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Abstract
This paper deals with the global Mittag-Leffler synchronization of fractional-order
memristive neural networks (FMNNs) with time delay. Since the FMNNs are essentially
a class of switched systems with irregular switching laws, it is more difficult to achieve
synchronization than with the traditional neural networks. First, under the framework
of fractional-order differential inclusions and set-valued maps, the FMNNs are
transformed into a continuous system with uncertainties. Then a linear state feedback
combined with switching control law is designed in order to achieve the
Mittag-Leffler synchronization. In addition, several synchronization criteria are
obtained by constructing appropriate Lyapunov functionals, together with the help
of some inequality techniques. Finally, an example is given to demonstrate the
effectiveness of the obtained results.

Keywords: Mittag-Leffler synchronization; Fractional-order systems; Memristive
neural networks; State feedback control; Switching control

1 Introduction
The memristor was first postulated by Chua in 1971, as the fourth fundamental circuit el-
ement together with the resistor, inductor and capacitor [1]. In 2008, the Williams group
announced a successful fabrication of a very compact and nonvolatile nano scale mem-
ory, called memristor [2], which describes the relationship between the magnetic flux and
charge. If supplying current and voltage to the memristor, the resistance value of the mem-
ristor, (i.e., memristance) can be changed. When the voltage is turned off, the memristor
remembers its most recent resistance value until the next time it is turned on. As shown in
Fig. 1, it has been found that memristors exhibit the feature of pinched hysteresis, which is
very similar to the behavior of neurons in the human brain. Owing to this special charac-
teristic, memristor can be used in artificial neural networks to imitate the synapses. It in-
spires more and more researchers to replace resistors in traditional neural networks (NNs)
by memristors to implement synaptic connection weights between neurons [3–6]. Thus,
the so-called memristive neural networks (MNNs) have been established. Since then con-
siderable efforts have been made devoted to the investigation of MNNs, such as stability
[7], stabilization [8–10], nonlinear dynamics analysis [11], and synchronization [12–18].

On the other hand, fractional-order dynamical systems have attracted considerable re-
search interests due to their widespread applications in many fields such as neural systems
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Figure 1 Typical current–voltage characteristic of a
memristor

[19] and viscoelastic systems [20]. Compared with integer-order systems, a distinguishing
feature of fractional-order systems is that they have long-term memory effects, hence it is
suitable for describing various materials and processing more accurately [21]. In the field
of electronics, the model of a fractional capacitor has been presented [22]. A fractional ca-
pacitor describes the fractional differentiation constitutive relationship I(t) = C 0Dα

t V (t)
between the voltage V (t) and the current I(t) passing through it [23, 24]. In the past few
years, many researchers have incorporated fractional capacitors into conventional NNs to
establish the fractional-order neural networks (FNNs) model and to improve the accuracy
of NN models. In consequence, some excellent results on the dynamical analysis of FNNs
have been developed in [25–28].

In recent years, FMNNs have been proposed by replacing the common resistors in cir-
cuit implementation of FNNs by memristors to emulate synapses in the human brain. It
is evident that FMNN models provide a significant improvement on FNNs. Therefore,
the research on FMNNs has become a topic of focus and attracted increasing attention of
many researchers. However, many traditional analysis methods, which are applicable to
integer-order chaotic systems, cannot be extended and applied directly to FMNNs for the
reason that FMNNs are represented by fractional-order differential equations (FDEs). In
recent years, more and more scholars devoted their efforts to the dynamical analysis of
FMNNs.

At present, some remarkable results relating to stability and synchronization of FMNNs
have been reported in [29–36]. For example, global Mittag-Leffler stability and synchro-
nization have been investigated for FMNNs without time delay in [29]. Projective synchro-
nization of FMNNs has been discussed by constructing appropriate Lyapunov functions
in [30]. Adaptive synchronization of delayed FMNNs has been studied via delayed state
feedback control in [31]. Finite-time synchronization has been addressed for fractional-
order memristive BAM neural networks via linear feedback control in [32]. The synchro-
nization issue for delayed FMNNs with parameter uncertainties or parameter mismatches
has been discussed in [33–35] based on constructing suitable Lyapunov functionals to-
gether with the assistance of some fractional-order differential inequalities. Furthermore,
synchronization of FMNNs with multiple delays has been discussed by using the maxi-
mum modulus principle [36]. To the best of our knowledge, there are few results on global
Mittag-Leffler synchronization of FMNNs with time delay.

