
Fang and Song Advances in Difference Equations  (2018) 2018:139 
https://doi.org/10.1186/s13662-018-1580-4

R E S E A R C H Open Access

Existence results for fractional order
impulsive functional differential
equations with multiple delays
Huiping Fang1 and Mingzhu Song2*

*Correspondence:
wyfwywyf@126.com
2College of Mathematics and
Computer Science, Tongling
University, Tongling, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the solution of impulsive fractional differential equations with
multiple delays by using the nonlinear alternative of Leray–Schauder and the Banach
fixed point method. Also, we prove that the equations have at least one solution or
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illustrate the usefulness of the main results.
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1 Introduction
With the development of fractional calculus and the requirement for field applications
of physics, mathematics, and chemical engineering, fractional differential equations have
attracted great interest in recent years (see, for example, [1–8]).

Based on the nonlinear alternative of a Leray–Schauder model, we have considered and
cited previous studies on the existence of solutions of fractional differential equations for
investigating the existence and uniqueness of fractional functional equations. Zhou et al.
have already used Krasnoselskii’s fixed point theory to study the existence and uniqueness
of fractional function equations [9, 10]. Some researchers have studied fractional order
impulsive differential equations and discussed the existence solution of nonlinear func-
tional differential equations with multiple delays [11, 12]. Many authors have investigated
the existence solutions of fractional function equations with impulse [13–18]. However,
there are few studies on the existence of fractional order impulsive functional differential
equations multi-delays. The recent development of the theory of fractional differential
equations has already affected the present research.

In this paper, we should study the solutions of impulsive fractional order functional dif-
ferential equations with multiple delays as follows:

⎧
⎪⎨

⎪⎩

Dαx(t) = f (t, xt) +
∑p

i=1 x(t – ri), t ∈ J = [0, b], t �= tk ,
�x|t=tk = Ik(x(t–

k )), k = 1, 2, . . . , m,
x(t) = φ(t), t ∈ [–τ , 0],

(1.1)
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where p ∈ {1, 2, . . .}, τ = max1≤i≤p{ri}, f : J ×� → X is a given function, where � is a phase
space defined in preliminaries. 0 = t0 < t1 < · · · tm < tm+1 = b, Ik ∈ C(X, X) (k = 1, 2, . . . , m)
are bounded functions. �x|t=tk = x(t+

k ) – x(t–
k ), x(t+

k ) and x(t–
k ) represent the left and right

limits of x(t) at t = tk , respectively. We assume that the histories xt : [–τ , 0] → X, xt(s) =
x(t + s), s ∈ [–τ , 0], belong to an abstract phase space �.

In this paper, we prove the existence and uniqueness of the solution. The idea of the
paper is as follows. In the second part, we give preliminary facts and definition. In the third
part, we prove the existence of solutions. In the fourth part, some examples are given to
illustrate our main results.

2 Preliminaries
In this section, we give some basic definitions, notations, and results which are used
throughout this paper.

Let C(J , X) be the Banach space of continuous functions x from J into X with the norm
‖x‖∞ = sup{x(t) : t ∈ J}, and we introduce the spaces:

� =
{
ψ : [–τ , 0] → X such that ψ(t) is measurable and bounded

}
,

and define ‖ψ‖� by

‖ψ‖� = sup
s∈[–τ ,0]

∣
∣ψ(s)

∣
∣, ∀ψ ∈ �.

We consider the space

PC =
{

x : [0, b] → X such that xk ∈ C
(
(tk , tk+1], X

)
, there exist x

(
t+
k
)

and x
(
t–
k
)

with x(tk) = x
(
t–
k
)
, x0 = φ ∈ �, k = 0, 1, . . . , m

}

to be a Banach space with the norm

‖x‖PC = max
{‖xk‖Jk , k = 0, 1, . . . , m

}
,

where xk ∈ Jk = (tk , tk+1], k = 0, 1, . . . , m.
Set

�b =
{

x : [–τ , b] → X \ x ∈ PC(J , X) ∩ �
}

,

and let ‖ · ‖b be a seminorm in �b defined by

‖x‖b = ‖φ‖� + sup
{∣
∣x(s)

∣
∣ : s ∈ [0, b]

}
, x ∈ �b.

