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1 Introduction
The theory of nonlinear difference equations has been widely used to study discrete mod-
els in many fields, such as statistics, neural network, computer science, electrical circuit
analysis, optimal control, biological models, data classification, and so on.

The existence results on periodic solutions were usually obtained by analytic techniques
or various fixed point theorems. In [1, 2], Guo and Yu developed a new method to study
the existence and multiplicity of periodic and subharmonic solutions of the second order
difference equation via variational methods. In 2005, Zhou et al. [3] applied the same ap-
proach for subharmonic solutions of a class of subquadratic Hamiltonian systems. Here
we also point out the contribution of Mawhin [4, 5] in the study of second order nonlinear
difference systems with ϕ-Laplacian and periodic potential by using critical point theory.

During the past decade, periodic solutions, subharmonic solutions, and homoclinic or-
bits for second order discrete Hamiltonian systems have captured special attention, and
some solvability conditions have been given under distinct hypotheses on potential func-
tion [6–13].

Especially, Yan et al. [12] considered the second order discrete Hamiltonian system

�2x(k – 1) + ∇F
(
k, x(k)

)
= 0, t ∈ Z, (1.1)

where Z is the set of all integers, �x(k) = x(k + 1) – x(k) is the forward difference, �2x(k) =
�(�x(k)), F : Z×R

N →R, and ∇F(k, x) denotes the gradient of F(k, x) in x.
In [12], the authors obtained some existence results for system (1.1) with partially peri-

odic potentials and sublinear nonlinearity.
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Theorem A ([12]) Suppose that F satisfies the following conditions:
(F1) There exists an integer r ∈ [0, N] such that F(k, x) is Ti-periodic in xi, 1 ≤ i ≤ r,

where xi is the ith component of x = (x1, x2, . . . , xN )T ∈R
N .

(F2) There exist constants M1 > 0, M2 > 0, and 0 ≤ α < 1 such that

∣
∣∇F(k, x)

∣
∣ ≤ M1|x|α + M2

for all (k, x) ∈ Z[1, T] ×R
N , where Z[a, b] := Z∩ [a, b] for every a, b ∈ Z with a ≤ b.

(F3) lim|x|→∞ |x|–2α
∑T

k=1 F(k, x) = +∞, x ∈ {0} ×R
N–r .

Then problem (1.1) possesses at least r + 1 distinct T-periodic solutions.

Recently, Jiang et al. [13] extended Theorem A, and they proved the same results under
more general coercive condition:

(F4) lim inf|x|→∞ |x|–2α
∑T

k=1 F(k, x) > L, x ∈ {0} ×R
N–r , where L is a positive constant.

Theorem B ([13]) Suppose that F satisfies (F1), (F2), and (F4). Then problem (1.1) pos-
sesses at least r + 1 distinct T-periodic solutions.

In [10, 13], when F satisfies (F1) and ∇F(k, x) is growing linearly, that is, there exist
constants M1 > 0 and M2 > 0, such that

∣∣∇F(k, x)
∣∣ ≤ M1|x| + M2

for all (k, x) ∈ Z[1, T] × R
N , the authors considered the multiple periodic solutions for

system (1.1) and got some interesting results.
In recent years, many scholars were interested in difference equations involving the dis-

crete variable exponent Laplacian operator. For instance, the case of homoclinic solutions
of a class of p(k)-Laplacian difference systems was first considered by Chen et al. [14]. The
existence of nontrivial homoclinic solutions was obtained by using the mountain pass the-
orem and the symmetric mountain pass theorem.

In [15], when N = 1, Bereanu et al. considered the existence of periodic or Neumann
boundary value problems for the discrete p(k)-Laplacian equations of this type

–�
(∣∣�x(k – 1)

∣∣p(k)–2
�x(k – 1)

)
= f (k),

through the use of Rabinowitz saddle point theorem, where p(k) : Z[0, T] → (1, +∞) and
the nonlinear term f (k) : Z[0, T] →R is continuous and bounded.

