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Abstract
In this study, we consider fractional Sturm–Liouville (S–L) problems within
non-singular operators. A fractional S–L problem with exponential and Mittag-Leffler
kernels is given with different versions in the Riemann–Liouville and Caputo sense.
Also, we obtain representation of solutions for S–L problems by the Laplace transform
and find analytical solutions of the problems. Finally, we compare the solutions of the
problem with these different versions, and we also compare the solutions of the
problem with exponential and Mittag-Leffler kernels together by simulation under
different potentials, different orders, and different eigenvalues.
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1 Introduction
Fractional calculus has a lot of application areas in engineering, nature sciences, and math-
ematics. This range of application areas gave rise to new fractional definitions, especially
for the real world modelling problems. More recently, several new fractional derivative
definitions have been studied. One of those definitions is fractional derivative with ex-
ponential kernel defined by Caputo and Fabrizio [1], and another definition is fractional
derivative with Mittag-Leffler kernel defined by Atangana and Baleanu [2]. Fractional op-
erator with Mittag-Leffler kernel is a general form of the operator with exponential kernel
because of α order in its definition. These new definitions enable more suitable results
for some modelling problems in the real world because of having nonsingularity in the
kernels.

Baleanu et al. [3–7], Atangana et al. [8, 9], and Abdeljawad et al. [10, 11] studied a
fractional operator with exponential kernel for some modelling problems and their solu-
tion methods. After the emergence of the definition of fractional derivative with Mittag-
Leffler kernel by Atangana and Baleanu [2], many scientists studied this operator [12–24].
Baleanu et al. [25–27], Atangana et al. [28, 29] studied the operator with Mittag-Leffler
kernel. Many other scientists studied comparisons of these two new definitions, see Abro
et al. [30], Sheikh et al. [31, 32], Saad et al. [33], and Gomez et al. [34].
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The emergence of Sturm–Liouville operators began as a one-dimensional Schrödinger
equation in quantum mechanics. Fractional Sturm–Liouville differential equations were
studied by Klimek et al. [35], Bas et al. [36, 37], Zayernouri et al. [38], Khosravian et al.
[39], and Dehghan et al. [40].

In this study, we consider fractional Sturm–Liouville (S–L) problems within non-
singular operators. A fractional S–L problem with exponential and Mittag-Leffler kernels
is given with different versions in the Riemann–Liouville and Caputo sense. Also, we ob-
tain the representation of solutions for S–L problems by the Laplace transform and find
the analytical solutions of the problems. We analyze solutions of these different versions
and display them by simulation under different potentials, different orders, and differ-
ent eigenvalues. However, we compare the solutions of the problem with these different
versions, and we also compare the solutions of the problem with exponential and Mittag-
Leffler kernels together by simulation.

2 Preliminaries
Definition 1 ([1]) Fractional derivative with exponential kernel is defined as follows: left
and right derivatives in the Caputo sense

CFC
a Dαf (t) =

M(α)
1 – α

∫ t

a
f ′(s) exp

(
–α

1 – α
(t – s)

)
ds, (1)

CFCDα
b f (t) =

–M(α)
1 – α

∫ b

t
f ′(s) exp

(
–α

1 – α
(s – t)

)
ds, (2)

left and right derivatives in the Riemann–Liouville sense

CFR
aDαf (t) =

M(α)
1 – α

d
dt

∫ t

a
f (s) exp

(
–α

1 – α
(t – s)

)
ds, (3)

where f ∈ H1(a, b), a < b, α ∈ [0, 1],

CFRDα
b f (t) =

–M(α)
1 – α

d
dt

∫ b

t
f (s) exp

(
–α

1 – α
(s – t)

)
ds, (4)

where M(α) > 0 is a normalization function with M(0) = M(1) = 1.

Definition 2 ([1]) Left and right fractional integrals for fractional derivatives with expo-
nential kernel are defined respectively by

CF
a Iαf (t) =

1 – α

M(α)
f (t) +

α

M(α)

∫ t

a
f (s) ds,

CF Iα
b f (t) =

1 – α

M(α)
f (t) +

α

M(α)

∫ b

t
f (s) ds.

