proof Equation (1.5) may be written as

∂u(x, y, t)
∂t

=
∂

∂x
(
Cx(x, y)

)∂αu(x, y, t)
∂xα

+ Cx(x, y)
∂α+1u(x, y, t)

∂xα+1

–
∂

∂x
(
Dx(x, y)

)∂αu(x, y, t)
∂(–x)α

– Dx(x, y)
∂α+1u(x, y, t)

∂(–x)α+1

+
∂

∂y
(
Cy(x, y)

)∂βu(x, y, t)
∂yβ

+ Cy(x, y)
∂β+1u(x, y, t)

∂yβ+1

–
∂

∂y
(
Dy(x, y)

)∂βu(x, y, t)
∂(–y)β

– Dy(x, y)
∂β+1u(x, y, t)

∂(–y)β+1

+ f (x, y, t). (3.5)

From Eq. (3.4), we obtain the local truncation error term.

Rk
i,j =

Uk
i,j – Uk–1

i,j

τ
–

1
hα+1

1

[ i∑
s=0

(Ci,j – Ci–1,j)g(α)
i–s Uk

s,j +
i+1∑
s=0

Ci,jg(α+1)
i+1–s Uk

s,j

]

–
1

hα+1
1

[ Nx∑
s=i

(Di–1,j – Di,j)g(α)
s–i U

k
s,j +

Nx∑
s=i–1

Di–1,jg(α+1)
s+1–i U

k
s,j

]

–
1

hα+1
2

[ j∑
s=0

(
C̄i,j – C̄i,j–1g(β)

j–s
)
Uk

i,s +
j+1∑
s=0

C̄i,jg(β+1)
j+1–s Uk

i,s

]

–
1

hβ+1
2

[ Ny∑
s=j

(
D̄i,j–1 – D̄i,jg(β)

s–j
)
Uk

i,s +
Ny∑

s=j–1

D̄i,j–1g(β+1)
s+1–j Uk

i,s

]
– f k

i,j. (3.6)

From Eq. (3.5), we get

Rk
i,j =

Uk
i,j – Uk–1

i,j

τ
–

∂u(x, y, t)
∂t

∣∣∣∣
k

i,j

–
1

hα
1

[ i∑
s=0

(Ci,j – Ci–1,j)
h1

g(α)
i–s Uk

s,j +
∂

∂x
(
Cx(x, y)

)∂αu(x, y, t)
∂xα

∣∣∣∣
k

i,j

]

–
1

hα+1
1

[ i+1∑
s=0

Ci,jg(α+1)
i+1–s Uk

s,j – Cx(x, y)
∂α+1u(x, y, t)

∂xα+1

∣∣∣∣
k

i,j

]
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–
1

hα
1

[ Nx∑
s=i

(Di–1,j – Di,j)
h1

g(α)
s–i U

k
s,j +

∂

∂x
(
Dx(x, y)

)∂αu(x, y, t)
∂(–x)α

∣∣∣∣
k

i,j

]

–
1

hα+1
1

[ Nx∑
s=i–1

Di–1,jg(α+1)
s+1–i U

k
s,j – Dx(x, y)

∂α+1u(x, y, t)
∂(–x)α+1

∣∣∣∣
k

i,j

]

–
1

hβ
2

[ j∑
s=0

(C̄i,j – C̄i,j–1)
h2

g(β)
j–s Uk

i,s –
∂

∂y
(
Cy(x, y)

)∂βu(x, y, t)
∂yβ

∣∣∣∣
k

i,j

]

–
1

hβ+1
2

[ j+1∑
s=0

C̄i,jg(β+1)
j+1–s Uk

i,s –
(

Cy(x, y)
∂β+1u(x, y, t)

∂yβ+1

)∣∣∣∣
k

i,j

]

–
1

hβ
2

[ Ny∑
s=j

(D̄i,j–1 – D̄i,j)
h2

g(β)
s–j Uk

i,s +
∂

∂y
(
Dy(x, y)

)∂βu(x, y, t)
∂(–y)β

∣∣∣∣
k

i,j

]

–
1

hβ+1
2

[ Ny∑
s=j–1

D̄i,j–1g(β+1)
s+1–j uk

i,s – Dy(x, y)
∂β+1U(x, y, t)

∂(–y)β+1

∣∣∣∣
k

i,j

]

= O(τ + h1 + h2).