In this paper, we further investigate the existence and multiplicity of periodic solution
for the nonautonomous discrete p(k)-Laplacian system

–�
(∣∣�x(k – 1)

∣
∣p(k)–2

�x(k – 1)
)

= ∇F
(
k, x(k)

)
, k ∈ Z, (1.2)

where the variable exponent p(k) : Z[0, T] → (1, +∞) satisfies p(0) = p(T), T is a positive
integer, and �x(k) = x(k + 1) – x(k) is the forward difference operator, F : Z × R

N �→ R is
continuously differentiable in x for every k ∈ Z and T-periodic in k for all x ∈R

N .
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We may think of (1.2) as being a discrete analogue of the following p(t)-Laplacian system:

–
d
dt

(∣∣ẋ(t)
∣
∣p(t)–2ẋ(t)

)
= ∇F

(
t, x(t)

)
,

where �(x) = – d
dt (|ẋ(t)|p(t)–2ẋ(t)) is said to be p(t)-Laplacian.

During the last fifteen years, differential and partial differential equations with variable
exponent growth conditions have become increasingly popular. This type of problems
has very strong background, the p(t)-Laplacian systems provide a natural description of
the physical phenomena with “pointwise different properties” which first arose from the
nonlinear elasticity theory, see [16]. In [17], the authors proposed a framework for image
restoration based on a nonhomogeneous p(t)-Laplacian operator.

In addition, problem (1.2) is also very interesting from a purely mathematical point of
view. When the variable exponent p(k) ≡ 2, discrete p(k)-Laplacian system (1.2) becomes
the second order discrete Hamiltonian system (1.1), problem (1.2) represents the exten-
sion to the variable exponent space setting. The p(k)-Laplacian operator possesses more
complicated nonlinearity than the constant case, for example, it is inhomogeneous, which
provokes some mathematical difficulties. We point out that commonly known methods
and techniques for studying constant exponent equations fail in the setting of problems
involving variable exponents, thus our problem (1.2) is more difficult and more delicate.

Inspired by the above-mentioned papers, the objective of this article is to use a control
function ω(|x|) instead of |x|α in conditions (F2), (F3), and (F4). By using the theory of
variable exponent Sobolev spaces and the generalized saddle point theorem in [18], we
will prove the existence of multiple periodic solutions for (1.2) for a new and large range
of nonlinear terms.

Now, we state the assumptions on function F :
(F5) There exist constants K0 > 0, K1 > 0, K2 > 0, α ∈ [0, p– – 1) and a nonnegative

function ω ∈ C([0,∞), [0,∞)) such that
(ω1) ω(s) ≤ ω(t), ∀s ≤ t, s, t ∈ [0,∞).
(ω2) ω(s + t) ≤ K0(ω(s) + ω(t)), ∀s, t ∈ [0,∞).
(ω3) 0 ≤ ω(s) ≤ K1sα + K2, ∀s, t ∈ [0,∞).
(ω4) ω(s) → ∞, as s → ∞.

Moreover, there exist f , g : Z[0, T] →R
+ such that

∣∣∇F(k, x)
∣∣ ≤ f (k)ω

(|x|) + g(k)

for all (k, x) ∈ Z[1, T] ×R
N .

(F6) Let 1
q+ + 1

p– = 1, and

lim inf|x|→∞

∑T
k=1 F(k, x)
ωq+ (|x|) >

p–(2K0C0
∑T

k=1 f (k))q+

q+(p– – 1)
,

as x ∈ {0} ×R
N–r , where C0 is a positive constant.

Our main results are the following theorems.

Theorem 1.1 Suppose that F satisfies (F1), (F5), and (F6). Then problem (1.2) possesses at
least r + 1 distinct T-periodic solutions.
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Remark 1.1 Obviously, Theorem 1.1 generalizes Theorem A, which corresponds to the
spacial case p(k) = 2, f (k) = M1, g(k) = M2 and control function ω(|x|) = |x|α .

Comparing with the results in [6–11, 13–15], Theorem 1.1 is a different result even in
the case p(k) = 2. For example, x = (x1, x2, . . . , xN )T ∈R

N , let p(k) = 2 and

F(t, x) = M1 ln
3
2

[

1 +

(

r + 1 +
r∑

j=1

sin2 xj +
1
2

N∑

j=r+1

x2
j

)]

+ M2 ln

[

1 +

(

r + 1 +
r∑

j=1

sin2 xj +
1
2

N∑

j=r+1

x2
j

)]

,

where M1 and M2 are positive constants. Then F satisfies (F1) with Ti = π , i = 1, 2, . . . , r.
Choose

f (t) =
3
2

M1, g(t) = M2, K0 = 2

and control function

ω
(|x|) = ln

1
2
[
1 +

(
r + 1 + |x|2)],

it is easy to see that all the conditions of Theorem 1.1 hold, but F is not covered by the
results in [6–13].