Motivated by the aforementioned discussions, the main objective of this paper is to dis-
cuss the global Mittag-Leffler synchronization of delayed FMNNs. The main contribu-
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tions of this paper are highlighted as follows. First, considering that FMNNs are described
by FDEs with discontinuous right-hand sides, under the framework of fractional-order dif-
ferential inclusions and set-valued maps, the FMNNs can be transformed into a continu-
ous system with uncertainties. Second, a linear feedback combined with switching control
law is designed, which plays an important role in the achievement of Mittag-Leffler syn-
chronization. Third, several global Mittag-Leffler synchronization criteria are obtained
for FMNNs by constructing suitable Lyapunov functionals. The obtained results extend
and improve some previously published work on synchronization of FMNNs.

The rest of this paper is organized as follows. In Sect. 2, some lemmas, definitions and
assumptions are introduced and the synchronization control schemes for FMNNs are de-
signed. In Sect. 3, several global Mittag-Leffler synchronization criteria are derived. In
Sect. 4, a numerical example is provided to illustrate the feasibility of the proposed theo-
retical results. Finally, some conclusions are drawn in Sect. 5.

2 Preliminaries and problem formulation
Notations Throughout this paper, the notation ‖ · ‖ is used to denote the 1-norm for
vectors or for matrices, whenever appropriate. Besides, solutions of all the systems are
considered in Filippov’s sense. C is the space of complex number, R is the space of real
number, and Rn denotes the n-dimensional Euclidean space. sign(·) is the sign function.
Let τ > 0, C([–τ , 0], Rn) denotes the family of continuous functions from [–τ , 0] to Rn.

2.1 Definitions and lemmas
Definition 1 ([37]) The Caputo fractional derivative of order α for a function f (t) is de-
fined as

t0 Dα
t f (t) =

1
�(n – α)

∫ t

t0

f (n)(τ )
(t – τ )α–n+1 dτ ,

where t ≥ t0, and n is the positive integer such that n – 1 < α < n. In particular, when
0 < α < 1, one has

t0 Dα
t f (t) =

1
�(1 – α)

∫ t

t0

(t – τ )–αf ′(τ ) dτ .

Definition 2 ([37]) The fractional integral of order α for a function f (t) is defined as

t0 Iα
t f (t) =

1
�(α)

∫ t

t0

(t – τ )α–1f (τ ) dτ ,

where t ≥ t0, α > 0, and �(·) is the Gamma function, that is, �(α) =
∫ +∞

0 e–ttα–1 dt.

Definition 3 ([37]) The Mittag-Leffler function with one parameter is defined as

Eα(z) =
∞∑

k=0

zk

�(kα + 1)
,

where α > 0, and z ∈ C.
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The Mittag-Leffler function with two parameters is defined as

Eα,β (z) =
∞∑

k=0

zk

�(kα + β)
,

where α > 0, β > 0. When β = 1, one has Eα,1(z) = Eα(z), and when α = 1, β = 1, one further
has E1,1(z) = ez .

Lemma 1 ([38]) For α ∈ (0, 1), t ∈ (–∞, +∞), we have

Eα(t) > 0, Eα,α(t) > 0.

Definition 4 ([37]) The Laplace transform of Mittag-Leffler function with two parame-
ters is

L
{

tβ–1Eα,β
(
–λtα

)}
=

sα–β

sα + λ
, Re(s) > |λ|1/α ,

where t and s denote the variables in the time domain and Laplace domain, respectively;
Re(s) denotes the real part of s, λ ∈ R, and L stands for the Laplace transform.