Definition 2.1 The Riemann–Liouville fractional integral operator of order α > 0 of a
function f ∈ Cμ, μ ≥ 1, is defined as

Iαf (t) =
1

�(α)

∫ t

0
(t – s)α–1f (s) ds, t ≥ 0.
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Definition 2.2 The fractional derivative of f (t) in the Caputo sense is defined as

Dαf (t) =
1

�(n – α)

∫ t

0
(t – s)n–α–1f (n)(s) ds,

where n – 1 < α < n, t > 0, f ∈ Cn
–1.

Definition 2.3 The function x ∈ �b as follows:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0) + 1
�(α)

∫ t
0 (t – s)α–1f (s, xs) ds + 1

�(α)
∑q

i=1
∫ t–ri

0 (t – s – ri)α–1x(s) ds
+ 1

�(α)
∑q

i=1
∫ 0

ri
(t – s – ri)α–1φ(s) ds, t ∈ [0, t1];

x(t–
1 ) + I1(x(t–

1 )) + 1
�(α)

∫ t
t1

(t – s)α–1f (s, xs) ds
+ 1

�(α)
∑q

i=1
∫ t–ri

t1–ri
(t – s – ri)α–1x(s) ds, t ∈ [t1, t2];

...
x(t–

m) + Im(x(t–
m)) + 1

�(α)
∫ t

tm
(t – s)α–1f (s, xs) ds

+ 1
�(α)

∑q
i=1

∫ t–ri
tm–ri

(t – s – ri)α–1x(s) ds, t ∈ [tm, b];
φ(t), t ∈ [–τ , 0],

(2.1)

will be called a solution of system (1.1).

For proving the existence of solution of system (1.1), we need to provide the following
lemmas.

Lemma 2.1 For σ ∈ (0, 1] and 0 < a ≤ b, we have |aσ – bσ | ≤ (b – a)σ .

Lemma 2.2 (Hölder’s inequality) Assume that p, q ≥ 1,and 1
p + 1

q = 1. If l ∈ Lp(J), m ∈ Lq(J),
then for 1 ≤ p ≤ ∞, lm ∈ L1(J) and ‖lm‖L1(J) ≤ ‖l‖Lp(J)‖m‖Lq(J).

For measurable functions m : J → R, define the norm

‖m‖Lp(J) =

{
(
∫

J |m(t)|p dt)
1
p , 1 ≤ p < ∞,

infμ(J̄){supt∈J–J̄ |m(t)|}, p = ∞,

where μ(J̄) is the Lebesgue measure on J̄ . Let Lp(J , R) be the Banach space of all Lebesgue
measurable functions m : J → R with ‖m‖Lp(J) < ∞.

Lemma 2.3 If X is a Banach space, U ⊂ X is convex with 0 ∈ U , and F : U → U is a
completely continuous operator, then either

(i) the set E = {x ∈ U : x = λF(x), 0 < λ < 1} is unbounded, or
(ii) F has a fixed point.

3 Main result and proofs
In this section, we give the main results on the existence of solutions of system (1.1).

Firstly, to establish our results, we add the following conditions:
(H1) The map f : J × � → X is said to be an L1-Caratheodory map if

(i) t → f (t, u) is measurable for each u ∈ �,
(ii) u → f (t, u) is continuous for almost all t ∈ J ,

(iii) for each r > 0, there exists hr ∈ L1(J , R+) such that ‖f (t, u)‖ ≤ hr(t) for all
‖u‖� ≤ r and for almost t ∈ J .
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(H2) ‖f (t, u)‖ ≤ p(t)�(‖u‖�) for almost all t ∈ J and all u ∈ �, where p ∈ L1(J , R+) and
� : R+ → (0,∞) is continuous and increasing with

∫ tk

tk–1

m(s) ds ≤
∫ ∞

N̄k–1

ds
�(s) + s

,

where

N̄0 = υ(0) = ‖φ‖� +
qbα

�(α + 1)
‖φ‖�, Nk–1 = sup

x∈[–Kk–2,Kk–2]

∣
∣Ik–1(x)

∣
∣ + Mk–2,

N̄k–1 = Nk–1 +
qταKk–2

�(α + 1)
, Mk–2 = �–1

k–1

(∫ tk–1

tk–2

m(s) ds
)

, k = 2, . . . , m + 2,

and

K0 = max
(
M0,‖φ‖�

)
, Kk = max(Kk–1, Kk), k = 1, . . . , m + 1,

m(t) = max

{
bα

�(α + 1)
p(t),

qbα

�(α + 1)

}

,

�k–1(z) =
∫ z

Nk–1

ds
�(s) + s

, z ≥ N̄k–1, k ∈ {1, 2, . . . , m + 2}.

