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Abstract
In this paper, we consider the following second order neutral dynamic equations with
deviating arguments on time scales:

(r(t)(z�(t))α)� + q(t)f (y(m(t))) = 0,

where z(t) = y(t) + p(t)y(τ (t)),m(t)≤ t orm(t) ≥ t, and τ (t)≤ t. Some new oscillatory
criteria are obtained by means of the inequality technique and a Riccati
transformation. Our results extend and improve many well-known results for
oscillation of second order dynamic equations. Some examples are given to illustrate
the main results.
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1 Introduction
The study of dynamic equations on time scales which goes back to its founder Hilger [1] as
an area of mathematics that has received a lot of attention. It has been created in order to
unify the study of differential and difference equations. Many authors have contributed on
various aspects of this theory, see the survey paper by Agarwal et al. [2] and the references
cited therein.

The theory of time scales, which provides powerful new tools for exploring connections
between the traditionally separated fields, has been developing rapidly and has received
much attention. Dynamic equations cannot only unify the theories of differential equa-
tions and difference equations, but also extend these classical cases to cases “in between”
and can be applied to other different types of time scales. The theory of dynamic equations
on time scales is an adequate mathematical apparatus for the simulation of processes and
phenomena observed in biotechnology, chemical technology, economy, neural networks,
physics, social sciences etc.

With the rapid development of science, the contributions of mathematical researchers
are more urgent than ever before. Thus, beyond the purely mathematical interest, all of
the above make the theory of dynamic equation very attractive to researchers. As a result,
in the last decades many of them have focused their interest on problems of this area. One
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of the most interesting problems is the study of the oscillation of solutions of dynamic
equation with deviating arguments.

Dynamic equations with deviating argument are deemed to be adequate in modeling of
the countless processes in all areas of science. As is well known, a distinguishing feature of
delay dynamic equations under consideration is the dependence of the evolution rate of
the processes described by such equations on the past history. This consequently results
in predicting the future in a more reliable and efficient way, explaining at the same time
many qualitative phenomena such as periodicity, oscillation or instability. The concept
of the delay incorporation into systems plays an essential role in modeling to represent
time taken to complete some hidden processes; see [3, 4]. Contrariwise, advanced dynamic
equations can find use in many applied problems whose evolution rate depends not only
on the present, but also on the future, it also play a vital role.

Saker [5] studied the oscillation of second order nonlinear neutral delay dynamic equa-
tion

(
r(t)

([
y(t) + p(t)y(t – τ )

]�)α)� + f
(
t, y(t – δ)

)
= 0,

under the condition
∫ ∞ r–1/α(t)�t = ∞.

Baculíková [6] studied the oscillatory behavior of the second order advanced differential
equations

y′′(t) + p(t)y
(
σ (t)

)
= 0,

where σ (t) ≥ t, and provided some technique for studying oscillation of the second or-
der advanced differential equation. The method is based on the monotonic properties of
nonoscillatory solutions.

Motivate by the above articles, now, in this article, we consider the dynamic equation of
the form

(
r(t)

(
z�(t)

)α)� + q(t)f
(
y
(
m(t)

))
= 0, t ∈ I, (1.1)

where z(t) = y(t) + p(t)y(τ (t)), I = [t0,∞)T and α ≥ 1 is the ratio of two odd positive inte-
gers. Assume that the following conditions are satisfied:

(H1) r(t), m(t) ∈ C1
rd(I, [0,∞)T), p(t) ∈ Crd(I, [0,∞)T), q(t) ∈ Crd(I, (0,∞)T),

τ (t) ∈ Crd(I,R);
(H2) m(t) ≤ σ (t), τ (t) ≤ t and m�(t) > 0 and limt→∞ m(t) = limt→∞ τ (t) = ∞;
(H3) f ∈ C(R,R) such that xf (x) > 0 and f (x)/xα ≥ k > 0, for x �= 0, k is a constant.
We only discuss these solutions of (1.1) which exist on some half-line [t0,∞)T and satisfy

sup
{∣∣x(t)

∣
∣ : te ≤ t < ∞}

> 0

for any te ≥ t0. Such a solution of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is called nonoscillatory. The equation itself
is called oscillatory if all of its solutions are oscillatory.