Theorem 3 ([25]) Let α > 0, p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1 + α, f (x) ∈ CF Iα
b (Lp), and g(x) ∈

CF
a Iα(Lq), then integration by parts formulas are given as follows:

∫ b

a
f (x)CFR

aDαg(x) dx =
∫ b

a

CFRDα
b f (x)g(x) dx, (5)
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∫ b

a
g(t)CFC

a Dαf (t) dt =
∫ b

a

CFRDα
b g(t)f (t) dt +

B(α)
1 – α

f (t)e –α
1–α ,b– g(t)|ba, (6)

∫ b

a
g(t)CFCDα

b f (t) dt =
∫ b

a

CFR
aDαg(t)f (t) dt –

B(α)
1 – α

f (t)e –α
1–α ,a+ g(t)|ba, (7)

where e –α
1–α ,b– and e –α

1–α ,a+ are the left and right exponential integral operators respectively,

e –α
1–α ,b– =

∫ x

a
e

–α
1–α (t–a)ϕ(t) dt, x > a,

e –α
1–α ,a+ =

∫ b

x
e

–α
1–α (b–t)ϕ(t) dt, x < b,

and function spaces CF Iα
b (Lp) and CF

a Iα(Lq) are defined by

CF
a Iα(Lp) =

{
f : f = CF

a Iαϕ,ϕ ∈ Lp(a, b)
}

,

CF Iα
b (Lp) =

{
f : f = CF Iα

b ϕ,ϕ ∈ Lp(a, b)
}

.

Definition 4 ([2]) Fractional derivative with Mittag-Leffler kernel is defined as follows:
left and right derivatives in the Caputo sense

ABC
a Dαf (t) =

B(α)
1 – α

∫ t

a
f ′(s)Eα

(
–α

1 – α
(t – s)α

)
ds, (8)

ABCDα
b f (t) =

–B(α)
1 – α

∫ b

t
f ′(s)Eα

(
–α

1 – α
(s – t)α

)
ds, (9)

left and right derivatives in the Riemann–Liouville sense

ABR
aDαf (t) =

B(α)
1 – α

d
dt

∫ t

a
f (s)Eα

(
–α

1 – α
(t – s)α

)
ds, (10)

where f ∈ H1(a, b), a < b, α ∈ [0, 1],

ABRDα
b f (t) =

–B(α)
1 – α

d
dt

∫ b

t
f (s)Eα

(
–α

1 – α
(s – t)α

)
ds, (11)

where B(α) > 0 is a normalization function with B(0) = B(1) = 1.

Definition 5 ([26]) Left and right fractional integrals for fractional derivative with Mittag-
Leffler kernel are defined respectively by

AB
aIαf (t) =

1 – α

B(α)
f (t) +

α

B(α) a
Iαf (t),

ABIα
b f (t) =

1 – α

B(α)
f (t) +

α

B(α)
Iα

b f (t)s.
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Theorem 6 ([1, 8]) The Laplace transform of fractional definitions with exponential kernel
(1) and (3) is given as follows:

L
{CFR

aDαf (t)
}

(s) =
M(α)
1 – α

sL{f (t)}(s)
s + α

1–α

,

L
{(CFC

a Dαf
)
(t)

}
(s) =

M(α)
1 – α

sL{f (t)}(s)
s + α

1–α

–
M(α)
1 – α

f (a)e–as 1
s + α

1–α

.

Theorem 7 ([3]) The Laplace transform of fractional definitions with Mittag-Leffler kernel
(8) and (10) is given as follows:

L
{ABR

aDαf (t)
}

(s) =
B(α)
1 – α

sαL{f (t)}(s)
sα + α

1–α

,

L
{ABC

a Dαf (t)
}

(s) =
B(α)
1 – α

sαL{f (t)}(s) – sα–1f (a)
sα + α

1–α

.