(H3) The functions Ik : X → X are continuous, there exists a constant dk such that
‖Ik(x)‖ ≤ dk , k = 1, 2, . . . , m, for all x ∈ X .

(H4) There exist a constant β ∈ (0,α) and a real-valued function l(t) ∈ L
1
β (J) such that

‖f (t,φ) – f (t,ψ)‖ ≤ l(t)‖φ – ψ‖� for almost every t ∈ [0, b] and all φ,ψ ∈ �.
(H5) There exist positive constants ck , k = 1, 2, . . . , m, such that ‖Ik(x(t–

k )) – Ik(y(t–
k ))‖ ≤

ck‖x – y‖ for each x, y ∈ X .
Next, we give an existence result based on a nonlinear alternative of Leray–Schauder

applied to a completely continuous operator.

Theorem 3.1 Assume that conditions (H1), (H2), and (H3) are satisfied, then system (1.1)
has at least one solution.

Proof The proof is carried out in the following steps.
Step 1: Consider the following problem:

{
Dαx(t) = f (t, xt) +

∑p
i=1 x(t – ri), t ∈ J = [0, t1],

x(t) = φ(t), t ∈ [–τ , 0].
(3.1)

Define the operator F : �t1 → �t1 by

F(x)(t) =

⎧
⎪⎨

⎪⎩

φ(0) + 1
�(α)

∫ t
0 (t – s)α–1f (s, xs) ds + 1

�(α)
∑q

i=1
∫ t–ri

0 (t – s – ri)α–1x(s) ds
+ 1

�(α)
∑q

i=1
∫ 0

ri
(t – s – ri)α–1φ(s) ds, t ∈ [0, t1],

φ(t), t ∈ [–τ , 0].
(3.2)

Claim 1: F is continuous.
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Let {xn} be a sequence such that xn → x in �t1 . Then, for t ∈ [0, t1], we have

∥
∥f (s, xns, ·) – f (s, xs)

∥
∥ ≤ ε, n → ∞,

because f is continuous, for all t ∈ [0, t1], we have

∣
∣F(xn)(t) – F(x)(t)

∣
∣

≤ 1
�(α)

∫ t

0
(t – s)α–1∣∣f (s, xns) – f (s, xs)

∣
∣ds

+
1

�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1∣∣xn(s) – x(s)

∣
∣ds.

Since f is L1-Caratheodory, we obtain F is continuous.
Claim 2: F maps bounded sets into bounded sets in �t1 .
For any r > 0, there exists l > 0 such that, for each x ∈ Br = {x ∈ �t1 ,‖x‖ ≤ r}, we have

‖F(x)‖ ≤ l.
For each t ∈ [0, t1], we get

∣
∣F(x)(t)

∣
∣ ≤ ∣

∣φ(0)
∣
∣ +

1
�(α)

∫ t

0
(t – s)α–1∣∣f (s, xs)

∣
∣ds

+
1

�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1∣∣x(s)

∣
∣ds

+
1

�(α)

q∑

i=1

∫ 0

ri

(t – s – ri)α–1∣∣φ(s)
∣
∣ds

≤ ‖φ‖� +
qbα

�(α + 1)
‖φ‖� +

qbαr
�(α + 1)

+
bα

�(α + 1)
∥
∥hr(t)

∥
∥

L1 := l.

Claim 3: F maps bounded sets into equicontinuous sets in �t1 .
Let Br be a bounded set of �t1 as in Step 2. Then, for each s1, s2 ∈ [0, t1], s1 < s2, we obtain

∥
∥F(x)(s2) – F(x)(s1)

∥
∥

≤ 1
�(α)

∥
∥hr(t)

∥
∥

L1

(∫ s2

s1

(s2 – s)α–1 ds +
∫ s1

0

[
(s2 – s)α–1 – (s1 – s)α–1]ds

)

+
r

�(α)

q∑

i=1

(∫ s2–ri

s1–ri

(s2 – s – ri)α–1 ds

+
∫ s1–ri

0

[
(s2 – s – ri)α–1 – (s1 – s – ri)α–1]ds

)

≤
[

3‖hr(t)‖L1

�(α + 1)
+

3qr
�(α + 1)

]

(s2 – s1)α .