In this paper, using a Riccati transformation and the inequality technique, we present
some new sufficient conditions which ensure that any solution of (1.1) oscillates. We sup-
pose that m(t) ≤ σ (t), when m(t) ≤ t, Eq. (1.1) is a delay dynamic equation on time scales;
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when m(t) ≥ t, Eq. (1.1) is an advanced dynamic equation on time scales, such as the h-
difference equation (h > 0), and it is also called a finite difference equation, etc. Our results
extend, complement, or improve some of the existing results, such as [7–21]. Our results
further develop the functional differential equations on time scales.

2 Preliminaries
In order to prove our main results, we establish some fundamental results in this section.
Without loss of generality, we can only deal with the positive solutions of Eq. (1.1) since
the proof of the other case is similar.

Lemma 2.1 Let α ≥ 1 be a ratio of two odd numbers. Then

A(1+α)/α –
B1/α

α

[
(1 + α)A – B

] ≤ (A – B)(1+α)/α , AB ≥ 0, (2.1)

and

–Cv(1+α)/α + Dv ≤ αα

(α + 1)1+α

D1+α

Cα
, C > 0. (2.2)

The inequality (2.1) can be found in (3.1) in [19], Lemma 1 in [20], and Lemma 2.1 in
[21]. The proof of (2.2) can be found in Zhang and Wang [22].

3 Oscillation results
In this section, we are ready to establish the main results of this paper.

Theorem 3.1 Suppose that σ (m(t)) = m(σ (t)), and there exist two functions η, δ ∈
C1

rd([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[
η(s)P

(
σ (s)

)
–

r(m(s))(η�(s))α+1
+

(α + 1)α+1(m�(s))αηα(s)

]
�s = ∞, (3.1)

or

lim sup
t→∞

∫ t

t0

[
ψ(s) –

δα+1(s)r(s)((ϕ(s))+)α+1

δα(σ (s))(α + 1)α+1

]
�s = ∞, (3.2)

where

P(t) = kq(t)
(

1 – p
(
m(t)

)π (τ (m(t)))
π (m(t))

)α

, π (t) =
∫ ∞

t
r–1/α(s)�s,

p(t) <
π (t)

π (τ (t))
, ψ(t) = δ

(
σ (t)

)[
P(t) –

α

r1/α(t)πα+1(σ (t))
+

1
r1/α(t)πα+1(t)

]
,

ϕ(t) =
δ�(t)
δ(t)

+
δ(σ (t))(α + 1)
r1/α(t)π (t)δ(t)

,
(
ϕ(t)

)
+ = max

{
0,ϕ(t)

}
,

(
η�(t)

)
+ = max

{
0,η�(s)

}
.

Then every solution y(t) of (1.1) is oscillatory.



Sui and Han Advances in Difference Equations  (2018) 2018:337 Page 4 of 10

Proof If y(t) is an eventually positive solution of (1.1), and there exists a t1 > t0 such that
y(t) > 0, y(τ (t)) > 0, y(m(t)) > 0, t ≥ t1. By the definition of z(t) and (H1) we have z(t) ≥
y(t) > 0, and from (1.1) we know that

(
r(t)

(
z�(t)

)α)� = –q(t)f
(
y
(
m(t)

)) ≤ –kq(t)yα
(
m(t)

)
< 0, t ∈ I. (3.3)

Thus r(t)(z�(t))α is decreasing for all t ≥ t1, then, for any s ≥ t ≥ t1, we have

r(t)
(
z�(t)

)α ≥ r(s)
(
z�(s)

)α , (3.4)

thus

z�(s) ≤
(

r(t)
r(s)

)1/α

z�(t). (3.5)

Integrating (3.5) from t to v, then

z(v) – z(t) ≤ r1/α(t)z�(t)
∫ v

t
r–1/α(s)�s. (3.6)