Definition 5 ([39]) Suppose E, Y ⊂ Rn, then F : E → Y is called a set-valued map, if for
each point x ∈ E, there corresponds a nonempty set F(x) ⊂ Y . A set-valued map F with
nonempty values is said to be upper-semi-continuous at x0 ∈ E ⊂ Rn if, for any open set N
containing F(x0), there exists a neighborhood M of x0 such that F(M) ⊂ N . F(x) is said to
have a closed (convex, compact) image if, for each x ∈ E, F(x) is closed (convex, compact).

Definition 6 ([40]) Consider the system dx
dt = g(x), x ∈ Rn, with discontinuous right-hand

sides, a set-valued map is defined as

φ(x) =
⋂
δ>0

⋂
μ(N)=0

K
[
g
(
B(x, δ) \ N

)]
,

where K[E] is the closure of the convex hull of set E, B(x, δ) = {y : ‖y – x‖ ≤ δ}, and μ(N) is
the Lebesgue measure of the set N . A solution in Filippov’s sense of the Cauchy problem
for this system with initial condition x(0) = x0 is an absolutely continuous function x(t),
t ∈ [0, T], which satisfies x(0) = x0 and differential inclusion:

dx
dt

∈ φ(x)

for a.e. t ∈ [0, T].

Lemma 2 ([41]) If x(t) ∈ C1([0, +∞), R) denotes a continuously differentiable function, for
any α ∈ (0, 1), the following inequality holds almost everywhere:

0Dα
t
∣∣x(t)

∣∣ ≤ sign
(
x(t)

)
0Dα

t x(t).
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2.2 Problem formulation
In this paper, we consider a class of delayed FMNNs as drive system, which is described
by

0Dα
t xi(t) = –cixi(t) +

n∑
j=1

aij
(
xj(t)

)
fj
(
xj(t)

)
+

n∑
j=1

bij
(
xj(t)

)
fj
(
xj(t – τ )

)
, (1)

where i = 1, 2, . . . , n, n is the number of neurons; ci > 0 denotes the self-feedback connec-
tion weight; 0 < α < 1 is the fractional order; xi(t) corresponds to the state variable con-
nected with the ith neuron; τ is the time delay; fj(·) denotes the activation function satis-
fying fj(0) = 0; aij(xj(t)) and bij(xj(t)) are memristive synaptic connection weights, which
are defined by

aij
(
xj(t)

)
=

Wfij

Ci
× δij, bij

(
xj(t)

)
=

Wgij

Ci
× δij,

in which δij = 1, if i 
= j holds, otherwise, δij = –1. Wfij and Wgij denote the memductance of
memristors Rfij and Rgij, respectively. In [42], it has been shown that, since digital computer
applications require only two memory states, memristor needs to display only two suffi-
ciently different equilibrium states. Hence, the memristive synaptic connection weights,
in view of the pinched hysteresis curve, can be simply represented as

aij
(
xj(t)

)
=

⎧⎨
⎩

a∗
ij, |xj(t)| ≤ Tj,

a∗∗
ij , |xj(t)| > Tj,

bij
(
xj(t)

)
=

⎧⎨
⎩

b∗
ij, |xj(t)| ≤ Tj,

b∗∗
ij , |xj(t)| > Tj,

for i, j = 1, 2, . . . , n, where the switching jump Tj > 0, and a∗
ij, a∗∗

ij , b∗
ij, b∗∗

ij are all constants.
The initial condition of system (1) is assumed to be xi(s) = ϑxi(s), s ∈ [–τ , 0], where ϑxi(s) ∈
C([–τ , 0], R).

The response system is described by

0Dα
t yi(t) = –ciyi(t) +

n∑
j=1

aij
(
yj(t)

)
fj
(
yj(t)

)
+

n∑
j=1

bij
(
yj(t)

)
fj
(
yj(t – τ )

)
+ ui(t), (2)

where i = 1, 2, . . . , n, ci > 0 denotes the self-feedback connection weight; yi(t) corresponds
to the state variable connected with the ith neuron; ui(t) is the control input to be designed
later.