Remark 1.2 When p(k) ≡ 2, (F5) was introduced in [19], which is an extension of the usual
sublinear growth condition, that is, there exist α ∈ [0, 1) and f , g : Z[0, T] →R

+ such that

∣∣∇F(k, x)
∣∣ ≤ f (k)|x|α + g(k)

for all (k, x) ∈ Z[1, T] × R
N . From (F5), we can see that the nonlinearity ∇F(k, x) grows

slightly slower than |x|α . Comparing with the results in [19], the periodicity and coercivity
conditions in our theorems are only in a part of variables of potentials, and

lim inf|x|→∞

∑T
k=1 F(k, x)
ωq+ (|x|)

has appropriate lower bound.

By Theorem 1.1, it is easy to obtain the following corollary.

Corollary 1.1 Suppose that (F1), (F5) hold and

lim|x|→∞

∑T
k=1 F(k, x)
ωq+ (|x|) = +∞,

as x ∈ {0} × R
N–r , where 1

q+ + 1
p– = 1. Then problem (1.2) possesses at least r + 1 distinct

T-periodic solutions.
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2 Preliminaries
For the reader’s convenience, we first give some necessary background knowledge and
propositions concerning the generalized Lebesgue–Sobolev spaces. We can refer the
reader to [14, 15, 20].

Let p(k) : Z[0, T] → (1, +∞) satisfy p(0) = p(T). From now on, we shall employ the usual
notations: p– = mink∈[0,T] p(k), p+ = maxk∈[0,T] p(k).

Define

lp(k) =

{

x(k) : Z[0, T + 1] → R
N

∣∣
∣

T+1∑

k=1

|x|p(k) < ∞
}

with the norm

|x|p(k) = inf

{

λ > 0
∣∣∣

T+1∑

k=1

∣∣
∣∣

x
λ

∣∣
∣∣

p(k)

≤ 1

}

.

Define

E =
{

x(k) ∈ lp(k) | �x(k – 1) ∈ lp(k), x(0) = x(T + 1)
}

,

and

Ẽ =

{

x(k) ∈ E
∣∣
∣ x :=

1
T

T∑

k=1

x(k) = 0

}

.

For x ∈ E, we write

‖x‖ = |x| + ‖̃x‖p(k), (2.1)

then ‖ · ‖ is an equivalent norm on E, where x = 1
T

∑T
k=1 x(k) ∈ R

N and x̃(k) := x(k) – x ∈ Ẽ.
Obviously, E and Ẽ are finite dimensional, and

‖̃x‖ = ‖̃x‖p(k). (2.2)

This enables us to split

E = R
N ⊕ Ẽ.

Proposition 2.1 ([14]) If we denote

ρ(x) =
T+1∑

k=1

|x|p(k), ∀x ∈ lp(k),

then
(i) |x|p(k) < 1 (= 1; > 1) ⇔ ρ(x) < 1 (= 1; > 1);

(ii) |x|p(k) > 1 ⇒ |x|p–

p(k) ≤ ρ(x) ≤ |x|p+

p(k);
(iii) |x|p(k) < 1 ⇒ |x|p+

p(k) ≤ ρ(x) ≤ |x|p–

p(k).
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Proposition 2.2 ([15]) For all x̃ ∈ Ẽ and x ∈ E, one has
(i) ‖̃x‖ < 1 ⇒ ‖̃x‖p+ ≤ ∑T+1

k=1 |�x(k – 1)|p(k–1) ≤ ‖̃x‖p– ;
(ii) ‖̃x‖ > 1 ⇒ ‖̃x‖p– ≤ ∑T+1

k=1 |�x(k – 1)|p(k–1) ≤ ‖̃x‖p+ ;
(iii) ‖̃x‖ = 1 ⇒ ∑T+1

k=1 |�x(k – 1)|p(k–1) = 1.

Proposition 2.3 ([20]) For all x ∈ E, there exists a constant C0 > 0 such that

‖x‖∞ := max
k∈[0,T+1]

∣
∣x(k)

∣
∣ ≤ C0‖x‖.

Combining Proposition 2.2 with Proposition 2.3, we can obtain the following.

