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Abstract
In this paper, we establish a concave theorem and some inequalities for the
generalized digamma function. Hence, we give complete monotonicity property of a
determinant function involving all kinds of derivatives of the generalized digamma
function.
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1 Introduction
It is well known that the Euler gamma function is defined by

�(x) =
∫ ∞

0
tx–1e–t dt, x > 0.

The logarithmic derivative of �(x) is called the psi or digamma function. That is,

ψ(x) =
d

dx
ln�(x) =

�′(x)
�(x)

= –γ –
1
x

+
∞∑

n=1

x
n(n + x)

,

where γ = 0.5772 . . . is the Euler–Mascheroni constant. The gamma, digamma, and
polygamma functions play an important role in the theory of special function, and have
many applications in many other branches such as statistics, fractional differential equa-
tions, mathematical physics, and theory of infinite series. The reader may see related ref-
erences [5, 7, 9, 13, 16, 23–28].

In [6], the k-analogue of the gamma function is defined for k > 0 and x > 0 as follows:

�k(x) =
∫ ∞

0
tx–1e– tk

k dt

= lim
n→∞

n!kn(nk)
x
k –1

(x)n,k
,
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where limk→1 �k(x) = �(x). It is natural that the k-analogue of the digamma function is
defined for x > 0 by

ψk(x) =
d

dx
log�k(x) =

�′
k(x)

�k(x)
.

It is worth noting that Nantomah et al. gave (p, k)-analogue of the gamma and the
digamma functions in [15]. Further, they established some inequalities involving these
new functions. The reader may see references [14, 15].

Very recently, Alzer and Jameson [2] presented a harmonic mean inequality for the
digamma function, and also showed some interesting inequalities. It is natural to ask if
one can generalize these results to the generalized digamma function with single param-
eters. This is the first object in this paper.

The second object of this paper came from the article of Ismail and Laforgia. In [11],
they proved complete monotonicity of a determinant function involving the derivatives
of the digamma function. Using their idea, we prove that their conclusion is also true for
the generalized digamma function. In particular, some of the work about the complete
monotonicity of these special functions may be found in [3, 4, 8, 10, 12, 17–22].

2 Lemmas
Lemma 2.1 For k > 0 and x > 0, the following identities hold true:

�k(x) = k
x
k –1�

(
x
k

)
, (2.1)

ψk(x) =
ln k
k

+
1
k
ψ

(
x
k

)
. (2.2)

Proof Using the substitution t
k√k

= u and uk = p, we easily obtain

�k(x) =
( k√k

)x
∫ ∞

0

(
t

k√k

)x–1

e
–( t

k√k
)k

d
(

t
k√k

)

= k
x
k

∫ ∞

0
ux–1e–uk

du

= k
x
k –1

∫ ∞

0
p

x
k –1e–p dp

= k
x
k –1�

(
x
k

)
.

So, we prove formula (2.1). To (2.2), direct computation yields

ψk(x) =
�′

k(x)
�k(x)

=
[k

x
k –1�( x

k )]′

[k
x
k –1�( x

k )]

=
ln k
k

+
1
k
ψ

(
x
k

)
. �

Lemma 2.2 ([1, 2]) For x > 0, we have

ψ ′(x) <
1
x

+
1

2x2 +
1

6x3 (2.3)
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and

ψ ′′(x) < –
1
x2 –

1
x3 . (2.4)

Lemma 2.3 For k, x > 0, m ∈N, we have

ψ
(m)
k (x) = (–1)m+1m!

∞∑
n=0

1
(nk + x)m+1 (2.5)

and

ψ
(m)
k (x) = (–1)m+1

∫ ∞

0

tm

1 – e–kt e–xt dt. (2.6)

Proof Formula (2.5) may be found in reference [15]. By using formula (9) in reference [15],
we have

ψ
(m)
k (x) = lim

p→∞ψ
(m)
p,k (x)

= lim
p→∞(–1)m+1

∫ ∞

0

(
1 – e–k(p+1)t

1 – e–kt

)
tme–xt dt

= (–1)m+1
∫ ∞

0

1
1 – e–kt tme–xt dt.