Therefore, the implicit Euler method defined by Eq. (3.2) is consistent with model Eq. (1.5)
of the order O(τ + h1 + h2). �

One standard method in the multi-dimensional PDEs is the ADI methods [11, 24]. For
these methods, the difference equations are specified and solved in one direction at a time.
For the ADI methods, the operator form Eq. (3.3) is written in a directional separation
product form

(1 – τδα,x)(1 – τδβ ,y)uk
i,j ≈ uk–1

i,j + τ f k
i,j, (3.7)

which introduces an additional perturbation error equal to τ 2(δα,xδβ ,y)uk
i,j. Using Propo-

sition 4.1 in [11], we can conclude that the ADI–implicit Euler method is also consistent
with order O(τ + h1 + h2). Equation (3.8) can be written in the matrix form

S̄T̄Uk = Uk–1 + τFk , (3.8)

where the matrices S̄ and T̄ represent the operators 1 – τδα,x and 1 – τδβ ,y, and

Uk =
(
uk

1,1, uk
2,1, . . . , uk

Nx–1,1, . . . , uk
1,Ny–1, uk

2,Ny–1, . . . , uk
Nx–1,Ny–1

)
, (3.9)

and the vector Fk absorbs the source term and the boundary conditions in Eq. (3.9). Com-
putationally, the ADI method for the above form is then set up and solved by the following
iterative scheme at time tk :

(1) First solve the problem in the x-direction (for each fixed yq) to obtain an intermediate
solution u∗

i,q from

(1 – τδα,x)u∗
i,q = uk–1

i,q + τ f k
i,q. (3.10)
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(2) Then solve in the y-direction (for each fixed xq) to obtain a solution uk
q,j from

(1 – τδβ ,y)uk
q,j = u∗

q,j. (3.11)

From Eqs. (3.11)–(3.12), we can compute the boundary values for u∗ from u∗
Nx ,j = (1 –

τδβ ,y)uk
Nx ,j, and using the zero Dirichlet boundary conditions, we can get

u∗
Nx ,j = 0. (3.12)

Theorem 2 If Cx(x, y) and Cy(x, y) decrease monotonically along x and y, respectively;
Dx(x, y) and Dy(x, y) increase monotonically along x and y, respectively. Each one-
dimensional implicit system defined by the linear difference Eqs. (3.11)–(3.12) is uncon-
ditionally stable for all 0 < α,β < 1.

Proof At each grid point yq, for q = 1, 2, . . . , Ny – 1, consider the linear system of equa-
tions defined by Eq. (3.11). This Eq. (3.11) can be written as ĀqŪ∗

q = Ūk–1
q + τFk

q , in-
corporating the boundary conditions from Eq. (3.13), where Ū∗

q = (u∗
1,q, u∗

2,q, . . . , u∗
Nx–1,q),

Fk
q = (f k

1,q, f k
2,q, . . . , f k

Nx–1,q), and for each yq, the matrix Āq = [Ai,s] for i = 1, . . . , Nx – 1 and
s = 1, . . . , Nx – 1 of coefficients is defined by

Ai,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–r1(Ci,qg(α)
i+1–s – Ci–1,qg(α)

i–s ), for s < i – 1;

–r1(Ci,qg(α)
2 – Ci–1,qg(α)

1 + Di–1,qg(α)
0 ), for s = i – 1;

1 – r1(Ci,qg(α)
1 – Ci–1,qg(α)

0 ) – r1(Di–1,qg(α)
1 – Di,qg(α)

0 ), for s = i;

–r1(Ci,qg(α)
0 + Di–1,qg(α)

2 – Di,qg(α)
1 ), for s = i + 1;

–r1(Di–1,qg(α)
s–i+1 – Di,qg(α)

s–i ), for s ≥ i + 2,

(3.13)

here r1 = τ

hα+1
1

. Cx(x, y) decreases monotonically along x; Dx(x, y) increases monotonically
along x. By Lemma 1 we have Ci–1,q ≥ Ci,q ≥ 0 ,Di,q ≥ Di–1,q ≥ 0 (i = 1, 2, . . . , Nx), Ci,qgα

j+1 ≥
Ci,qgα

j ≥ Ci–1,qgα
j ,Di–1,qgα

j+1 ≥ Di–1,qgα
j ≥ Ci,qgα

j (j ≥ 2). Let r̄i be the sum of elements along
the ith row excluding the diagonal elements Ai,i, then

r̄i = r1

Nx–1∑
s=1,s �=i

|Ai,s|

= r1

[ i–2∑
s=1

(
Ci,qg(α)

i+1–s – Ci–1,qg(α)
i–s

)