Note that system (1) or (2) can be regarded as a class of discontinuous fractional-
order differential equations because the memristive synaptic connection weights aij(xj(t)),
bij(xj(t)), aij(yj(t)), bij(yj(t)) are all discontinuous. Hence, system (1) or (2) cannot be solved
within the framework of classical Cauchy initial problem because the classical solutions
to ordinary differential equations are not available. In this case, the solutions should be
considered in Filippov’s sense [40], which is a useful tool to deal with differential equa-
tions with discontinuous right-hand sides. Based on the theory of set-valued maps and
differential inclusions, from (1) and (2), we have

0Dα
t xi(t) ∈ –cixi(t) +

n∑
j=1

K
[
aij

(
xj(t)

)]
fj
(
xj(t)

)
+

n∑
j=1

K
[
bij

(
xj(t)

)]
fj
(
xj(t – τ )

)
(3)
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and

0Dα
t yi(t) ∈ –ciyi(t) +

n∑
j=1

K
[
aij

(
yj(t)

)]
fj
(
yj(t)

)

+
n∑

j=1

K
[
bij

(
yj(t)

)]
fj
(
yj(t – τ )

)
+ ui(t), (4)

where

K
[
aij

(
xj(t)

)]
=

⎧⎪⎪⎨
⎪⎪⎩

a∗
ij, |xj(t)| < Tj,

co{a∗
ij, a∗∗

ij }, |xj(t)| = Tj,

a∗∗
ij , |xj(t)| > Tj,

K
[
bij

(
xj(t)

)]
=

⎧⎪⎪⎨
⎪⎪⎩

b∗
ij, |xj(t)| < Tj,

co{b∗
ij, b∗∗

ij }, |xj(t)| = Tj,

b∗∗
ij , |xj(t)| > Tj,

K
[
aij

(
yj(t)

)]
=

⎧⎪⎪⎨
⎪⎪⎩

a∗
ij, |yj(t)| < Tj,

co{a∗
ij, a∗∗

ij }, |yj(t)| = Tj,

a∗∗
ij , |yj(t)| > Tj,

K
[
bij

(
yj(t)

)]
=

⎧⎪⎪⎨
⎪⎪⎩

b∗
ij, |yj(t)| < Tj,

co{b∗
ij, b∗∗

ij }, |yj(t)| = Tj,

b∗∗
ij , |yj(t)| > Tj,

for i, j = 1, 2, . . . , n, and co{a∗
ij, a∗∗

ij } = [aij, aij], co{b∗
ij, b∗∗

ij } = [bij, bij], aij = max{a∗
ij, a∗∗

ij }, aij =
min{a∗

ij, a∗∗
ij }, bij = max{b∗

ij, b∗∗
ij }, bij = min{b∗

ij, b∗∗
ij }.

Based on the measurable selection theorem in [43], there exist measurable func-
tions γij(xj(t)) ∈ K[aij(xj(t))], χij(xj(t)) ∈ K[bij(xj(t))], γij(yj(t)) ∈ K[aij(yj(t))], χij(yj(t)) ∈
K[bij(yj(t))] such that

0Dα
t xi(t) = –cixi(t) +

n∑
j=1

γij
(
xj(t)

)
fj
(
xj(t)

)
+

n∑
j=1

χij
(
xj(t)

)
fj
(
xj(t – τ )

)
(5)

and

0Dα
t yi(t) = –ciyi(t) +

n∑
j=1

γij
(
yj(t)

)
fj
(
yj(t)

)
+

n∑
j=1

χij
(
yj(t)

)
fj
(
yj(t – τ )

)
+ ui(t). (6)

To ensure the existence of the solutions of systems (5) and (6), respectively, throughout
this paper, we assume that the activation function fj(·) satisfies the following properties.

Assumption 1 The activation function fj(·) is Lipschitz-continuous with Lipschitz con-
stant Lj > 0, i.e.,

∣∣fj(u) – fj(v)
∣∣ ≤ Lj|u – v|,

for all u, v ∈ R, and j = 1, 2, . . . , n.
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Assumption 2 The activation function fj(·) is bounded on R, i.e., there exists a constant
Mj such that

∣∣fj(u)
∣∣ ≤ Mj, u ∈ R, j = 1, 2, . . . , n.