Definition 8 The convolution of f (t) and g(t) is defined as follows:

(f ∗ g)(t) =
∫ t

0
f (s)g(t – s) ds, f , g : [0,∞) → R.

Definition 9 ([41]) The Mittag-Leffler function Eδ(z) is defined by

Eδ(z) =
∞∑

k=0

zk

�(δk + 1)
(
z ∈ C, Re(δ) > 0

)
,

and the Mittag-Leffler function with two parameters is defined by

Eδ,θ (z) =
∞∑

k=0

zk

�(δk + θ )
(
z, θ ∈ C, Re(δ) > 0

)
.

Property 10 The inverse Laplace transform of some special functions has the following
properties:

(i) L–1{ a
s(sδ+a) } = 1 – Eδ(–atδ),

(ii) L–1{ 1
sδ+a } = tδ–1Eδ,δ(–atδ).

Property 11 L{(f ∗ g)(t)} = L{f (t)}L{g(t)}.

In the following section, firstly we give fractional S–L problems within different ver-
sions of the operators with exponential kernel in the Riemann–Liouville and Caputo sense
and compare them. Secondly, we give fractional S–L problems within different versions
of the operators with Mittag-Leffler kernel in the Riemann–Liouville and Caputo sense
and compare them. We obtain the representation of solutions for S–L problems by the
Laplace transform and find the analytical solutions of the problem. We analyze the solu-
tions of these different versions and display them by simulation under different potentials,
different orders, and different eigenvalues. Finally, we compare the solutions of the prob-
lem with these different versions, and we also compare the solutions of the problem with
exponential and Mittag-Leffler kernels together by simulation.
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3 Main results
3.1 Representations of solutions of fractional Sturm–Liouville problems with

exponential and Mittag-Leffler kernels
Theorem 12 Let us consider the fractional Sturm–Liouville initial value problem with
exponential kernel:

CF L1f = CFC
0 Dα

(CFR
0Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, n], n ∈ R+, (12)

CFR
0Dαf (0) = c1, (13)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, n]. Then the representation
of solution of problem (12)–(13) is as follows: λ 	= {0, 1},

f (x,λ) = c1
e

αλx
(α–1)(λ–1) (sinh( α

√
λx

(α–1)(λ–1) ) +
√

λ cosh( α
√

λx
(α–1)(λ–1) ))

(α – 1)(λ – 1)
√

λ

+
α[–2

√
λ + (λ + 1) + (λ + 1)(–e

2αλx
(λ–1)(α–1)

√
λ )]e– xα(

√
λ–λ)

(α–1)(λ–1)

2(α – 1)(λ – 1)2
√

λ

+
α(–2

√
λe

2α
√

λx
(λ–1)(α–1) )e– xα(

√
λ–λ)

(α–1)(λ–1)

2(α – 1)(λ – 1)2
√

λ

+
(

α[–2
√

λ + (λ + 1) + (λ + 1)(–e
2α

√
λx

(α–1)(λ–1) )]e– xα(
√

λ–λ)
(α–1)(λ–1)

2(α – 1)(λ – 1)2
√

λ

)
∗ q(x)f (x)

+
(

α(–2
√

λe
2αλx

(α–1)(λ–1)
√

λ )e(– xα(
√

λ–λ)
(α–1)(λ–1) )

2(α – 1)(λ – 1)2
√

λ
–

δ(x)
λ – 1

)
∗ q(x)f (x). (14)

Proof If we apply the Laplace transform to both sides of equation (12) and by the help of
Theorem 6, let q(x)f (x) = g(x),

L
{CFC

0 Dα
(CFR

0Dαf
)}

(s) + L{g}(s) = λL{f }(s)

=
M(α)
1 – α

sL{(CFR
0Dαf )}(s)

s + α
1–α

–
M(α)
1 – α

(CFR
0Dαf )(0)

s + α
1–α

+ L{g}(s) = λL{f }(s)

=
M(α)
1 – α

s M(α)
1–α

sL{(f )}(s)
s+ α

1–α

s + α
1–α

–
M(α)
1 – α

(CFR
0Dαf )(0)

s + α
1–α

+ L{g}(s) = λL{f }(s)