So, we prove formula (2.6). �

3 Main results
Theorem 3.1 For k > 0, the function x2ψ ′

k(x) is strictly increasing on (0,∞).

Proof Using Lemma 2.1, we have

ψ ′
k(x) =

1
k2 ψ ′

(
x
k

)
and ψ ′′

k (x) =
1
k3 ψ ′′

(
x
k

)
.

Combining with the identity ψ (m)(x) = (–1)m+1m!
∑∞

n=0
1

(n+x)m+1 , we get

d
dx

(
x2ψ ′

k(x)
)

=
2x
k2 ψ ′

(
x
k

)
+

x2

k3 ψ ′′
(

x
k

)

= 2x
∞∑

n=0

nk
(nk + x)3 > 0. �

Theorem 3.2 For k > 0, the function ψk( 1
x ) is strictly concave on (0,∞).

Proof Easy computation results in

d
dx

(
ψk

(
1
x

))
= –

1
x2 ψ ′

k

(
1
x

)
.

Considering Theorem 3.1, we complete the proof. �
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Theorem 3.3 For k ≥ 1
3√3

= 0.693361 . . . , the function

λk(x) = ψk(x) + ψk

(
1
x

)

is strictly concave on (0,∞).

Proof By differentiation and applying Lemma 2.1, we easily obtain

λ′
k(x) = ψ ′

k(x) –
1
x2 ψ ′

k

(
1
x

)
,

λ′′
k (x) = ψ ′′

k (x) +
2
x3 ψ ′

k

(
1
x

)
+

1
x4 ψ ′′

k

(
1
x

)
,

and

k3x4λ′′
k (x) = x4ψ ′′

(
x
k

)
+ 2kxψ ′

(
1
kx

)
+ ψ ′′

(
1
kx

)
.

Applying Lemma 2.2, k ≥ 1
3√3

, and the recurrence relations

ψ ′
(

1
kx

+ 1
)

= ψ ′
(

1
kx

)
– k2x2,

ψ ′′
(

1
kx

+ 1
)

= ψ ′′
(

1
kx

)
+ 2k3x3,

we have

k3x4λ′′
k (x) = x4ψ ′′

(
x
k

)
+ 2kxψ ′

(
1
kx

)
+ ψ ′′

(
1
kx

)

< x4
(

–
k2

x2 –
k3

x3

)
+ 2kx

[
kx

1 + kx
+

k2x2

2(1 + kx)2 +
k3x3

6(1 + kx)3

]

–
k2x2

(1 + kx)2 –
k3x3

(1 + kx)3

= –
kx

3(1 + kx)3

[
3k2 + 9k3x + 9k2x2 + k2(3k3 – 1

)
x3 + 3k4x4]

< 0.

This implies that λk(x) is strictly concave on (0,∞). �

Theorem 3.4 For x ∈ (0,∞) and k ≥ 1
3√3

, we have

ψk(x) + ψk

(
1
x

)
≤ 2 ln k + 2ψ( 1

k )
k

. (3.1)

Proof Since the function λk(x) = ψk(x) + ψk( 1
x ) is strictly concave on (0,∞), we get

λ′
k(x) ≥ λ′

k(1) = 0, x ∈ (0, 1],
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and

λ′
k(x) ≤ λ′

k(1) = 0, x ∈ [1,∞).

It follows that λk is increasing on (0, 1] and decreasing on [1,∞). Hence, λk(x) ≤ λk(1) for
x > 0. The proof is complete. �

Remark 3.1 Let γk = –ψk(1) = – ln k
k – 1

k ψ( 1
k ) be the k-analogue of the Euler–Mascheroni

constant. It is obvious that limk→1 γk = γ .

Definition 3.1 It is known that the generalized digamma function ψk(x) is strictly increas-
ing on (0,∞) with ψk(0+)ψk(∞) < 0. So, the function has a sole positive root in (0, ∞). We
define this positive root for xk . That is,

ln k + ψ

(
xk

k

)
= 0.