+ Ci,qg(α)
2 – Ci–1,qg(α)

1 + Di–1,qg(α)
0 + Ci,qg(α)

0 + Di–1,qg(α)
2

– Di,qg(α)
1 +

Nx–1∑
s=i+2

(
Di–1,qg(α)

s–i+1 – Di,qg(α)
s–i

)]

= r1

[( i∑
s=0

g(α)
s – g(α)

1

)
Ci,q –

( i–1∑
s=0

g(α)
s – g(α)

0

)
Ci–1,q

–

(Nx–i∑
s=0

g(α)
s – g(α)

1

)
Di,q +

(Nx–i–1∑
s=0

g(α)
s – g(α)

0

)
Di–1,q

]
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= r1

[ i∑
s=0

g(α)
s (Ci,q – Ci–1,q) + g(α)

i Ci,q +
Nx–i–1∑

s=0

g(α)
s (Di–1,q – Di,q) + g(α)

Nx–iDi–1,q

]

– r1
(
Ci,qg(α)

1 – Ci–1,qg(α)
0

)
– r1

(
Di–1,qg(α)

1 – Di,qg(α)
0

)

< r1(αCi,q + Ci–1,q + αDi–1,q + Di,q). (3.14)

We obtain

Ai,i = 1 – r1
(
Ci,qg(α)

1 – Ci–1,qg(α)
0

)
– r1

(
Di–1,qg(α)

1 – Di,qg(α)
0

)

= 1 + r1(αCi,q + Ci–1,q + αDi–1,q + Di,q). (3.15)

As r̄i ≤ Ai,i –1, matrix Āq is strictly diagonally dominant, which guarantees the invertibility
of the matrix Āq, so ĀqŪ∗

q = Ūk–1
q + τFk

q is uniquely solvable. According to the Gershgorin
theorem [23], every eigenvalue λ of the matrix Āq has a real part larger than one, so the
spectral radius of each matrix Ā–1

q is less than one. This proves that Eq. (3.11) is uncondi-
tionally stable. At each grid point xq, for q = 1, 2, . . . , Nx – 1, consider the linear system of
equations defined by Eq. (3.12). This Eq. (3.12) can be written as ÊqÛk

q = Û∗
q , incorporating

the boundary conditions from Eq. (3.13), where Ûk
q = (uk

q,1, uk
q,2, . . . , uk

q,Ny–1), and for each
xq, the matrix Êq = [Ej,s] for j = 1, . . . , Ny – 1 and s = 1, . . . , Ny – 1 of coefficients is defined
by

Ej,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–r2(C̄q,jg(β)
j+1–s – C̄q,j–1g(β)

j–s ), for s < j – 1;

–r2(C̄q,jg(β)
2 – C̄q,j–1g(β)

1 + D̄q,j–1g(β)
0 ), for s = j – 1;

1 – r2(C̄q,jg(β)
1 – Cq,j–1g(β)

0 ) – r2(D̄q,j–1g(β)
1 – Dq,jg(β)

0 ), for s = j;

–r2(C̄q,jg(β)
0 + D̄q,j–1g(β)

2 – Dq,jg(β)
1 ), for s = j + 1;

–r2(D̄q,j–1g(β)
s–j+1 – D̄q,jg(β)

s–j ), for s ≥ j + 2,

(3.16)

here r2 = τ

hβ+1
2

. Similarly, we can obtain that each eigenvalue λ of the matrix Êq has a real

part larger than one, so the spectral radius of each matrix Ê–1
q is less than one. This proves