=
[

M(α)
1 – α

s
s + α

1–α

]2

L
{

(f )
}

(s) – c1
M(α)
1 – α

1
s + α

1–α

+ L{g}(s) = λL{f }(s)

⇒ L
{

(f )
}

(s) =
c1

M(α)
1–α

1
s+ α

1–α

( M(α)
1–α

s
s+ α

1–α
)2 – λ

–
1

( M(α)
1–α

s
s+ α

1–α
)2 – λ

L{g}(s). (15)

Now, if we apply the inverse Laplace transform to equation (15) and use a convolution
theorem, so we can find the sum representation of solution, noted by (14), of problem
(12)–(13). �
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Theorem 13 Let us consider the fractional Sturm–Liouville initial value problem with
exponential kernel:

CF L2f = CFC
0 Dα

(CFC
0 Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, n], n ∈ R+, (16)

CFC
0 Dαf (0) = c1, f (0) = c2, (17)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, n]. Then the representation
of solution of problem (16)–(17) is as follows: λ 	= {0, 1},

f (x,λ) = c1

(
–

–α(e
xα

√
λ

1+(α–1)
√

λ (–1 + (α – 1)
√

λ)2 + e
xα

√
λ

–1+(α–1)
√

λ (1 + (α – 1)
√

λ)2)
2(–1 + (α – 1)2λ)2

+
(α – 1)δ(x)

–1 + (α – 1)2λ

)

– c2
(e

xα
√

λ

1+(α–1)
√

λ (1 – (α – 1)
√

λ) + e
xα

√
λ

–1+(α–1)
√

λ (1 + (α – 1)
√

λ))
2(–1 + (α – 1)2λ)

+
(

–α(–e
xα

√
λ

1+(α–1)
√

λ (–1 + (α – 1)
√

λ)2 + e
xα

√
λ

–1+(α–1)
√

λ (1 + (α – 1)
√

λ)2)
2
√

λ(–1 + (α – 1)2λ)2

–
(α – 1)2δ(x)

–1 + (α – 1)2λ

)
∗ q(x)f (x). (18)

Proof Proof is straightforward from the proof of Theorem 12. �

Theorem 14 Let us consider the fractional Sturm–Liouville initial value problem with
exponential kernel:

CF L3f = CFR
0Dα

(CFC
0 Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, n], n ∈ R+, (19)

f (0) = c2, (20)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, n]. Then the representation
of solution of problem (19)–(20) is as follows: λ 	= {0, 1},

f (x,λ) = –c2

(
–

e
xα

√
λ

1+(α–1)
√

λ (1 – (α – 1)
√

λ) + e
xα

√
λ

–1+(α–1)
√

λ (1 + (α – 1)
√

λ)
2(1 – α)(–1 + (α – 1)2λ)2

)

–
(

α(–e
xα

√
λ

1+(α–1)
√

λ (–1 + (α – 1)
√

λ)2 + e
xα

√
λ

–1+(α–1)
√

λ (1 + (α – 1)
√

λ)2)
2
√

λ(–1 + (α – 1)2λ)2

–
(α – 1)2δ(x)

–1 + (α – 1)2λ

)
∗ q(x)f (x). (21)

Proof Proof is straightforward from the proof of Theorem 12. �

Remark Approximate solutions of the problems according to the Mittag-Leffler function
Eδ,θ (z) =

∑500
k=0

zk

�(δk+θ ) will be simulated in all of the figures, also let B(α) = M(α) = 1.
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Theorem 15 Let us consider the fractional Sturm–Liouville initial value problem with
exponential kernel:

CF L4f = CFR
0Dα

(CFR
0Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, n], (22)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, n]. Then the representation
of solution of equation (22) is as follows: λ 	= {0, 1},

f (x,λ) = –
(

α(–e
xα

√
λ

1+(α–1)
√

λ (–1 + (α – 1)
√

λ)2 + e
xα

√
λ

–1+(α–1)
√

λ (1 + (α – 1)
√

λ)2)
2
√

λ(–1 + (α – 1)2λ)2

–
(α – 1)2δ(x)