Theorem 3.5 For x ∈ (0, 1) and 1
3√3

≤ k ≤ 1, we have

ψk(1 + x)ψk(1 – x) ≤ ln2 k + γ 2 – 2(γ + 1) ln k
k2 . (3.2)

Proof Considering 1
3√3

≤ k ≤ 1 and the definition of xk , we have

1
3√3

x0 ≤ xk ≤ x0,

where x0 satisfies ψ(x0) = 0 with x0 = 1.46163 . . . .
Case 1. If x ∈ [xk – 1, 1), then we have ψk(1 – x) ≤ 0 ≤ ψk(1 + x). This implies that formula

(3.2) holds.
Case 2. If x ∈ (0, xk – 1], using the power series expansion

ψ(1 + z) = –γ +
∞∑

k=2

(–1)kζ (k)zk–1, |z| < 1, (3.3)

we obtain

ψk(1 + x) ≥ ψk(k + x) =
ln k
k

+
1
k
ψ

(
1 +

x
k

)

=
ln k
k

+
1
k

[
–γ +

∞∑
k=2

(–1)kζ (k)xk–1

]
,

where ζ (k) =
∑∞

n=1
1

nk is the Riemann zeta function.
Furthermore, we have

0 < –ψk(1 + x) ≤ –
ln k
k

+
1
k
[
γ – ζ (2)x + ζ (3)x2]. (3.4)
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Completely similar to (3.4), we have

0 < –ψk(1 – x) ≤ –
ln k
k

+
1
k

[
γ + ζ (2)y + ζ (3)

∞∑
k=2

xk

]

≤ –
ln k
k

+
1
k
[
γ + ζ (2)x + ζ (3)x2]. (3.5)

Combining (3.4) with (3.5), we obtain

ψk(1 + x)ψk(1 – x) ≤ ln2 k + γ 2 – 2(γ + 1) ln k
k2

by using ζ (3)x2 < 1. �

Theorem 3.6 For x ∈ (0,∞) and 1
3√3

≤ k ≤ 1, we have

ψk(x) · ψk

(
1
x

)
≤ ln2 k + γ 2 – 2(γ + 1) ln k

k2 . (3.6)

Proof We only need to prove (3.6) for x ≥ 1. If x ≥ xk , then we get ψk( 1
x ) ≤ 0 ≤ ψk(x). It

follows that inequality (3.6) holds true.
If x ∈ (1, xk] and setting x = 1 + z, we get

ψk(1 – z) ≤ ψk

(
1
x

)
.

Therefore, we have

ψk(x) · ψk

(
1
x

)
= ψk(1 + z)ψk

(
1
x

)

≤ ψk(1 + z)ψk(1 – z)

≤ ln2 k + γ 2 – 2(γ + 1) ln k
k2

by using Theorem 3.5. �

Corollary 3.1 For x ∈ (0,∞) and 1
3√3

≤ k ≤ 1, we have

2ψk(x)ψk( 1
x )

ψk(x) + ψk( 1
x )

≥ ln2 k + γ 2 – 2(γ + 1) ln k
k[ln k + ψ( 1

k )]
. (3.7)

Proof Applying Theorems 3.4 and 3.6, we obtain

2ψk(x)ψk( 1
x )

ψk(x) + ψk( 1
x )

≥ 2 · ln2 k + γ 2 – 2(γ + 1) ln k
k2

1
ψk(x) + ψk( 1

x )

≥ ln2 k + γ 2 – 2(γ + 1) ln k
k2

k
ln k + ψ( 1

k )
.

The proof is complete. �
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Next, for m, n, j ∈N, we define the function μn by

μn(x) =

∣∣∣∣∣∣∣∣∣∣

ψ
(m)
k (x) ψ

(m+j)
k (x) · · · ψ

(m+nj)
k (x)

ψ
(m+j)
k (x) ψ

(m+2j)
k (x) · · · ψ

[m+(n+1)j]
k (x)

...
...