Letting v → ∞, we have

z(t) ≥ –r1/α(t)z�(t)π (t). (3.7)

Then

(
z(t)
π (t)

)�

=
z�(t)π (t) – z(t)π�(t)

π (σ (t))π (t)
=

z�(t)π (t) + z(t)r–1/α(t)
π (σ (t))π (t)

≥ 0, (3.8)

thus z(t)
π (t) ≥ z(τ (t))

π (τ (t)) , i.e.,

π (τ (t))
π (t)

z(t) ≥ z
(
τ (t)

)
. (3.9)

Moreover, by the definition of z(t) and (3.9) we have z(t) ≥ y(t), then

y(t) = z(t) – p(t)y
(
τ (t)

) ≥ z(t) – p(t)z
(
τ (t)

) ≥ z(t) – z(t)p(t)
π (τ (t))
π (t)

= z(t)
(

1 – p(t)
π (τ (t))
π (t)

)
. (3.10)

From (3.3) and (3.10), we get

(
r(t)

(
z�(t)

)α)� ≤ –kq(t)yα
(
m(t)

)

≤ –kq(t)zα
(
m(t)

)
(

1 – p
(
m(t)

)π (τ (m(t)))
π (m(t))

)α

, (3.11)

i.e.,

(
r(t)

(
z�(t)

)α)� + kq(t)zα
(
m(t)

)(
1 – p

(
m(t)

)π (τ (m(t)))
π (m(t))

)α

≤ 0. (3.12)
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Let P(t) = kq(t)(1 – p(m(t)) π (τ (m(t)))
π (m(t)) )α . Then

(
r(t)

(
z�(t)

)α)� + P(t)zα
(
m(t)

) ≤ 0. (3.13)

We know that r(t)(z�(t))α is decreasing for all t ≥ t1, which implies that r(t)(z�(t))α does
not change sign eventually, so as z�(t), then there exists a t2 ≥ t1 such that either z�(t) < 0
or z�(t) > 0 for any t ≥ t2. We shall show that in each case we are led to a contradiction.

Case (1): Assume first that z�(t) > 0 for all t ≥ t2. Define the following Riccati transfor-
mation:

w(t) = η(t)
r(σ (t))(z�(σ (t)))α

zα(m(t))
. (3.14)

Then w(t) > 0, and

w�(t) =
[
η(t)

r(σ (t))(z�(σ (t)))α

zα(m(t))

]�

= η�(t)
r(σ (σ (t)))(z�(σ (σ (t))))α

zα(m(σ (t)))
+ η(t)

[
r(σ (t))(z�(σ (t)))α

zα(m(t))

]�

=
η�(t)

η(σ (t))
w

(
σ (t)

)
+ η(t)

[r(σ (t))(z�(σ (t)))α]�

zα(m(σ (t)))

– η(t)
r(σ (t))(z�(σ (t)))α(zα(m(t)))�

zα(m(t))zα(m(σ (t)))
. (3.15)

By the corollary of the Keller chain rule [23] and the condition σ (m(t)) = m(σ (t)) ([24]
Lemma 2.2), for α ≥ 1, we have

((
z
(
m(t)

))α)� = α

∫ 1

0

[
hz

(
m

(
σ (t)

))
+ (1 – h)z

(
m(t)

)]α–1(z
(
m(t)

))� dh

≥ α

∫ 1

0

[
hz

(
m(t)

)
+ (1 – h)z

(
m(t)

)]α–1(z
(
m(t)

))� dh

= αzα–1(m(t)
)
z�

(
m(t)

)
m�(t). (3.16)

Thus we get

w�(t) ≤ η�(t)
η(σ (t))

w
(
σ (t)

)
+ η(t)

–P(σ (t))zα(m(σ (t)))
zα(m(σ (t)))

– η(t)
r(σ (t))(z�(σ (t)))ααz�(m(t))m�(t)

z(m(t))zα(m(σ (t)))

≤ η�(t)
η(σ (t))

w
(
σ (t)

)
– η(t)P

(
σ (t)