–1 + (α – 1)2λ

)
∗ q(x)f (x). (23)

Proof Proof is straightforward from the proof of Theorem 12. �

Theorem 16 Let us consider the fractional Sturm–Liouville initial value problem with
Mittag-Leffler kernel:

ABL1f = ABC
0 Dα

(ABR
0Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, 1], (24)

ABR
0Dαf (0) = c3, (25)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, 1]. Then the representation
of solution of problem (24)–(25) is as follows: λ 	= {0, 1},

f (x,λ) = c3

[
(1 – α)

1 – λ(1 – α)2 –
√

λ(1 – α)2

B(α)(B2(α) – λ(1 – α)2)

{
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)}

+
√

λ(1 – α)2

B(α)(B2(α) – λ(1 – α)2)

{
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)}

–
(1 – α)

2B(α)(B(α) +
√

λ(1 – α))

{
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)}

–
(1 – α)

2B(α)(B(α) –
√

λ(1 – α))

{
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)}

+ α

(
1

–2B(α)
√

λ

{
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)}

+
1

2B(α)
√

λ

{
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)})]

+
[

δ(x)
B2(α) – λ(1 – α)2

+
λα(1 – α)

B(α)(B2(α) – λ(1 – α)2)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
√

λα

B2(α) – λ(1 – α)2

[
xα–1

2B(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)
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–
xα–1

2B(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
α(1 – α)

B(α)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+ α

(
xα–1

2
√

λB(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2
√

λB(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

))]
∗ q(x)f (x). (26)

Proof Let us apply the Laplace transform to both sides of equation (24) and, by the help
of Theorem 7, let q(x)f (x) = g(x),

L
{ABC

0 Dα
(ABR

0Dαf
)}

(s) + L{g}(s) = λL{f }(s)

=
B(α)
1 – α

sαL{(ABR
0Dαf )}(s)

sα + α
1–α

–
B(α)
1 – α

sα–1(ABR
0Dαf )(0)

sα + α
1–α

+ L{g}(s) = λL{f }(s)

=
B(α)
1 – α

s B(α)
1–α

sαL{(f )}(s)
sα+ α

1–α

s + α
1–α

–
B(α)
1 – α

sα–1(ABR
0Dαf )(0)

sα + α
1–α

+ L{g}(s) = λL{f }(s)

=
(

B(α)
1 – α

sα

sα + α
1–α

)2

L
{

(f )
}

(s) – c3
B(α)
1 – α

sα–1(ABR
0Dαf )(0)

sα + α
1–α

+ L{g}(s) = λL{f }(s)

⇒ L
{

(f )
}

(s) = c1
sα–1

B(α)
1–α

( s2α

sα+ α
1–α

) – λ(sα + α
1–α

)
–

1
( B(α)

1–α
sα

sα+ α
1–α

)2 – λ
L{g}(s).

�

Now, if we apply the inverse Laplace transform to the last equation and use a convolution
theorem, so we can find the sum representation of solution, noted by (26), of problem
(24)–(25).

Theorem 17 Let us consider the fractional Sturm–Liouville initial value problem with
Mittag-Leffler kernel:

ABL2f = ABC
0 Dα

(ABC
0 Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, 1], (27)

ABR
0Dαf (0) = c3, f (0) = c4, (28)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, n]. Then the representation
of solution of problem (27)–(28) is as follows: λ 	= {0, 1},

f (x,λ) = c3

[
1

B2(α) – λ(1 – α)2

+
√

λ(1 – α)
B(α)(B2(α) – λ(1 – α)2)

{
Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

– Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)}
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+
1

B(α)(B(α) +
√

λ(1 – α))

{
–

1
2

(
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

))}

–
1

B(α)(B(α) +
√

λ(1 – α))

{
–

1
2

(
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

))}

+
(1 – α)√
λB(α)

{
Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

– Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)}

+
1

λB(α)