Let ei(t) = yi(t) – xi(t) be the synchronization error and the controller can be designed
as

ui(t) = –kiei(t) – sign
(
ei(t)

)
εi

∣∣ei(t – τ )
∣∣ – ρi sign

(
ei(t)

)
. (7)

where ki, εi, ρi denote the feedback gains.
Then the error system can be given by

0Dα
t ei(t) = –(ci + ki)ei(t) – sign

(
ei(t)

)
εi

∣∣ei(t – τ )
∣∣

+
n∑

j=1

γij
(
yj(t)

)
ϕj

(
ej(t)

)
+

n∑
j=1

χij
(
yj(t)

)
ϕj

(
ej(t – τ )

)

+
n∑

j=1

(
γij

(
yj(t)

)
– γij

(
xj(t)

))
fj
(
xj(t)

)

+
n∑

j=1

(
χij

(
yj(t)

)
– χij

(
xj(t)

))
fj
(
xj(t – τ )

)
– ρi sign

(
ei(t)

)
, (8)

where ϕj(ej(t)) = fj(yj(t)) – fj(xj(t)).
The initial condition of error system (8) is defined by

ei(s) = φi(s), –τ ≤ s ≤ 0,

where φi(s) = ϑyi(s) – ϑxi(s) ∈ C([–τ , 0], R), φ(s) = [φ1(s),φ2(s), . . . ,φn(s)]T .
In the next section, global Mittag-Leffler synchronization of drive–response systems

(5)–(6) will be achieved. The definition of global Mittag-Leffler stability is as follows.

Definition 7 ([29]) The zero solution of the error system (8) is said to be globally Mittag-
Leffler stable if there exist two positive constants N and λ such that, for any solutions φ(t)
of error system (8) with different initial condition denoted by φ(0), one has

∥∥φ(t)
∥∥ ≤ N

∥∥φ(0)
∥∥Eα

(
–λtα

)
, t ≥ 0.

3 Main result
Theorem 1 Suppose Assumptions 1–2 hold and that the following algebraic conditions:

(i) min
1≤i≤n

{
ci + ki –

n∑
j=1

au
jiLi

}
> 0,

(ii) εi –
n∑

j=1

bu
jiLi ≥ 0, i = 1, 2, . . . , n,
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(iii) ρi –
n∑

j=1

(∣∣a∗
ij – a∗∗

ij
∣∣ +

∣∣b∗
ij – b∗∗

ij
∣∣)Mj ≥ 0, i = 1, 2, . . . , n,

are satisfied, then error system (8) is globally Mittag-Leffler stable, where au
ji = max{|a∗

ji|,
|a∗∗

ji |}, bu
ji = max{|b∗

ji|, |b∗∗
ji |}, i, j = 1, 2, . . . , n. That is, the response system (2) under the con-

troller (7) can be globally Mittag-Leffler synchronized with the drive system (1).

Proof Construct the Lyapunov functional as follows:

V (t) =
n∑

i=1

∣∣ei(t)
∣∣.

From Lemma 2 and Assumptions 1–2, we obtain

0Dα
t V (t) = 0Dα

t

n∑
i=1

∣∣ei(t)
∣∣ ≤

n∑
i=1

sign
(
ei(t)

)
0Dα

t ei(t)

=
n∑

i=1

sign
(
ei(t)

)[
–(ci + ki)ei(t) – sign

(
ei(t)

)
εi

∣∣ei(t – τ )
∣∣

+
n∑

j=1

γij
(
yj(t)

)
ϕj

(
ej(t)

)
+

n∑
j=1

χij
(
yj(t)

)
ϕj

(
ej(t – τ )

)

+
n∑

j=1

(
γij

(
yj(t)

)
– γij

(
xj(t)

))
fj
(
xj(t)

)

+
n∑

j=1

(
χij

(
yj(t)

)
– χij

(
xj(t)