that Eq. (3.5) is also unconditionally stable. �

From Eqs. (3.9), (3.11), and (3.12), the matrix S̄ is a block diagonal matrix of (Ny – 1) ×
(Ny – 1) blocks whose blocks are the square (Nx – 1) × (Nx – 1) matrices resulting from
Eq. (3.11). We can write S̄ = diag(Ā1, Ā2, . . . , ĀNy–1). Similarly, the matrix T̄ is a block matrix
of (Nx – 1) × (Nx – 1) blocks whose blocks are the square (Nx – 1) × (Nx – 1) diagonal
matrices resulting from Eq. (3.12). In addition, we may write T̄ = [T̄i,j], where each T̄i,j is
(Nx – 1) × (Nx – 1), T̄i,j = diag((Ê1)i,j, (Ê2)i,j, . . . , (ÊNx–1)i,j), where the notation (Êq)i,j refers
to the (i, j)th entry of the matrix Êq defined previously (see [24]). To prove the stability and
convergence of the ADI method, we need the following lemma. Let X = [x1, x2, . . . , xm]T ,
‖X‖∞ = max1≤i≤m |xi|.

Lemma 2 ([25]) If the matrix D = (di,j)m×m satisfies the condition

m∑
l=1,l �=i

|di,l| ≤ di,i – 1,
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then

‖X‖∞ ≤ ‖DX‖∞. (3.17)

To discuss the stability of the numerical method, we denote by ũk
i,j (1 ≤ i ≤ Nx – 1, 1 ≤

j ≤ Ny – 1) the approximate solution of the difference scheme with the initial condition ũ0
i,j

(1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1), and define εk
i = uk

i,j – ũk
i,j, ek

i = Uk
i,j – uk

i,j,

εk =
(
εk

1,1, εk
2,1, . . . , εk

Nx–1,1, . . . , εk
1,Ny–1, εk

2,Ny–1, . . . , εk
Nx–1,Ny–1

)T ,

ek =
(
ek

1,1, ek
2,1, . . . , ek

Nx–1,1, . . . , ek
1,Ny–1, ek

2,Ny–1, . . . , ek
Nx–1,Ny–1

)T .

Theorem 3 If Cx(x, y) and Cy(x, y) decrease monotonically along x and y, respectively;
Dx(x, y) and Dy(x, y) increase monotonically along x and y, respectively. The ADI–implicit
Euler method defined by Eq. (3.9) is unconditionally stable and convergent, and there exists
a positive constant C > 0 such that ‖ek‖∞ ≤ C(τ + h1 + h2).

Proof First we consider stability of the ADI–implicit Euler method. From Eq. (3.9) and the
definition of εk , we have

S̄T̄εk = εk–1. (3.18)

By Theorem 2, matrix Āq and matrix Êq satisfy the condition of Lemma 2. According to
the relationship between the matrices S̄ and Āq, and the relationship between the matrices
T̄ and Êq, we can obtain that S̄ and T̄ also satisfy the conditions of Lemma 2.

∥∥εk∥∥∞ ≤ ∥∥T̄εk∥∥∞ ≤ ∥∥S̄T̄εk∥∥∞ ≤ ∥∥εk–1∥∥∞. (3.19)

Repeating k times, we have

∥∥εk∥∥∞ ≤ ∥∥ε0∥∥∞. (3.20)

Therefore the ADI method defined by Eq. (3.9) for the two-dimensional two-sided space-
fractional diffusion equations is unconditionally stable. Then we consider the conver-
gence of the ADI method. According to Eq. (3.2) and the definition of ek , we have S̄T̄ek =
ek–1 + τRk and e0 = 0, where Rk = (Rk

1,1, Rk
2,1, . . . , Rk

Nx–1,1, . . . , Rk
1,Ny–1, Rk

2,Ny–1, . . . , Rk
Nx–1,Ny–1)T

and ‖Rk‖∞ ≤ C1(τ + h1 + h2), C1 is a positive constant. Using Lemma 2, we obtain

∥∥ek∥∥∞ ≤ ∥∥T̄ek∥∥∞ ≤ ∥∥S̄T̄ek∥∥∞ ≤ ∥∥ek–1 + τRk∥∥∞ ≤ ∥∥ek–1| + |τRk∥∥∞. (3.21)

Repeating k times, we have ‖ek‖∞ ≤ kτC1(τ + h1 + h2), so ‖ek‖∞ ≤ C(τ + h1 + h2), here
C = kτC1. Therefore the ADI–implicit Euler method defined by Eq. (3.9) is O(τ + h1 + h2)
accurate. �
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4 ADI–CN method and its theory analysis
A CN method for Eq. (1.5) may be obtained into the differential equation centered at time
tk–1/2 = 1