{
B(α) –

√
λ(1 – α)

–2

[
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)]

–
B(α) +

√
λ(1 – α)

2

[
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]}

+ c4

[
(1 – α)

1 – λ(1 – α)2 –
√

λ(1 – α)2

B(α)(B2(α) – λ(1 – α)2)

×
[

1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)]

+
√

λ(1 – α)2

B(α)(B2(α) – λ(1 – α)2)

[
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

–
(1 – α)

2B(α)(B(α) +
√

λ(1 – α))

[
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)]

–
(1 – α)

2B(α)(B(α) –
√

λ(1 – α))

[
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+ α

(
1

–2B(α)
√

λ

{
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)}

+
1

2B(α)
√

λ

{
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)})]

–
[

δ(x)
B2(α) – λ(1 – α)2

+
λα(1 – α)

B(α)(B2(α) – λ(1 – α)2)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
λα2

B2(α) – λ(1 – α)2

[
xα–1

2α
√

λB(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2α
√

λB(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
α(1 – α)

B(α)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]
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+ α

(
xα–1

2
√

λB(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2
√

λB(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

))]
∗ q(x)f (x). (29)

Proof Proof is straightforward from the proof of Theorem 16. �

Theorem 18 Let us consider the fractional Sturm–Liouville initial value problem with
Mittag-Leffler kernel:

ABL3f = ABR
0Dα

(ABC
0 Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, 1], (30)

f (0) = c4, (31)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, 1]. Then the representation
of solution of problem (30)–(31) is as follows: λ 	= {0, 1},

f (x,λ) = c4

[
1

B2(α) – λ(1 – α)2

+
√

λ(1 – α)
B(α)(B2(α) – λ(1 – α)2)

{
Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

– Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)}

+
1

B(α)(B(α) +
√

λ(1 – α))

{
–

1
2

(
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

))}

–
1

B(α)(B(α) –
√

λ(1 – α))

{
–

1
2

(
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

))}

+
(1 – α)√
λB(α)

{
Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)
– Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)}

+
1

λB(α)

{
B(α) –

√
λ(1 – α)

–2

[
1 – Eα

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)]

–
B(α) +

√
λ(1 – α)

2

[
1 – Eα

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]}]

–
[

δ(x)
B2(α) – λ(1 – α)2

+
λα(1 – α)

B(α)(B2(α) – λ(1 – α)2)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
λα2

B2(α) – λ(1 – α)2

[
xα–1

2α
√

λB(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2α
√

λB(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]
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+
α(1 – α)

B(α)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+ α

(
xα–1

2
√

λB(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2
√

λB(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

))]
∗ q(x)f (x). (32)

Proof Proof is straightforward from the proof of Theorem 16. �

Theorem 19 Let us consider the fractional Sturm–Liouville initial value problem with
Mittag-Leffler kernel:

ABL4f = ABR
0Dα

(ABR
0Dαf (x)

)
+ q(x)f (x) = λf (x), x ∈ [0, 1], (33)

where 0 < α < 1, q(x) is a real-valued continuous function on [0, 1]. Then the representation
of solution of equation (33) is as follows: λ 	= {0, 1},

f (x,λ) =
[

δ(x)
B2(α) – λ(1 – α)2

+
λα(1 – α)

B(α)(B2(α) – λ(1 – α)2)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
√

λα

B2(α) – λ(1 – α)2

[
xα–1

2B(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2B(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+
α(1 – α)

B(α)

[
xα–1

B(α) –
√

λ(1 – α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

+
xα–1

B(α) +
√

λ(1 – α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]

+ α

[
xα–1

2
√

λB(α)
Eα,α

(
α
√

λ

B(α) –
√

λ(1 – α)
xα

)

–
xα–1

2
√

λB(α)
Eα,α

(
–α

√
λ

B(α) +
√

λ(1 – α)
xα

)]]
∗ q(x)f (x). (34)

Proof Proof is straightforward from the proof of Theorem 16. �

4 Conclusion
In this study, we have considered fractional Sturm–Liouville (S–L) problems within non-
singular operators. A fractional S–L problem with exponential and Mittag-Leffler kernels
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is given with different versions in the Riemann–Liouville and Caputo sense. Also, we ob-
tain the representation of solutions for S–L problems by the Laplace transform and find
analytical solutions of the problems. We analyze solutions of these different versions and
display them by simulation under different potentials, different orders, and different eigen-
values. However, we compare the solutions of the problem with these different versions,
and we also compare the solutions of the problem with exponential and Mittag-Leffler
kernels together by simulation.