Proposition 2.4 For all x̃ ∈ Ẽ and x ∈ E, we have

‖̃x‖ ≤
(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

+ 1 (2.3)

and

‖̃x‖∞ ≤ C0

[(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

+ 1

]

. (2.4)

Applying Proposition 2.2, from (2.1) and (2.2), it is easy to prove the following.

Proposition 2.5 For all x ∈ E, we have

‖x‖ → ∞ ⇒ |x| +

(T+1∑

k=1

|�x(k – 1)|p(k–1)

) 1
p–

→ ∞.

The functional on E given by

ϕ(x) =
T+1∑

k=1

|�x(k – 1)|p(k–1)

p(k – 1)
–

T∑

k=1

F
(
k, x(k)

)
, ∀x ∈ E,

is continuously differentiable and weakly semicontinuous on E. Moreover, we have

〈
ϕ′(x), y

〉
=

T+1∑

k=1

(∣∣�x(k – 1)
∣
∣p(k–1)–2

�x(k – 1),�y(k – 1)
)

–
T∑

k=1

(∇F
(
k, x(k)

)
, y(k)

)

for all x, y ∈ E. Then the critical points of ϕ correspond to the solutions of system (1.2).
Take

x̂(t) = Px + Qx + x̃(k),

where

Px =
N∑

i=r+1

(x, ei)ei,
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and

Qx =
r∑

i=1

[
(ū, ei) – liTi

]
ei,

and for 1 ≤ i ≤ r, li is the unique integer such that

0 ≤ (x, ei) – liTi < Ti,

and {e1, e2, . . . , eN } is the canonical basis of RN . Hence, |Qx| is bounded and

|Qx| ≤
( r∑

i=1

T2
i

) 1
2

. (2.5)

Define G = {∑r
i=1 kiTiei | ki ∈ Z, 1 ≤ i ≤ r}, then G is a discrete subgroup of E. Let E/G =

X × V , X = Y ⊕ W , where

W = Ẽ =

{

x ∈ E
∣
∣∣ x :=

1
T

T∑

k=1

x(k) = 0

}

,

Y = span{er+1, . . . , eN },

and

V = span{e1, . . . , er}/G,

and V is isomorphic to the torus Tr . Let π : E → E/G be the canonical surjection and
ψ : X × V →R by ψ(π (x)) = ϕ(x). By (F1), we have

F
(
t, x(t)

)
= F

(

t, x̂(t) +
r∑

i=1

kiTiei

)

= F
(
t, x̂(t)

)
,

∇F
(
t, x(t)

)
= ∇F

(

t, x̂(t) +
r∑

i=1

kiTiei

)

= ∇F
(
t, x̂(t)

)

and

ϕ(x) = ϕ (̂x), ϕ′(x) = ϕ′ (̂x).

Then

ψ
(
π (x)

)
= ψ

(
π (̂x)

)
, ψ ′(π (u)

)
= ψ ′(π (û)

)
.

Definition 2.1 ([21]) Suppose that ψ satisfies the (PS) condition, that is, every sequence
{xn} of X × V such that ψ{xn} is bounded and ψ ′{xn} → 0 as n → ∞ possesses a conver-
gent subsequence.
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To prove the main theorem of the paper, we need the following generalized saddle point
theorem due to Liu.

Lemma 2.1 (Theorem 1.7 in [18]) Let X be a Banach space with a decomposition X = Y +
W , where Y and W are two subspaces of X with dimY < +∞. Let V be a finite-dimensional,
compact C2-manifold without boundary. Let ψ : X × V →R be a C1-function and satisfy
the (PS) condition. Suppose that there exist constants ρ > 0 and γ < β such that

(a) inf
x∈W×V

ψ(x) ≥ β ,

(b) sup
x∈S×V

ψ(x) ≤ γ ,

where S = ∂D, D = {z ∈ Y | |z| ≤ ρ}. Then the functional ψ has at least cuplength(V ) + 1
critical points.

3 Proof of Theorem 1.1
Now, we give the proof of Theorem 1.1. For the sake of convenience, we denote by Ci

(i = 1, 2, . . . , 27) various positive constants.