2 (tk + tk–1) to obtain

uk
i,j – uk–1

i,j

τ
≈ 1

h1

(
Cx(x, yj)

∂αu(x, yj, tk–1/2)
∂xα

– Dx(x, yj)
∂αu(x, yj, tk–1/2)

∂(–x)α

)∣∣∣∣
xi

xi–1

+
1
h2

(
Cy(xi, y)

∂βu(xi, y, tk–1/2)
∂yβ

– Dy(xi, y)
∂βu(xi, y, tk–1/2)

∂(–y)β

)∣∣∣∣
yj

yj–1

+ f k–1/2
i,j

≈ 1
hα+1

1

[(
Ci,j

i+1∑
s=0

g(α)
s uk–1/2

i+1–s,j – Di,j

Nx–i∑
s=0

g(α)
s uk–1/2

i+s,j

)

–

(
Ci–1,j

i∑
s=0

g(α)
s uk–1/2

i–s,j – Di–1,j

Nx–i+1∑
s=0

g(α)
s uk–1/2

i+s–1,j

)]

+
1

hβ+1
2

[(
C̄i,j

j+1∑
s=0

g(β)
s uk–1/2

i,j+1–s – D̄i,j

Ny–j∑
s=0

g(β)
s uk–1/2

i,j+s

)

–

(
C̄i,j–1

j∑
s=0

g(β)
s uk

i,j–s – D̄i,j–1

Ny–j+1∑
s=0

g(β)
s uk–1/2

i,j+s–1

)]
+ f k–1/2

i,j . (4.1)

After some rearrangements, combining Eqs. (2.1)–(2.2), Eq. (4.1) can be written in the
operator form

(
1 –

τ

2
δα,x –

τ

2
δβ ,y

)
uk

i,j =
(

1 +
τ

2
δα,x +

τ

2
δβ ,y

)
uk–1

i,j + τ f k–1/2
i,j . (4.2)

For the ADI methods, the operator form Eq. (4.2) is rewritten in the following form:

(
1 –

τ

2
δα,x

)(
1 –

τ

2
δβ ,y

)
uk

i,j =
(

1 +
τ

2
δα,x

)(
1 +

τ

2
δβ ,y

)
uk–1

i,j + τ f k–1/2
i,j , (4.3)

which introduces an additional perturbation error equal to

1
4

(τ )2(δα,xδβ ,y)
(
uk

i,j – uk–1
i,j

)
.

Similar to Theorem 1, we can conclude that Eq. (4.3) is also consistent with order O(τ 2 +
h1 + h2). Equation (4.3) can now be solved by the following set of matrix equations defining
the ADI method:

(
1 –

τ

2
δα,x

)
u∗

i,j =
(

1 +
τ

2
δβ ,y

)
uk–1

i,j +
τ

2
f k– 1

2
i,j , (4.4)

(
1 –

τ

2
δβ ,y

)
uk

i,j =
(

1 +
τ

2
δα,x

)
u∗

i,j +
τ

2
f k– 1

2
i,j . (4.5)

The intermediate solution u∗
i,j should be defined carefully on the boundary, prior to solv-

ing the system of equations defined by Eq. (4.4) and Eq. (4.5). Otherwise, the first-order
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spatial accuracy of the two-step ADI method outlined above will be impacted. This is ac-
complished by subtracting Eq. (4.4) from Eq. (4.5) to get the following equation to define
u∗

i,j:

2u∗
i,j =

(
1 –

τ

2
δβ ,y

)
uk

i,j +
(

1 +
τ

2
δβ ,y

)
uk–1

i,j . (4.6)

Thus, the boundary conditions for u∗
i,j (i.e., i = 0 or Nx for j = 1, . . . , Ny – 1) needed to solve

each set of equations in Eq. (4.6) are set from

u∗
0,j =

(
1 –

τ

2
δβ ,y

)
uk

0,j +
(

1 +
τ

2
δβ ,y

)
uk–1

0,j = 0, (4.7)

u∗
Nx ,j =

(
1 –


t
2

δβ ,y

)
uk

Nx ,j +
(

1 +
τ

2
δβ ,y

)
uk–1

Nx ,j

=
(

1 –
τ

2
δβ ,y

)
uk

Nx ,j +
(

1 +
τ

2
δβ ,y

)
uk–1

Nx ,j. (4.8)

The corresponding algorithm is implemented as follows:
First, solve the problem in the x-direction (for each fixed yl) to obtain an intermediate

solution u∗
i,l .