)
–

αη(t)m�(t)
r1/α(m(t))η α+1

α (σ (t))
w

α+1
α

(
σ (t)

)

≤ (
η�(t)

)
+

w(σ (t))
η(σ (t))

– η(t)P
(
σ (t)

)
–

αη(t)m�(t)
r1/α(m(t))

(
w(σ (t))
η(σ (t))

) α+1
α

. (3.17)

Set

F(v) =
(
η�(t)

)
+v –

αη(t)m�(t)
r1/α(m(t))

v
α+1
α . (3.18)
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By calculating, we have

v0 =
1

(α + 1)α
r(m(t))

(m�(t))α

(
(η�(t))+

η(t)

)α

, (3.19)

and when v < v0, we have F�(v) > 0, when v > v0, F�(v) < 0, then F(v) obtains its maximum.
So,

F(v) ≤ F(v0) =
r(m(t))(η�(t))α+1

+
(α + 1)α(m�(t))αηα(t)

–
αr(m(t))(η�(t))α+1

+
(α + 1)α+1(m�(t))αηα(t)

=
(α + 1)r(m(t))(η�(t))α+1

+ – αr(m(t))(η�(t))α+1
+

(α + 1)α+1(m�(t))αηα(t)

=
r(m(t))(η�(t))α+1

+
(α + 1)α+1(m�(t))αηα(t)

. (3.20)

Therefore,

w�(t) ≤ –η(t)P
(
σ (t)

)
+

r(m(t))(η�(t))α+1
+

(α + 1)α+1(m�(t))αηα(t)
. (3.21)

Integrating the above inequality from T0 to t, we have

0 < w(t) ≤ w(T0) –
∫ t

T0

[
η(s)P

(
σ (s)

)
–

r(m(s))(η�(s))α+1
+

(α + 1)α+1(m�(s))αηα(s)

]
�s. (3.22)

Let t → ∞ in the above inequality, which contradicts (3.1).
Case (2): Assume now that z�(t) < 0 for all t ≥ t2. Define the following Riccati transfor-

mation:

w(t) = δ(t)
[

r(t)(z�(t))α

zα(t)
+

1
πα(t)

]
. (3.23)

Since (3.7), we have w(t) > 0, then

w�(t) =
{
δ(t)

[
r(t)(z�(t))α

zα(t)
+

1
πα(t)

]}�

=
δ�(t)
δ(t)

w(t) + δ
(
σ (t)

)[ [r(t)(z�(t))α]�

zα(σ (t))
–

r(t)(z�(t))α[zα(t)]�

zα(t)zα(σ (t))

+
–[πα(t)]�

πα(t)πα(σ (t))

]
. (3.24)

By the corollary of the Keller chain rule [23], for α ≥ 1, we have

(
zα(t)

)� = α

∫ 1

0

[
hz

(
σ (t)

)
+ (1 – h)z(t)

]α–1z�(t) dh

≥ α

∫ 1

0

[
hz

(
σ (t)

)
+ (1 – h)z

(
σ (t)

)]α–1z�(t) dh

= αzα–1(σ (t)
)
z�(t) (3.25)
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and

(
πα(t)

)� = α

∫ 1

0

[
hπ

(
σ (t)

)
+ (1 – h)π (t)

]α–1
π�(t) dh

≥ α

∫ 1

0

[
hπ

(
σ (t)

)
+ (1 – h)π

(
σ (t)

)]α–1
π�(t) dh

= απα–1(σ (t)
)
π�(t) = –απα–1(σ (t)

)
r–1/α(t). (3.26)

By (3.25), (3.26), Eq. (3.24) can be written as

w�(t)

=
δ�(t)
δ(t)

w(t) + δ
(
σ (t)

) [r(t)(z�(t))α]�

zα(σ (t))
– δ

(
σ (t)

) r(t)(z�(t))α[zα(t)]�

zα(t)zα(σ (t))

– δ
(
σ (t)

) [πα(t)]�

πα(t)πα(σ (t))

≤ δ�(t)
δ(t)

w(t) + δ
(
σ (t)