))
fj
(
xj(t – τ )

)
– ρi sign

(
ei(t)

)]

≤
n∑

i=1

[
–(ci + ki)

∣∣ei(t)
∣∣ – εi

∣∣ei(t – τ )
∣∣ – ρi +

n∑
j=1

au
ijLj

∣∣ej(t)
∣∣ +

n∑
j=1

bu
ijLj

∣∣ej(t – τ )
∣∣

+
n∑

j=1

(∣∣a∗
ij – a∗∗

ij
∣∣ +

∣∣b∗
ij – b∗∗

ij
∣∣)Mj

]

= –
n∑

i=1

(
ci + ki –

n∑
j=1

au
jiLi

)∣∣ei(t)
∣∣ –

n∑
i=1

(
εi –

n∑
j=1

bu
jiLi

)∣∣ei(t – τ )
∣∣

–
n∑

i=1

[
ρi –

n∑
j=1

(∣∣a∗
ij – a∗∗

ij
∣∣ +

∣∣b∗
ij – b∗∗

ij
∣∣)Mj

]
.

Based on the conditions (i)–(iii) of Theorem 1, we have

0Dα
t V (t) ≤ – min

1≤i≤n

(
ci + ki –

n∑
j=1

au
jiLi

) n∑
i=1

∣∣ei(t)
∣∣.

Let λ = min1≤i≤n{ci + ki –
∑n

j=1 au
jiLi}, we have

0Dα
t V (t) ≤ –λV (t).
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Thus, there exists a nonnegative function F(t) satisfying

0Dα
t V (t) + F(t) = –λV (t). (9)

Taking the Laplace transform on both sides of (9), it follows that

V (s) =
sα–1

sα + λ
V (0) –

F(s)
sα + λ

,

where V (s) = L{V (t)}, F(s) = L{F(t)}.
By the inverse Laplace transform, we obtain

V (t) = V (0)Eα

(
–λtα

)
– F(t) ∗ tα–1Eα,α

(
–λtα

)
, t ≥ 0,

where ∗ denotes the convolution operator. From Lemma 1, F(t), tα–1Eα,α(–λtα) are all non-
negative functions. Then we can obtain

V (t) ≤ V (0)Eα

(
–λtα

)
, t ≥ 0.

That is,

∥∥e(t)
∥∥ ≤ ∥∥e(0)

∥∥Eα

(
–λtα

)
, t ≥ 0.

By Definition 7, the error system (8) is globally Mittag-Leffler stable, which implies the
response system (2) under the controller (7) can be globally Mittag-Leffler synchronized
with the drive system (1). This completes the proof. �

If the drive–response systems are without time delay, then the drive–response systems
(5)–(6) are reduced to the following two systems:

0Dα
t xi(t) = –cixi(t) +

n∑
j=1

γij
(
xj(t)

)
fj
(
xj(t)

)
, (10)

0Dα
t yi(t) = –ciyi(t) +

n∑
j=1

γij
(
yj(t)

)
fj
(
yj(t)

)
+ ui(t). (11)

Accordingly, the controller is reduced to

ui(t) = –kiei(t) – ρi sign
(
ei(t)

)
. (12)

Then the error system can be given by

0Dα
t ei(t) = –(ci + ki)ei(t) +

n∑
j=1

γij
(
yj(t)

)
ϕj

(
ej(t)

)

+
n∑

j=1

(
γij

(
yj(t)

)
– γij

(
xj(t)

))
fj
(
xj(t)

)
– ρi sign

(
ei(t)

)
, (13)

where ϕj(ej(t)) = fj(yj(t)) – fj(xj(t)).
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Corollary 1 Suppose Assumptions 1–2 hold and that the following algebraic conditions:

(i) min
1≤i≤n

{
ci + ki –

n∑
j=1

au
jiLi

}
> 0,

(ii) ρi –
n∑

j=1

(∣∣a∗
ij – a∗∗

ij
∣∣)Mj ≥ 0, i = 1, 2, . . . , n,

are satisfied, then error system (13) is globally Mittag-Leffler stable, where i, j = 1, 2, . . . , n,
au

ji = max{|a∗
ji|, |a∗∗

ji |}. That is, the response system (11) under the controller (12) can be glob-
ally Mittag-Leffler synchronized with the drive system (10).