Second, solve it in the y-direction (for each fixed xl) to obtain a solution uk
l,j . According to

the fact that the first step gives a set of Nx – 1 linear equations, the system of the equations
may be written as

(I – Al)U∗
l = Qk–1

l +
τ

2
Fk– 1

2
l , (4.9)

where

U∗
l =

[
u∗

1,l, u∗
2,l, . . . , u∗

Nx–1,l
]
,

Qk–1
l =

[ Ny∑
v=1

Bk–1
1,v uk–1

1,v ,
Ny∑
v=1

Bk–1
2,v uk–1

2,v , . . . ,
Ny∑
v=1

Bk–1
Nx–1,vuk–1

Nx–1,v

]
,

Fk– 1
2

l =
[
f k– 1

2
1,l , f k– 1

2
2,l , . . . , f k– 1

2
Nx–2,l, f k– 1

2
Nx–1,l – ANx–1,Xx u∗

Nx ,l
]
,

the matrix Al = [Ai,s] for i = 1, . . . , Nx – 1 and s = 1, . . . , Nx – 1 of coefficients is defined by

Ai,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(Ci,qg(α)
i+1–s – Ci–1,qg(α)

i–s ), for s < i – 1;

r1(Ci,qg(α)
2 – Ci–1,qg(α)

1 + Di–1,qg(α)
0 ), for s = i – 1;

r1(Ci,qg(α)
1 – Ci–1,qg(α)

0 ) + r1(Di–1,qg(α)
1 – Di,qg(α)

0 ), for s = i;

r1(Ci,qg(α)
0 + Di–1,qg(α)

2 – Di,qg(α)
1 ), for s = i + 1;

r1(Di–1,qg(α)
s–i+1 – Di,qg(α)

s–i ), for s ≥ i + 2,

(4.10)
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and the coefficients Bi,v for i = 1, . . . , Nx – 1 are defined by

Bi,v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–r2(C̄q,lg(β)
l+1–s – C̄q,l–1g(β)

l–s ), for v < l – 1;

–r2(C̄q,lg(β)
2 – C̄q,l–1g(β)

1 + D̄q,l–1g(β)
0 ), for v = l – 1;

1 – r2(C̄q,lg(β)
1 – Cq,l–1g(β)

0 ) – r2(D̄q,l–1g(β)
1 – Dq,jg(β)

0 ), for v = l;

–r2(C̄q,lg(β)
0 + D̄q,l–1g(β)

2 – Dq,lg(β)
1 ), for v = l + 1;

–r2(D̄q,l–1g(β)
s–l+1 – D̄q,jg(β)

s–l ), for v ≥ l + 2.

Similarly, according to the fact that the second step gives a set of Ny – 1 linear equations,
the system of the equations may be written as

(I – B̂l)Uk
l = O∗

l +
τ

2
F̂k– 1

2
l , (4.11)

where

Uk
l =

[
uk

l,1, uk
l,2, . . . , uk

l,Ny–1
]
,

O∗
l =

[ Nx∑
v=1

Âk–1
1,v u∗

v,1,
Nx∑
v=1

Âk–1
2,v u∗

v,2, . . . ,
Nx∑
v=1

Âk–1
Ny–1,vu∗

v,Ny–1

]
,

F̂n+ 1
2

l =
[
f k– l

2
l,1 , f k– 1

2
l,2 , . . . , f k– 1

2
l,Ny–2, f k– 1

2
l,Ny–1 – B̂Ny–1,Ny u∗

l,Ny–1
]
,

the matrix B̂l = [B̂j,v] for i = 1, . . . , Nx – 1 and v = 1, . . . , Nx – 1 of coefficients is defined by

B̂j,v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2(C̄q,jg(β)
j+1–s – C̄q,j–1g(β)

j–s ), for v < j – 1;

–r2(C̄q,jg(β)
2 – C̄q,j–1g(β)

1 + D̄q,j–1g(β)
0 ), for v = j – 1;

1 – r2(C̄q,jg(β)
1 – Cq,j–1g(β)

0 ) – r2(D̄q,j–1g(β)
1 – Dq,jg(β)

0 ), for v = j;

–r2(C̄q,jg(β)
0 + D̄q,j–1g(β)