) [r(t)(z�(t))α]�

zα(σ (t))
– αδ

(
σ (t)

)
r(t)

(z�(t))α+1

zα+1(t)
+

αδ(σ (t))
r1/α(t)πα+1(σ (t))

=
δ�(t)
δ(t)

w(t) + δ
(
σ (t)

) [r(t)(z�(t))α]�

zα(σ (t))
– αδ

(
σ (t)

)
r(t)

[
w(t)

δ(t)r(t)
–

1
r(t)πα(t)

] α+1
α

+
αδ(σ (t))

r1/α(t)πα+1(σ (t))
. (3.27)

Let A := w(t)/(δ(t)r(t)) and B := 1/(r(t)πα(t)). Using inequality (2.1), we conclude that

(
w(t)

δ(t)r(t)
–

1
r(t)πα(t)

)(α+1)/α

≥
(

w(t)
δ(t)r(t)

)(α+1)/α

–
1

αr1/α(t)π (t)

[
(α + 1)

w(t)
δ(t)r(t)

–
1

r(t)πα(t)

]
. (3.28)

On the other hand, we get by (3.11), [r(t)(z�(t))α]� < 0, z� < 0, and m(t) ≤ σ (t) that

[r(t)(z�(t))α]�

zα(σ (t))
≤ [r(t)(z�(t))α]�

zα(m(t))
≤ –kq(t)

(
1 – p

(
m(t)

)π (τ (m(t)))
π (m(t))

)α

= –P(t). (3.29)

Thus, (3.27) yields

w�(t) ≤ δ�(t)
δ(t)

w(t) – δ
(
σ (t)

)
P(t) +

αδ(σ (t))
r1/α(t)πα+1(σ (t))

– αδ
(
σ (t)

)
r(t)

{(
w(t)

δ(t)r(t)

)(α+1)/α

–
1

αr1/α(t)π (t)

[
(α + 1)

w(t)
δ(t)r(t)

–
1

r(t)πα(t)

]}

=
δ�(t)
δ(t)

w(t) – δ
(
σ (t)

)
P(t) +

αδ(σ (t))
r1/α(t)πα+1(σ (t))
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–
αδ(σ (t))

δ(α+1)/α(t)r1/α(t)
w(α+1)/α(t) +

δ(σ (t))(α + 1)
r1/α(t)π (t)δ(t)

w(t) –
δ(σ (t))

r1/α(t)πα+1(t)

= –δ
(
σ (t)

)
[

P(t) –
α

r1/α(t)πα+1(σ (t))
+

1
r1/α(t)πα+1(t)

]

+
[

δ�(t)
δ(t)

+
δ(σ (t))(α + 1)
r1/α(t)π (t)δ(t)

]
w(t) –

αδ(σ (t))
δ(α+1)/α(t)r1/α(t)

w(α+1)/α(t)

≤ –ψ(t) +
(
ϕ(t)

)
+w(t) –

αδ(σ (t))
δ(α+1)/α(t)r1/α(t)

w(α+1)/α(t), (3.30)

where

ψ(t) = δ
(
σ (t)

)
[

P(t) –
α

r1/α(t)πα+1(σ (t))
+

1
r1/α(t)πα+1(t)

]
,

ϕ(t) =
δ�(t)
δ(t)

+
δ(σ (t))(α + 1)
r1/α(t)π (t)δ(t)

,
(
ϕ(t)

)
+ = max

{
0,ϕ(t)

}
.

Define now C := αδ(σ (t))
δ(α+1)/α (t)r1/α (t) , D := (ϕ(t))+, and v := w(t). Applying inequality (2.2), we

obtain

–
αδ(σ (t))

δ(α+1)/α(t)r1/α(t)
w(α+1)/α(t) +

(
ϕ(t)

)
+w(t) ≤ δα+1(t)r(t)((ϕ(t))+)α+1

δα(σ (t))(α + 1)α+1 . (3.31)

By (3.30) and (3.31),

w�(t) ≤ –ψ(t) +
δα+1(t)r(t)((ϕ(t))+)α+1

δα(σ (t))(α + 1)α+1 . (3.32)