Proof of Theorem 1.1 Now, we use Lemma 2.1 to prove this theorem. Firstly, we prove
that ψ satisfies the (PS) condition. Suppose that {π (xn)} is a (PS) sequence for ψ , that is,
ψ(π (xn)) is bounded and ψ ′(π (xn)) → 0. Then ϕ(xn) is bounded and ϕ′(xn) → 0.

By properties (ω1)–(ω3) of (F5), we have

ω
(|Px̄| + |Qx̄| +

∣∣x̃(k)
∣∣)

≤ K0
[
ω

(|Px̄|) + ω
(|Qx̄| +

∣
∣̃x(k)

∣
∣)]

≤ K0
[
ω

(|Px̄|) + K0ω
(|Qx̄|) + K0ω

(∣∣̃x(k)
∣
∣)]

≤ K0
[
ω

(|Px̄|) + K0
(
K1|Qx̄|α + K2

)
+ K0

(
K1

∣∣̃x(k)
∣∣α + K2

)]

≤ K0
[
ω

(|Px̄|) + K0K1|Qx̄|α + K0K1‖̃x‖α
∞ + 2K0K2

]
.

Then one has
∣
∣∣
∣∣

T∑

k=1

[
F
(
k, x̂(k)

)
– F(k, Px̄)

]
∣
∣∣
∣∣

=

∣∣∣
∣∣

T∑

k=1

∫ 1

0

(∇F
(
k, Px̄ + s

(
Qx̄ + x̃(k)

))
, Qx̄ + x̃(k)

)
ds

∣∣∣
∣∣

≤
T∑

k=1

∫ 1

0
f (k)ω

(∣∣Px̄ + s
(
Qx̄ + x̃(k)

)∣∣)
∣
∣Qx̄ + x̃(k)

∣
∣ds +

T∑

k=1

∫ 1

0
g(k)

∣
∣Qx̄ + x̃(k)

∣
∣ds

≤
T∑

k=1

∫ 1

0
f (k)ω

(|Px̄| + |Qx̄| +
∣∣x̃(k)

∣∣)(|Qx̄| +
∣∣x̃(k)

∣∣)ds

+
T∑

k=1

∫ 1

0
g(k)

(|Qx̄| +
∣∣x̃(k)

∣∣)ds.
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So, we have

∣∣
∣∣∣

T∑

k=1

[
F
(
k, x̂(k)

)
– F(k, Px̄)

]
∣∣
∣∣∣

≤
T∑

k=1

f (k)K0ω
(|Px̄|)(|Qx̄| + ‖x̃‖∞

)

+
T∑

k=1

f (k)K2
0 K1‖x̃‖α

∞
(|Qx̄| + ‖x̃‖∞

)

+
T∑

k=1

f (k)K0
[
K0K1|Qx̄|α + 2K0K2

](|Qx̄| + ‖x̃‖∞
)

+
T∑

k=1

g(k)
(|Qx̄| + ‖x̃‖∞

)
.

From (2.4) and (2.5), we obtain

∣
∣∣
∣∣

T∑

k=1

[
F
(
k, x̂(k)

)
– F(k, Px̄)

]
∣
∣∣
∣∣

≤
T∑

k=1

f (k)K0ω
(|Px̄|)‖x̃‖∞ + C1‖x̃‖α+1

∞ + C2‖x̃‖∞

+ C3 |x̃ |α∞ + C4ω
(|Px̄|) + C5

≤ K0C0

T∑

k=1

f (k)ω
(|Px̄|)

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

+ C6

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) α+1
p–

+ C7

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) 1
p–

+ C8

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) α
p–

+ C9ω
(|Px̄|) + C10. (3.1)

By Young’s inequality, one has that

K0C0

T∑

k=1

f (k)ω
(|Px̄|)

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

≤ 1
q+

(

K0C0

T∑

k=1

f (k)

)q+

ωq+(|Px̄|) +
1

p–

T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1), (3.2)
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where 1
q+ + 1

p– = 1. Hence, by (3.1) and (3.2), we have

∣∣
∣∣
∣

T∑

k=1

[
F
(
k, x̂(k)

)
– F(k, Px̄)

]
∣∣
∣∣
∣

≤ 1
q+

(

K0C0

T∑

k=1

f (k)

)q+

ωq+(|Px̄|) +
1

p–

T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

+ C6

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) α+1
p–

+ C7

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) 1
p–

+ C8

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) α
p–

+ C9ω
(|Px̄|) + C10. (3.3)