Remark 1 In controller (7), the terms –ρi sign(ei(t)) play an important role in eliminating
the undesired error caused by the memristive synaptic connection weights. In order to
achieve the global Mittag-Leffler synchronization, the feedback gains ρi should be well
designed such that ρi –

∑n
j=1(|a∗

ij – a∗∗
ij | + |b∗

ij – b∗∗
ij |)Mj ≥ 0 are ensured. It also implies that,

besides the Lipschitz-continuous condition, boundedness constraint should be imposed
on the activation functions. In our future work, we will discuss how to reduce the conser-
vatism of the activation functions.

Remark 2 In this paper, by constructing appropriate Lyapunov functionals and designing
suitable hybrid controllers, some sufficient criteria are established to achieve the globally
Mittag-Leffler synchronization of delayed FMNNs. Notice that the memristive synaptic
connection weights aij(·), bij(·) are both state-dependent, which makes it impossible to
achieve the complete synchronization only via linear state feedback control. To this end,
– sign(ei(t))εi|ei(t –τ )|, and –ρi sign(ei(t)) are added to the linear state feedback to deal with
the delay term and the undesirable error caused by the differences between the memristive
synaptic connection weights. Actually, there are few results relevant to the global Mittag-
Leffler synchronization of delayed FMNNs (1) in the current literature. Therefore, the
obtained results in this paper can fill this gap.

Remark 3 FMNNs are a class of switched systems with 2n FNN subsystems. It should
be mentioned that the memristive synaptic connection weights of FMNNs, i.e., aij(xj(t)),
aij(yj(t)), bij(xj(t)), and bij(yj(t)) are time-varying; they which are dependent on the corre-
sponding system states xj(t) and yj(t). Hence, compared with the traditional FNNs [25–28],
it is more difficult to realize the synchronization of FMNNs. In this paper, a linear state
feedback combined with switching control law is designed to overcome this difficulty. It is
believed that the obtained results are useful and effective for the designs and applications
of FMNNs.

4 Numerical simulations
In this section, the Adams–Bashforth–Moulton predictor–corrector algorithm is applied
in the numerical simulations [44, 45].

Consider the drive system (1) with n = 3, α = 0.9, fj(xj) = tanh(xj), τ = 0.8, initial condition
ϑx(s) = (0.3, –0.6, 0.2)T , s ∈ [–0.8, 0]. Set c1 = 2.2, c2 = 1.2, c3 = 1.8,