Integrating the latter inequality from t2 to t, we have

∫ t

t2

[
ψ(s) –

δα+1(s)r(s)((ϕ(s))+)α+1

δα(σ (s))(α + 1)α+1

]
�s ≤ –w(t) + w(t2) ≤ w(t2), (3.33)

which contradicts (3.2). Therefore, Eq. (1.1) is oscillatory. �

4 Examples
Example 4.1 As an illustrative example, we consider the following equation:

(
t2

(
y(t) +

1
3

y
(

t
2

))′)′
+ y

(
t
3

)
= 0. (4.1)

Here T = R
+, and α = 1, t0 = 2, r(t) = t2, p(t) = 1

3 , τ (t) = t
2 , q(t) = 1, f (t) = t, m(t) = t

3 . By
taking η(t) = k = 1, then π (t) = 1

t , π (t)
π ( t

2 ) = 1
2 > 1

3 , and P(t) = 1
3 .

lim sup
t→∞

∫ t

2

[
η(s)P(s) –

r(m(s))(η′(s))α+1
+

(α + 1)α+1(m′(s))αηα(s)

]
ds = lim sup

t→∞

∫ t

2

1
3

ds = ∞. (4.2)

It is easy to check that all hypotheses of Theorem 3.1 are satisfied, so we see that Eq. (4.1)
is oscillatory.
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Example 4.2 Consider the equation

�2
(

y(t) +
1
4

y(t – 2)
)

+ y(t + 1) = 0. (4.3)

Here T = N
+, and α = 1, t0 = 2, r(t) = 1, p(t) = 1

4 , τ (t) = t – 2, q(t) = 1, f (t) = t, m(t) = t + 1.
By taking η(t) = k = 1, then P(t) = 3

4 .

lim sup
t→∞

t∑

2

[
η(s)P(s + 1) –

r(m(s))(�η(s))α+1
+

(α + 1)α+1(�m(s))αηα(s)

]
= lim sup

t→∞

t∑

2

3
4

= ∞. (4.4)

It is easy to check that all hypotheses of Theorem 3.1 are satisfied, so we see that Eq. (4.3)
is oscillatory.

Example 4.3 Consider the following equation:

Dq
(

t
(

Dq
(

y(t) +
1
2

y(t – 1)
)))

+
1
3

y(t – 2) = 0. (4.5)

Here 0 < q < 1, α = 1, t0 = 2, r(t) = t, p(t) = 1
2 , τ (t) = t – 1, q(t) = 1

3 , f (t) = t, m(t) = t – 2.
By taking η(t) = k = 1, then π (t) =

∫ ∞
t r–1/α(s) dqs =

∫ ∞
t s–1 dqs =

∑∞
k=1 tq–k(1 – q)(tq–k)–1 =

∑∞
k=1(1 – q), π (t)

π ( t
2 ) = 1 > 1

2 , and P(t) = 1
6 .

lim sup
t→∞

∫ t

2

[
η(s)P(s) –

r(m(s))(Dqη(s))α+1
+

(α + 1)α+1(m′(s))αηα(s)

]
dqs = lim sup

t→∞

∫ t

2

1
6

dqs = ∞. (4.6)

It is easy to check that all hypotheses of Theorem 3.1 are satisfied, so we see that Eq. (4.5)
is oscillatory.

5 Conclusion and future direction
The results of this article are presented in a form which is essentially new and of high
degree of generality. In this article, using a Riccati transformation and the inequality tech-
nique, we offer some new sufficient conditions which ensure that any solution of Eq. (1.1)
oscillates. We suppose that m(t) ≤ σ (t), when m(t) ≤ t, Eq. (1.1) is a delay dynamic equa-
tion on time scales; when m(t) ≥ t, Eq. (1.1) is an advanced dynamic equation on time
scales. Further, we can consider the case of m(t) ≥ σ (t), and we can try to get some oscil-
lation criteria of Eq. (1.1) if p(t) < 0 and q(t) < 0 in the future work.
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