In a way similar to the proof of (3.3), we have

∣
∣∣
∣∣

T∑

k=1

(∇F
(
k, x̂(k)

)
, x̃(k)

)
∣
∣∣
∣∣

≤
T∑

k=1

f (k)ω
(∣∣̂x(k)

∣∣)∣∣̃x(k)
∣∣ +

T∑

k=1

g(k)
∣∣̃x(k)

∣∣

≤
T∑

k=1

f (k)ω
(|Px̄| + |Qx̄| +

∣
∣x̃(k)

∣
∣)

∣
∣̃x(k)

∣
∣ +

T∑

k=1

g(k)
∣
∣̃x(k)

∣
∣

≤ 1
q+

(

K0C0

T∑

k=1

f (k)

)q+

ωq+(|Px̄|) +
1

p–

T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

+ C11

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) α+1
p–

+ C12

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

+ C13. (3.4)

Then for n large enough, by (3.4), we have

‖̃xn‖ ≥ 〈
ϕ′(xn), x̃n

〉

=
〈
ϕ′ (̂xn), x̃n

〉

=
T+1∑

k=1

∣
∣�xn(k – 1)

∣
∣p(k–1) –

T∑

k=1

(∇F
(
k, x̂n(k)

)
, x̃n(k)

)

≥
(

1 –
1

p–

) T+1∑

k=1

∣∣�xn(k – 1)
∣∣p(k–1)

– C11

(T+1∑

k=1

∣∣�xn(k – 1)
∣∣p(k–1)

) α+1
p–
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– C12

(T+1∑

k=1

∣
∣�xn(k – 1)

∣
∣p(k–1)

) 1
p–

– C13

–
1

q+

(

K0C0

T∑

k=1

f (k)

)q+

ωq+(|Px̄n|
)
. (3.5)

Note (2.3), one has that

‖̃xn‖ ≤
(T+1∑

k=1

∣
∣�xn(k – 1)

∣
∣p(k–1)

) 1
p–

+ 1. (3.6)

Consequently, combining (3.5) with (3.6), we obtain that

1
q+

(

K0C0

T∑

k=1

f (k)

)q+

ωq+(|Px̄n|
)

≥
(

1 –
1

p–

) T+1∑

k=1

∣
∣�xn(k – 1)

∣
∣p(k–1)

– C11

(T+1∑

k=1

∣∣�xn(k – 1)
∣∣p(k–1)

) α+1
p–

– C14

(T+1∑

k=1

∣
∣�xn(k – 1)

∣
∣p(k–1)

) 1
p–

– C15

≥ 1
2

(
1 –

1
p–

) T+1∑

k=1

∣∣�xn(k – 1)
∣∣p(k–1) – C16, (3.7)

where C16 = minS∈[0,+∞){ 1
2 (1 – 1

p– )Sp– – C11Sα+1 – C14S – C15}. Thus, we derive that

T+1∑

k=1

∣∣�xn(k – 1)
∣∣p(k–1) ≤ 2p–(K0C0

∑T
k=1 f (k))q+

q+(p– – 1)
ωq+(|Px̄n|

)
+ C17. (3.8)

According to (3.3) and (3.8), we can obtain

ϕ(xn) = ϕ (̂xn)

=
T+1∑

k=1

|�xn(k – 1)|p(k–1)

p(k – 1)
–

T∑

k=1

F
(
k, x̂n(k)

)

≤ 1
p–

T+1∑

k=1

∣∣�xn(k – 1)
∣∣p(k–1) –

T∑

k=1

F(k, Px̄n)

–

[ T∑

k=1

F
(
k, x̂n(k)

)
–

T∑

k=1

F(k, Px̄n)

]

≤
[

p–(K0C0
∑T

k=1 f (k))q+

q+(p– – 1)
–

∑T
k=1 F(k, Px̄n)
ωq+ (|Px̄n|)

]
ωq+(|Px̄n|

)
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+ C18ω
q+(α+1)

p– (|Px̄n|
)

+ C19ω
q+α
p– (|Px̄n|

)

+ C20ω
q+
p– (|Px̄n|

)
+ C21. (3.9)

We claim that the sequence |Px̄n| is bounded. Otherwise, we assume |Px̄n| → +∞ as n →
∞. Note that (ω4) of (F5), we have ω(|Px̄n|) → +∞, as n → ∞. This together with (F6),
α ∈ [0, p– – 1), and (3.9) yields ϕ(xn) → –∞ as n → ∞, this contradicts the boundedness
of {ϕ(xn)}, so |Px̄n| is bounded. Combining the property (ω4) of (F5), (2.3), and (3.8), we
conclude that ‖̃xn‖ is bounded. Notice that |Qx̄n| is bounded, so {̂xn} is bounded in E. Since
E is a finite dimensional space, then {̂xn} has a convergent subsequence. By π (̂xn) = π (xn),
we conclude that ψ satisfies the (PS) condition.