...
ψ

(m+nj)
k (x) ψ

(m+(n+1)j)
k (x) · · · ψ

(m+2nj)
k (x)

∣∣∣∣∣∣∣∣∣∣
.

Completely similar to the method in [11], the following Theorem 3.7 can be proved.

Theorem 3.7 For m, n, j ∈N, then (–1)(n+1)(m+1)μn(x) is completely monotonic on (0,∞).

Proof Using Lemma 2.3, we have

μn(x) = (–1)n+1
∫ 0

–∞
· · ·

∫ 0

–∞︸ ︷︷ ︸
n+1 times

∣∣∣∣∣∣∣∣∣∣

um
0 um+j

0 · · · um+nj
0

um+j
1 um+2j

1 · · · um+(n+1)j
1

...
...

...
um+nj

n um+(n+1)j
n · · · um+2nj

n

∣∣∣∣∣∣∣∣∣∣

· e
x
k (u0+u1+···+un)∏n

i=0(1 – eui )
du0 du1 · · · dun

= (–1)n+1
∫ 0

–∞
· · ·

∫ 0

–∞︸ ︷︷ ︸
n+1 times

∣∣∣∣∣∣∣∣∣∣∣

um
δ(0) um+j

δ(0) · · · um+nj
δ(0)

um+j
δ(1) um+2j

δ(1) · · · um+(n+1)j
δ(1)

...
...

...
um+nj

δ(n) um+(n+1)j
δ(n) · · · um+2nj

δ(n)

∣∣∣∣∣∣∣∣∣∣∣

· e
x
k (u0+u1+···+un)∏n

i=0(1 – eui )
du0 du1 · · · dun,

where δ is a permutation on 0, 1, 2, . . . , n.
Let sgn(δ) be the sign of δ, we can obtain

un(x) = (–1)n+1
∫ 0

–∞
· · ·

∫ 0

–∞︸ ︷︷ ︸
n+1 times

e
x
k (u0+u1+···+un)∏n

i=0(1 – eui )
sgn(δ)

n∏
i=0

um
i

·

∣∣∣∣∣∣∣∣∣∣

u0
0 uj

0 · · · unj
0

uj
1 u2j

1 · · · u(n+1)j
1

...
...

...
unj

n u(n+1)j
n · · · u2nj

n

∣∣∣∣∣∣∣∣∣∣
du0 du1 · · · dun

=
(–1)n+1

(n + 1)!

∫ 0

–∞
· · ·

∫ 0

–∞︸ ︷︷ ︸
n+1 times

e
x
k (u0+u1+···+un)∏n

i=0(1 – eui )
(u0u1 · · ·un)m

·
∏

0≤i<l≤n

(
uj

i – uj
l
)

du0 du1 · · · dun.
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Replacing u0, u1, . . . , un by –u0, –u1, . . . , –un, we get

μn(x) = (–1)(n+1)(m+1)
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n+1 times

e– x
k (u0+u1+···+un)

·
∏

0≤i<l≤n

(
uj

i – uj
l
) n∏

i=0

un
i

1 – e–ui
du0 du1 · · · dun.

This implies that (–1)(n+1)(m+1)μn(x) is completely monotonic. �

By taking n = 1, the following Corollary 3.2 can be easily obtained.

Corollary 3.2 For m, j ∈N, and x > 0, we have

∣∣∣∣∣
ψ

(m)
k (x) ψ

(m+j)
k (x)

ψ
(m+j)
k (x) ψ

(m+2j)
k (x)

∣∣∣∣∣ > 0.

4 Conclusions
We established a concave theorem and some monotonic properties for the generalized
digamma function, and some interesting inequalities were obtained. These conclusions
generalize Alzer’s results. On the other hand, we prove a completely monotonic property
for the generalized digamma function by using Ismail and Laforgia’s idea.

5 Methods and experiment
Not applicable.
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