We compare the eigenfunctions of problems (12)–(13), (19)–(20), and (16)–(17) un-
der different orders, and we observe that the eigenfunctions of the problems converge
to each other as x increases in Fig. 1, Fig. 2, and Fig. 3. We compare the eigenfunc-
tions of problems (12)–(13), (19)–(20), and (16)–(17) with each other, and we observe
that the eigenfunctions of the problems converge to each other as x increases in Fig. 4.
We compare the eigenfunctions of problem (12)–(13) with different orders, different do-
mains, different potential functions, and different eigenvalues in Fig. 5, Fig. 6, Fig. 7, and
Fig. 8.

Figure 1 Comparions of eigenfunctions for the
problem (12), (13) under different orders λ = 36,
c1 = –1, q = 0

Figure 2 Comparions of eigenfunctions for the
problem (19), (20) under different orders λ = 36,
c2 = –1, q = 0

Figure 3 Comparions of eigenfunctions for the
problem (16), (17) under different orders λ = 36,
c1 = c2 = –1, q = 0
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Figure 4 Comparions of eigenfunctions for the
problems (19), (20)—(12), (13)—(16), (17) λ = 36,
c1 = c2 = –1, q = 0, α = 0.4

Figure 5 Comparions of eigenfunctions for the
problem (12), (13) under different orders c1 = –1,
q = 0, x = 1

Figure 6 Comparions of eigenfunctions for the
problem (12), (13) under different domains c1 = –1,
α = 0.4, q = 0

Figure 7 Comparions of eigenfunctions for the
problem (12), (13) under different eigenvalues
c1 = –1, α = 0.3, q = 0

We compare the eigenfunctions of problems (24)–(25), (30)–(31), and (27)–(28) under
different orders, and we observe that the eigenfunctions of the problems converge to each
other as x increases in Fig. 9, Fig. 10, and Fig. 11. We compare the eigenfunctions of prob-



Bas et al. Advances in Difference Equations  (2018) 2018:350 Page 14 of 19

Figure 8 Comparions of eigenfunctions for the
problem (12), (13) under different potentials c1 = –1,
λ = 36, α = 0.3

Figure 9 Comparions of eigenfunctions for the
problem (24), (25) under different orders λ = 36,
c3 = –1, q = 0

Figure 10 Comparions of eigenfunctions for the
problem (30), (31) under different orders λ = 36,
c4 = –1, q = 0

Figure 11 Comparions of eigenfunctions for the
problem (27), (28) under different orders λ = 36,
c3 = c4 = –1, q = 0

lems (24)–(25), (30)–(31), and (27)–(28) with each other in Fig. 12. We compare the eigen-
functions of problem (24)–(25) with different orders, different eigenvalues, different do-
mains, and different potential functions in Fig. 13, Fig. 14, Fig. 15, and Fig. 16.
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Figure 12 Comparions of eigenfunctions for the
problem (30), (31)—(24), (25)—(27), (28) λ = 36,
α = 0.4, c3 = c4 = –1, q = 0

Figure 13 Comparions of eigenfunctions for the
problem (24), (25) under different orders c3 = 1, q = 0,
x = 0.5

Figure 14 Comparions of eigenfunctions for the
problem (24), (25) under different eigenvalues
α = 0.4, c3 = –1, q = 0

Figure 15 Comparions of eigenfunctions for the
problem (24), (25) under different domains α = 0.4,
c3 = 1, q = 0