If s2 → s1, then ‖F(x)(s2) – F(x)(s1)‖ → 0. According to a consequence of Steps 1–3,
and together with the Arzela–Ascoli theorem, we can deduce that F is continuous and
completely continuous.

Claim 4: (A priori bounds).
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Let x be a possible solution of the equation x = λP(x) with λ ∈ (0, 1). Then, for each
t ∈ [0, t1], we have

∣
∣x(t)

∣
∣ ≤ φ(0) +

1
�(α)

∫ t

0
(t – s)α–1f (s, xs) ds +

1
�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1x(s) ds

+
1

�(α)

q∑

i=1

∫ 0

ri

(t – s – ri)α–1φ(s) ds.

By (H3), we have

∣
∣x(t)

∣
∣ ≤ ‖φ‖� +

qbα

�(α + 1)
‖φ‖� +

bα

�(α + 1)

∫ t

0
p(s)�

(‖xs‖�

)
ds +

qbα

�(α + 1)

∫ t

0

∣
∣x(s)

∣
∣ds.

Let us define ω(t) as

ω(t) = sup
{∣
∣x(s)

∣
∣ : –τ ≤ s ≤ t

}
, 0 ≤ t ≤ t1.

Then we have

ω(t) ≤ ‖φ‖� +
qbα

�(α + 1)
‖φ‖� +

∫ t

0
m(s)

(
�

(
ω(s)

)
+ ω(s)

)
ds.

Let us take the right-hand side of the above inequality as υ(t). Then we have

c = υ(0) = ‖φ‖� +
qbα

�(α + 1)
‖φ‖�, ω(t) ≤ υ(t), t ∈ [0, t1]

and

υ ′(t) ≤ m(t)
(
�

(
ω(t)

)
+ ω(t)

)
, t ∈ [0, t1].

Using the nondecreasing character of � , we get

υ ′(t) ≤ m(t)
(
�

(
υ(t)

)
+ υ(t)

)
, t ∈ [0, t1].

Then, for each t ∈ [0, t1], we have

�1
(
υ(t)

)
=

∫ υ(t)

υ(0)

ds
�(s) + s

≤
∫ t1

0
m(s) ds <

∫ ∞

υ(0)

ds
�(s) + s

.

This implies that υ(t) < ∞. So, there is a constant K0 such that υ(t) ≤ �–1
1 (

∫ t1
0 m(s) ds) =

M0, t ∈ [0, t1]. So, ‖xt‖� ≤ ω(t) < υ(t) < M0, t ∈ [0, t1], then‖x‖∞ ≤ max{‖φ‖�, M0} = K0.
Step 2: Consider the following problem:

⎧
⎪⎨

⎪⎩

Dαx(t) = f (t, xt) +
∑p

i=1 x(t – ri), t ∈ [t1, t2],
x(t+

1 ) = x(t–
1 ) + I1(x(t–

1 )),
x(t) = xm–1(t), t ∈ [–τ , t1].

(3.3)
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Define the operator F1 : �t2 → �t2 by

F1(x)(t) =

⎧
⎪⎨

⎪⎩

x(t–
1 ) + I1(x(t–

1 )) + 1
�(α)

∫ t
t1

(t – s)α–1f (s, xs) ds
+ 1

�(α)
∑q

i=1
∫ t–ri

t1–ri
(t – s – ri)α–1x(s) ds, t ∈ [t1, t2],

x(t+
1 ) = x(t–

1 ) + I1(x(t–
1 )).

(3.4)

As in Step 1, we can show that F1 is continuous and completely continuous if x is a
possible solution of the equation x = λF1x for some λ ∈ (0, 1).

Note that

∣
∣x

(
t+
1
)∣
∣ ≤ sup

r∈[–K0,K0]

∣
∣I1(r)

∣
∣ + K0 := N1

and

∣
∣x(t)

∣
∣ ≤ N1 +

1
�(α)

q∑

i=1

∫ t1

t1–ri

(t – s – ri)α–1∣∣x(s)
∣
∣ds +

1
�(α)

∫ t

t1

(t – s)α–1∣∣f (s, xs)
∣
∣ds

+
1

�(α)

q∑

i=1

∫ t–ri

t1

(t – s – ri)α–1∣∣x(s)
∣
∣ds

≤ N1 +
qK0

�(α + 1)
∣
∣(t – t1)α – (t – t1 + ri)α

∣
∣ +

1
�(α)

∫ t

t1

(t – s)α–1∣∣f (s, xs)
∣
∣ds

+
q

�(α + 1)
|t – t1 – ri|α

∫ t

t1

∣
∣x(s)

∣
∣ds.