2 – Dq,jg(β)
1 ), for v = j + 1;

–r2(D̄q,j–1g(β)
s–j+1 – D̄q,jg(β)

s–j ), for v ≥ j + 2,

(4.12)

and the coefficients Âj,v for j = 1, . . . , Ny – 1 are defined by

Âj,v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–r1(Cl,qg(α)
l+1–s – Cl–1,qg(α)

l–s ), for V < l – 1;

–r1(Cl,qg(α)
2 – Ci–1,qg(α)

1 + Di–1,qg(α)
0 ), for s = l – 1;

1 – r1(Cl,qg(α)
1 – Cl–1,qg(α)

0 ) + r1(Di–1,qg(α)
1 – Di,qg(α)

0 ), for s = l;

–r1(Cl,qg(α)
0 + Dl–1,qg(α)

2 – Dl,qg(α)
1 ), for s = l + 1;

–r1(Dl–1,qg(α)
s–l+1 – Dl,qg(α)

s–l ), for s ≥ l + 2.

(4.13)

Equation (4.2) can be written in the matrix form

(I – S)(I – T)Uk = (I + S)(I + T)Uk–1 + Fk–1/2, (4.14)

where the matrices S and T represent the operators 1 – τ
2 δα,x and 1 – τ

2 δβ ,y, which are
matrices of size (Nx –1)(Ny –1)×(Nx –1)(Ny –1), Fk–1/2 absorbs the source terms f k–1/2 and
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the boundary conditions in the discretized equation, and Uk = (uk–1
1,1 , uk–1

2,1 , . . . , uk–1
Nx–1,1, . . . ,

uk–1
1,Ny–1, uk–1

2,Ny–1, . . . , uk–1
Nx–1,Ny–1). From Eqs. (4.9), (4.11), and (4.14), the matrix S is a block

diagonal matrix of (Ny – 1) × (Ny – 1) blocks whose blocks are the square (Nx – 1) × (Nx –
1) matrices resulting from Eq. (4.9). We can write S̄ = diag(A1, A2, . . . , ANy–1). Similarly,
the matrix T is a block matrix of (Nx – 1) × (Nx – 1) blocks whose blocks are the square
(Nx – 1) × (Nx – 1) diagonal matrices resulting from Eq. (4.11). In addition, we may write
T = [Ti,j], where each Ti,j is (Nx – 1)× (Nx – 1), Ti,j = diag((B̂1)i,j, (B̂2)i,j, . . . , (B̂Nx–1)i,j), where
the notation (B̂q)i,j refers to the (i, j)th entry of the matrix B̂q defined previously.

Theorem 4 If Cx(x, y) and Cy(x, y) decrease monotonically along x and y, respectively;
Dx(x, y) and Dy(x, y) increase monotonically along x and y, respectively, and the matrices S
and T commute, then the ADI–CN method defined by Eq. (4.14) is unconditionally stable,
and the ADI–implicit Euler method defined by Eq. (3.9) is O(τ 2 + h1 + h2) accurate.

Proof From Theorem 2, if r̄i is the sum of elements along the ith row of the matrix Al

excluding the diagonal elements Ai,i, we have

r̄i ≤ –Ai,i.

According to the Gershgorin theorem, the eigenvalues of the matrix Al lie in the union
of the disks centered at Ai,i with the radius

∑m1–1
v=1,j �=i |Ai,v|; therefore, the eigenvalues of the

matrix Al have negative real parts. Similarly, the eigenvalues of the matrix B̂l have negative
real parts. Since S = diag(A1, A2, . . . , Am2–1), the eigenvalues of the matrix S are in the union
of the Gershgorin disks for the matrices A′

ls; therefore, every eigenvalue of the matrix S
has a negative real part. Similarly, every eigenvalue of the matrix T has a negative real
part.