Secondly, we only need to verify the linking conditions of the generalized saddle point
theorem. For π (x) ∈ W × V , x(k) = x̃(k) + Qx. By the proof of (3.3), we have

∣∣
∣∣
∣

T∑

k=1

[
F
(
k, x̂(k)

)
– F(k, 0)

]
∣∣
∣∣
∣

≤
T∑

k=1

∣
∣∣∣

∫ 1

0

(∇F
(
k, s

(
Qx̄ + x̃(k)

))
, Qx̄ + x̃(k)

)
ds

∣
∣∣∣

≤
T∑

k=1

∫ 1

0
f (k)ω

(∣∣Qx̄ + x̃(k)
∣∣)∣∣Qx̄ + x̃(k)

∣∣ds

+
T∑

k=1

∫ 1

0
g(k)

∣
∣Qx̄ + x̃(k)

∣
∣ds

≤ C22

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) α+1
p–

+ C23

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) α
p–

+ C24

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) 1
p–

+ C25.

Hence

ψ
(
π (x)

)
= ψ

(
π

(
x̃(k) + Qx̄

))

= ϕ
(
x̃(k) + Qx̄

)

=
T+1∑

k=1

|�x(k – 1)|p(k–1)

p(k – 1)
–

T∑

k=1

F(k, 0)

–

[ T∑

k=1

F
(
k, x̂(k)

)
–

T∑

k=1

F(k, 0)

]

≥ 1
p+

T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)
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– C22

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) α+1
p–

– C23

(T+1∑

k=1

∣
∣�x(k – 1)

∣
∣p(k–1)

) α
p–

– C24

(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

– C25.

By Proposition 2.5 and the boundedness of |Qx̄|, one has that

‖x‖ → +∞ ⇒
(T+1∑

k=1

∣∣�x(k – 1)
∣∣p(k–1)

) 1
p–

→ +∞

on W × V . Notice α ∈ [0, p– – 1), we obtain that

ψ
(
π (x)

) → +∞

as ‖x‖ → –∞, for all π (x) ∈ W × V , which implies that there exists β ∈R such that

ψ
(
π (x)

) ≥ β ,

on W × V . Thus part (a) of Lemma 2.1 is verified.
For π (x) ∈ Y × V , x = Px̄ + Qx̄. By (F5) and (2.5), we have

ψ
(
π (x)

)
= ϕ(x)

= ϕ (̂x)

= –
T∑

k=1

F(k, Px̄ + Qx̄)

= –
T∑

k=1

F(k, Px̄) –
T∑

k=1

∫ 1

0

(∇F(k, Px̄ + sQx̄), Qx̄
)

ds

≤ –
T∑

k=1

F(k, Px̄) +
T∑

k=1

f (k)ω
(|Px̄ + Qx̄|)|Qx̄| +

T∑

k=1

g(k)|Qx̄|

≤
[

–
p–(K0C0

∑T
k=1 f (k))q+

q+(p– – 1)
+ ε

]
ωq+(|Px̄|) + C26ω

(|Px̄|) + C27.

Note that ω(|Px̄|) → +∞ as |Px̄| → ∞, and q+ > 1, for sufficiently small ε, we can obtain
that

ψ
(
π (x)

) → –∞ as |Px̄| → ∞

uniformly for π (Qx̄) ∈ V , where x ∈R
N . So part (b) of Lemma 2.1 holds.

Now, the functional ψ satisfies all the hypotheses of the generalized saddle point theo-
rem, so it has at least cuplength(V ) + 1 critical points, and since V is the torus Tr , it implies
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that cuplength(V ) = r. Hence ϕ has at least r + 1 critical points. Therefore, problem (1.2)
has at least r + 1 distinct solutions in E. The proof of Theorem 1.1 is completed. �
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