By (H2), we have

∣
∣x(t)

∣
∣ ≤ N1 +

qταK0

�(α + 1)
+

bα

�(α + 1)

∫ t

t1

p(s)�
(‖xs‖�

)
ds +

qbα

�(α + 1)

∫ t

t1

∣
∣x(s)

∣
∣ds.

Let us define ω(t) as

ω(t) = sup
{∣
∣x(s)

∣
∣ : –τ ≤ s ≤ t

}
, 0 ≤ t ≤ t2.

Then we have

ω(t) ≤ N1 +
∫ t

t1

m(s)
(
�

(
ω(s)

)
+ ω(s)

)
ds.

Let us take the right-hand side of the above inequality as υ(t). Then we have

c = N1 +
qταK0

�(α + 1)
, ω(t) ≤ υ(t), t ∈ [t1, t2]

and

υ ′(t) ≤ m(t)
(
�

(
ω(t)

)
+ ω(t)

)
, t ∈ [t1, t2].
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Using the nondecreasing character of � , we get

υ ′(t) ≤ m(t)
(
�

(
υ(t)

)
+ υ(t)

)
, t ∈ [t1, t2].

Then, for each t ∈ [t1, t2], we have

�2
(
υ(t)

)
=

∫ υ(t)

υ(t1)

ds
�(s) + s

≤
∫ t2

t1

m(s) ds <
∫ ∞

υ(t1)

ds
�(s) + s

.

This implies that υ(t) < ∞. So, there is a constant K1 such that υ(t) ≤ �–1
2 (

∫ t2
t1

m(s) ds) =
M1, t ∈ [t1, t2]. So, ‖xt‖� ≤ ω(t) < υ(t) < M1, t ∈ [t1, t2], then ‖x‖∞ ≤ max{K0, M1} = K1.

Step 3: We continue this process and take into account that xm := x|[tm ,b] is a solution to
the problem

⎧
⎪⎨

⎪⎩

Dαx(t) = f (t, xt) +
∑p

i=1 x(t – ri), t ∈ [tm, b],
x(t+

m) – x(t–
m) = Im(xm–1(t–

m)),
x(t) = xm–1(t), t ∈ [–τ , tm].

(3.5)

The solution of system (1.1) is then defined by

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0(t), t ∈ [–τ , t1],
x1(t), t ∈ (t1, t2],
...
xm(t), t ∈ (tm, b]. �

Next, we should use the Banach contraction principle to prove that F has a fixed point.

Theorem 3.2 Assume that conditions (H4) and (H5) hold, then system (1.1) has a unique
solution on J , provided that the following inequality holds:

1
�(α)

[(
1 – β

α – β

)1–β

hbα–β +
bα

α

]

+
m∑

k=1

ck < 1, h =
(∫ b

0
l(s)

1
β ds

)β

.

Proof Let F be the function defined by (3.1), then F : �b → �b is well defined according
to Theorem 3.1.

For every x, y ∈ �b and t ∈ [–τ , 0],

∥
∥F

(
x(t)

)
– F

(
y(t)

)∥
∥ =

∥
∥φ(t) – ψ(t)

∥
∥ = 0.

For each t ∈ [0, t1], from conditions (H4) and (H5), we have

∥
∥F

(
x(t)

)
– F

(
y(t)

)∥
∥

≤ 1
�(α)

∥
∥
∥
∥
∥

∫ t

0
(t – s)α–1(f (s, xs) – f (s, ys)

)
ds

+
1

�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1∥∥x(s) – y(s)

∥
∥ds

∥
∥
∥
∥
∥
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≤ l
�(α)

∥
∥
∥
∥
∥

∫ t

0
(t – s)α–1 ds‖xs – ys‖�

+
1

�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1 ds

∥
∥x(s) – y(s)

∥
∥

∥
∥
∥
∥
∥

≤
[

1
�(α)

(∫ t

0

(
(t – s)α–1) 1

1–β ds
)1–β(∫ b

0
l(s)

1
β ds

)β

+
bα

�(α + 1)

]
∥
∥x(s) – y(s)

∥
∥

≤ 1
�(α)

[(
1 – β

α – β

)1–β

htα–β
1 +

tα
1
α

]
∥
∥x(s) – y(s)

∥
∥.