a11(x1) =

⎧⎨
⎩

2.2, |x1| ≤ 1,

2, |x1| > 1,
a12(x2) =

⎧⎨
⎩

–2, |x2| ≤ 1,

–2.1, |x2| > 1,
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a13(x3) =

⎧⎨
⎩

2, |x3| ≤ 1,

1.8, |x3| > 1,
a21(x1) =

⎧⎨
⎩

–0.8, |x1| ≤ 1,

–0.6, |x1| > 1,

a22(x2) =

⎧⎨
⎩

5.71, |x2| ≤ 1,

5.68, |x2| > 1,
a23(x3) =

⎧⎨
⎩

1.15, |x3| ≤ 1,

1.1, |x3| > 1,

a31(x1) =

⎧⎨
⎩

–4.75, |x1| ≤ 1,

–4.5, |x1| > 1,
a32(x2) =

⎧⎨
⎩

–1, |x2| ≤ 1,

–0.8, |x2| > 1,

a33(x3) =

⎧⎨
⎩

1.2, |x3| ≤ 1,

1.25, |x3| > 1,
b11(x1) =

⎧⎨
⎩

–4, |x1| ≤ 1,

–3.8, |x1| > 1,

b12(x2) =

⎧⎨
⎩

2.5, |x2| ≤ 1,

2.3, |x2| > 1,
b13(x3) =

⎧⎨
⎩

–3.2, |x3| ≤ 1,

–3.0, |x3| > 1,

b21(x1) =

⎧⎨
⎩

–1.5, |x1| ≤ 1,

–1.7, |x1| > 1,
b22(x2) =

⎧⎨
⎩

–3.6, |x2| ≤ 1,

–3.8, |x2| > 1,

b23(x3) =

⎧⎨
⎩

–2.3, |x3| ≤ 1,

–2.5, |x3| > 1,
b31(x1) =

⎧⎨
⎩

0.3, |x1| ≤ 1,

0.4, |x1| > 1,

b32(x2) =

⎧⎨
⎩

1.8, |x2| ≤ 1,

2, |x2| > 1,
b33(x3) =

⎧⎨
⎩

1.2, |x3| ≤ 1,

1.5, |x3| > 1.

The response system (2) is assumed to have the same parameters as those for the drive
system, except for the different initial condition ϑy(s) = (–2, –3, 2)T , s ∈ [–0.8, 0].

Figure 2(a) and Fig. 2(b) depict the phase portraits of the x2–x1 plane and x2–x3 plane
of the drive system, respectively. When the controller (7) is at rest, that is, k1 = k2 = k3 = 0,
ε1 = ε2 = ε3 = 0, ρ1 = ρ2 = ρ3 = 0, the switching laws of the memristive synaptic connec-
tion weights a11(x1), a11(y1) are shown in Fig. 3(a) and Fig. 3(b), respectively. From Fig. 3,
one can see that the switching laws of a11(x1), a11(y1) evoked by the nonidentical initial
conditions are different from each other.

Figure 2 Phase portraits of drive system: (a) x2–x1 plane; (b) x2–x3 plane
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Figure 3 Switching laws of memristive synaptic connection weights: (a) a11(x1(t)); (b) a11(y1(t)) when
controller (7) is rest

Figure 4 (a) State trajectories of drive–response systems; (b) time evolution of ‖e(t)‖ when controller (7) is
activated

Taking k1 = 5.56, k2 = 7.62, k3 = 2.61, ε1 = 6.1, ε2 = 8.3, ε3 = 7.2, ρ1 = 1.1, ρ2 = 0.88,
ρ3 = 1.1, by simple calculation, we can obtain λ = min1≤i≤3{ci + ki –

∑3
j=1 au

jiLi} = 0.01 > 0,
εi –

∑3
j=1 bu

jiLi = 0, ρi –
∑3

j=1(|a∗
ij – a∗∗

ij | + |b∗
ij – b∗∗

ij |)Mj = 0. It means that the conditions of
Theorem 1 are satisfied. According to Theorem 1, we can obtain the following inequality:

∥∥e(t)
∥∥ ≤ ∥∥e(0)

∥∥E0.9
(
–0.01t0.9), t ≥ 0.

Then the error system (8) is globally Mittag-Leffler stable, which is verified by Fig. 4. From
Fig. 5, the switching laws of a11(x1), a11(y1), under the designed controller (7), become
identical as time evolves. Choose six random initial values, Fig. 6 depicts the time evo-
lution of synchronization error e1(t), e2(t), e3(t). From Figs. 4–6, one can find that the
drive–response systems (1)–(2) can achieve globally Mittag-Leffler synchronization under
controller (7). The numerical simulations verify the effectiveness of the proposed method.

5 Conclusions
In this paper, the global Mittag-Leffler synchronization of delayed FMNNs is investigated.
A linear state feedback control combined with switching control law is designed, which is
simple and easy to implement. Two Mittag-Leffler synchronization criteria are developed
by constructing suitable Lyapunov functionals. It is the first time that the global Mittag-
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Figure 5 Switching laws of memristive connection weights: (a) a11(x1(t)); (b) a11(y1(t)) when controller (7) is
activated

Figure 6 Time evolution of synchronization errors e1(t), e2(t), e3(t) with six random initial values when
controller (7) is activated

Leffler synchronization is discussed under the proposed controller. The effectiveness of
the developed method has been demonstrated theoretically and numerically.
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