Eigenvalues of problem (24)–(25) corresponding to some specific eigenfunctions are
given with different orders in Table 1 and Table 2. Finally, we compare the eigenfunctions
of problems (12)–(13) and (24)–(25) with different orders in Fig. 17, Fig. 18, and Fig. 19.
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Figure 16 Comparions of eigenfunctions for the
problem (24), (25) under different potentials λ = 36,
α = 0.3, c3 = –1

Table 1 Numerical approximations to the first four eigenvalues of problem (24)–(25) according to

Eδ,θ (z) =
∑750

k=0
zk

�(δk+θ ) . Eigenvalues correspond to eigenfunction f (1)

α λ1 λ2 λ3 λ4

0.25 2.23271 2.25575 2.29206 2.39
0.5 4.65311 4.75576 4.95031 5.76011
0.6 6.89295 7.01201 7.08879 7.20048
0.8 26.6485 27.057 27.1119 27.3581
0.9 –27.0582 –21.8756 106.988 113.437

Table 2 Numerical approximations to the first four eigenvalues of problem (24)–(25) according to

Eδ,θ (z) =
∑750

k=0
zk

�(δk+θ ) . Eigenvalues correspond to eigenfunction f (0.5)

α λ1 λ2 λ3 λ4

0.25 2.14927 2.16768 2.19644 2.27351
0.5 4.44601 4.51349 4.63887 5.12925
0.6 6.6635 6.73779 6.7854 6.85408
0.8 25.9274 26.1506 26.1835 26.3153
0.9 103.657 106.885 109.738 111.407

Figure 17 Comparison of eigenfunctions for the
problem (12), (13)—(24), (25) α = 0.3, λ = 36,
c1 = c3 = –1, q = 0

Generally, in this study, we consider fractional SL problems with different versions
of new non-singular fractional operators with different versions, i.e., Caputo–Caputo,
Caputo–Riemann, Riemann–Caputo, and Riemann–Riemann. We have obtained the rep-
resentation of solutions of these different versions, we simulate these solutions with graph-
ics and evaluate the solutions by means of graphics.

Also, we analyze advantages and disadvantages of these different versions. We have
called SL problems (12)–(13) and (24)–(25) with Caputo–Riemann non-singular oper-
ators CF L1 and ABL1 respectively, problems (16)–(17) and (27)–(28) with Caputo–Caputo



Bas et al. Advances in Difference Equations  (2018) 2018:350 Page 17 of 19

Figure 18 Comparison of eigenfunctions for the
problem (12), (13)—(24), (25) α = 0.4, λ = 36,
c1 = c3 = –1, q = 0

Figure 19 Comparison of eigenfunctions for the
problem (12), (13)—(24), (25) α = 0.5, λ = 36,
c1 = c3 = –1, q = 0

non-singular operators CF L2 and ABL2 respectively, problems (19)–(20) and (30)–(31) with
Riemann–Caputo non-singular operators CF L3 and ABL3 respectively, equations (22) and
(33) with Riemann–Riemann non-singular operators CF L4 and ABL4 respectively. Prob-
lems (12)–(13) and (24)–(25) have one initial condition and this initial condition has frac-
tional order. Problems (16)–(17) and (27)–(28) have two initial conditions, one is fractional
and one is integer order. Hence, problems (16)–(17) and (27)–(28) are more suitable in
view of proving the existence and uniqueness results. Problems (19)–(20) and (30)–(31)
have one initial condition and this initial condition has integer order. Equations (22) and
(33) have no initial condition, thus this solution has only a nontrivial solution while q(x)
is not a constant.

We can observe that the eigenfunctions of problems (12)–(13), (16)–(17), and (19)–(20)
converge to each other as x increases in Fig. 4, additionally the eigenfunctions of prob-
lems (24)–(25), (27)–(28), and (30)–(31) show paralellism to each other in Fig. 12, and
accordingly, the eigenfunctions may coincide with each other if the initial conditions are
changed.

This paper may give an idea for determining the most suitable choice for defining inverse
problems in fractional spectral theory.
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