Similarly, for each t ∈ [tk , tk+1], k = 1, 2, . . . , m, we have

∥
∥F

(
x(t)

)
– F

(
y(t)

)∥
∥

≤ 1
�(α)

∥
∥
∥
∥

∫ t

0
(t – s)α–1(f (s, xs) – f (s, ys)

)
ds

∥
∥
∥
∥

+
1

�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1∥∥x(s) – y(s)

∥
∥ds

+
m∑

k=1

∥
∥Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))∥

∥

≤ 1
�(α)

∫ t

0
(t – s)α–1l(s) ds‖xs – ys‖�

+
1

�(α)

q∑

i=1

∫ t–ri

0
(t – s – ri)α–1 ds

∥
∥x(s) – y(s)

∥
∥ +

m∑

k=1

ck‖x – y‖

≤
[

1
�(α)

(∫ t

0

(
(t – s)α–1) 1

1–β ds
)1–β(∫ b

0
l(s)

1
β ds

)β

+
bα

�(α + 1)
+

m∑

k=1

ck

]
∥
∥x(s) – y(s)

∥
∥

≤ 1
�(α)

[(
1 – β

α – β

)1–β

hbα–β +
bα

α
+

m∑

k=1

ck

]
∥
∥x(s) – y(s)

∥
∥.

Therefore, F is a contraction operator. Hence, F has a unique fixed point by the Banach
contraction principle, that is, system (1.1) has a unique solution. �

(H ′
4) There exists a positive constant l such that ‖f (t,φ)– f (t,ψ)‖ ≤ l‖φ –ψ‖� for almost

every t ∈ [0, b] and all φ,ψ ∈ �.

Corollary 3.1 Assume that conditions (H ′
4) and (H5) hold, then system (1.1) has a unique

solution on J provided that the following inequality (l+1)bα

�(α+1) +
∑m

k=1 ck < 1 holds.

4 Examples
In this section we provide some examples to illustrate the usefulness of our main results.
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Example 4.1 We consider the first fractional impulsive system as follows:

⎧
⎪⎨

⎪⎩

Dαx(t) = 1
1+et (

∫ 0
–1 x(t + θ ) dθ )2 + x(t – 1), t ∈ J = [0, 1], t �= t1,

�x|t=t1 = I1(x(t–
1 )),

x(t) = φ(t), t ∈ [–1, 0],
(4.1)

where f (t,ψ) = 1
1+et (

∫ 0
–1 ψ(θ ) dθ )2, α = 1

2 , t1 ∈ (0, 1). Set p(t) = 1
1+et , �(x) = x2 + 1

4 , then
f (t, y) ≤ 1

1+et �(‖y‖�), y ∈ �, t ∈ [0, 1],
∫ 1

0 m(t) dt = 1√
π

≤ ∫ ∞
0

1
u2+u+ 1

4
du = 2. So, all the as-

sumptions in Theorem 3.1 are satisfied, our results can be applied to problem (4.1).

Example 4.2 We consider the second fractional impulsive system as follows:

⎧
⎪⎨

⎪⎩

Dαx(t) = 1
10+et (

∫ 0
–1 x(t + θ ) dθ )2 + x(t – 1), t ∈ J = [0, 1], t �= t1,

�x|t=t1 = I1(x(t–
1 )),

x(t) = φ(t), t ∈ [–1, 0],
(4.2)

where f (t,ψ) = 1
10+et (

∫ 0
–1 ψ(θ ) dθ )2, α = 1

2 , I1(x(t–
1 )) = 1

3 , t1 ∈ (0, 1), then ‖f (t, x) – f (t, y)‖ ≤
1

11‖x – y‖, ∀x, y ∈ �b, ( 1
11 + 1) 1

�( 1
2 +1)

+ 0 = 24
11

√
π

< 1. So, all the assumptions in Corollary 3.1
are satisfied, our results can be applied to problem (4.2).

5 Conclusions
In this paper, we use the nonlinear alternative of Leray–Schauder and the Banach fixed
point theorem to prove the existence and uniqueness of solution for the fractional order
impulsive functional differential equations with multiple delays.
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