Because the matrices S and T commute, if λ1, λ2 are eigenvalues of matrices S and T ,
respectively, we can obtain (1+λ1)(1+λ2)

(1–λ1)(1–λ2) is an eigenvalue of the matrix (I – S)–1(I + S)(I –
T)–1(I + T), thus the spectral radius of matrix (I – T)–1(I – S)–1(I + S)(I + T) is less than
one, then the ADI–CN method defined by Eq. (4.14) is unconditionally stable. Therefore,
according to Lax’s equivalence theorem [26], the ADI–implicit Euler method defined by
Eq. (3.9) is O(τ 2 + h1 + h2) accurate. �

Remark 2 (Richardson extrapolation) The extrapolated solution is computed from

utk ,x,y = 2utk ,x,h1/2,y,h2/2 – utk ,x,h1,y,h2 ,

where (x, y) is a common grid point, and utk ,x,h1,y,h2 , utk ,x,h1/2,y,h2/2 denote the ADI–CN
method solutions at the grid point (x, y) on the coarse grid (h1/2, h2/2) and the fine grid
(h1/2, h2/2), then we can get O(τ 2 + h2

1 + h2
2) accurate.

5 Numerical examples
In this section, we carry out numerical experiments to demonstrate the effectiveness of
the ADI methods.
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Example The following two-dimensional two-sided space-fractional diffusion equation
was considered:

∂u(x, y, t)
∂t

=
∂

∂x

(
Cx(x, y)

∂αu(x, y, t)
∂xα

– Dx(x, y)
∂αu(x, y, t)

∂(–x)α

)

+
∂

∂y

(
Cy(x, y)

∂βu(x, y, t)
∂yβ

– Dy(x, y)
∂βu(x, y, t)

∂(–y)β

)
+ f (x, y, t),

0 < x < 1, 0 < y < 1, 0 ≤ t ≤ Tend, (5.1)

where Tend is the end time. The nonnegative diffusion coefficient Cx(x, y) = �(4–α)
�(3) · (–x),

Cy(x, y) = �(3–β)
�(2) · (–y), Dx(x, y) = �(4–α)

�(3) · (x – 1), Dy(x, y) = �(3–β)
�(2) (y – 1). The source term

f (x, y, t) is given by

f (x, y, t) = –3e–3t(x2 – x3)(y – y2) +
{

(2 – β)2[y1–β – (1 – y)1–β
]

– 2(3 – β)
[
y2–β

– (1 – y)2–β
]}

e–3t(x2 – x3) +
{

(3 – α)2[x2–α – 2(1 – x)2–α
]

– 3(4 – α)
[
x3–α + (1 – x)3–α

]
–

(3 – α)(2 – α)2

2
(1 – x)1–α

}
e–3t(y – y2), (5.2)

which satisfies the initial function

φ(x, y) =
(
x2 – x3)(y – y2), (5.3)

and the zero Dirichlet boundary condition is

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0. (5.4)

The exact solution to this problem is

u(x, y, t) = e–3t(x2 – x3)(y – y2). (5.5)

Table 1 shows the maximum absolute numerical error and temporal convergence or-
ders for the ADI–implicit Euler method with Tend = 1. From this table, we see that the
convergence order of the scheme is O(τ + h1 + h2).

Table 2 shows the maximum error and temporal convergence orders for ADI–CN ex-
trapolated solution with Tend = 1. From this table, we see that the convergence order of
the scheme is O(τ 2 + h2

1 + h2
2).

Table 1 Maximum errors and temporal convergence orders for the ADI–implicit Euler method with
Tend = 1

�t = h1 = h2 α = 0.6, β = 0.8 α = 0.7, β = 0.9

Maximum error Order Maximum error Order

1/10 4.8003e–3 - 1.7678e–3 -
1/20 2.6001e–3 0.885 8.8503e–4 0.999
1/40 1.3000e–3 1.000 4.4357e–4 0.996
1/80 6.7261e–4 0.956 2.2553e–4 0.976
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Table 2 Maximum errors and temporal convergence orders for ADI–CN extrapolated solution with
Tend = 1

�t = h1 = h2 α = 0.6, β = 0.8 α = 0.7, β = 0.9

Maximum error Order Maximum error Order

1/5 3.7326e–3 - 9.4226e–4 -
1/10 9.3601e–4 1.996 2.3674e–4 2.078
1/20 2.3732e–4 1.980 5.5934e–5 2.081
1/40 5.9725e–5 1.990 1.4838e–5 1.914

6 Conclusions
We use the shifted left Grünwald formula and the standard right Grünwald formula to
approximate the left and right Riemann–Liouville fractional derivatives, respectively; we
present an implicit Euler method and a CN method for the two-dimensional two-sided
space-fractional diffusion equation. Two methods both combine with the ADI method to
obtain unconditionally one-order accurate and two-order accurate finite difference meth-
ods.
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