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Abstract
In this paper, we study a class of first-order neutral differential equations with
time-varying delays and coefficients. Employing the fixed point method and
differential inequality techniques, easily verifiable delay-independent criteria are
established to ensure the existence and global exponential stability of pseudo-almost
periodic solutions for the addressed equations. These theoretical results are also
supported with numerical simulations.
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1 Introduction
In [1], Komanovskii and Nosov proposed the following first-order neutral differential
equations:

[
x(t) – cx(t – r1)

]′ = –Q(t)x(t) + f
(
t, x(t – r2)

)
, (1.1)

to describe the distributed networks containing lossless transmission lines. Here f is a
continuous function on R

2, Q is a continuous function on R, x(t) represents the state vari-
able, r1 and r2 designate the transmission delays. The detailed biological explanations of
the parameters of (1.1) can be found in [1, 2]. It is well known that the variation of the envi-
ronment plays an important role in many biological and ecological dynamical systems. In
particular, periodically varying environment and almost periodically varying environment
are foundations for the theory of nature selection. Furthermore, (1.1) has been naturally
generalized as the following first-order neutral differential equations with time-varying
delays and coefficients:

[
x(t) – P(t)x

(
t – τ1(t)

)]′ = –Q(t)x(t) + f
(
t, x

(
t – τ2(t)

))
, (1.2)

where Q, P ∈ C(R, (0, +∞)), τ1, τ2 ∈ C(R, [0, +∞)) are bounded, and f ∈ C(R×R,R).
Recently, the existence and stability of periodic solutions or pseudo-almost periodic so-

lutions of (1.2) and its generalized equations have been extensively studied. For example,
criteria ensuring the existence of periodic solutions are established in [3–9] and some
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sufficient conditions for the existence of pseudo-almost periodic (mild) solutions are ob-
tained in [10, 11]. On the other hand, the global exponential stability of pseudo-almost
periodic solutions plays a key role in characterizing the dynamical behavior of biological
and ecological dynamical systems since the exponential convergence rate can be unveiled
[12–20]. However, to the best of our knowledge, no such work has been performed on
the dynamic analysis of pseudo-almost periodic solution of first-order neutral differential
equations with time-varying delays and coefficients. With this motivation, our goal is to
study the existence, uniqueness and global exponential stability of pseudo-almost periodic
solutions of (1.2). Here, a new approach will be developed to obtain the global exponential
convergence for the pseudo-almost periodic solutions.

Throughout this brief article, we denote

w+ = sup
t∈R

∣∣w(t)
∣∣, w– = inf

t∈R
∣∣w(t)

∣∣,

r = min
{
τ–

1 , τ–
2
}

> 0, τ = max
{
τ+

1 , τ+
2
}

.
(1.3)

The initial condition associated with (1.2) is of the form

x = φ(s), s ∈ [–τ , 0],φ ∈ C
(
[–τ , 0],R

)
. (1.4)

2 Preliminary results
In this section, a few lemmas, notations and assumptions are cited which will be used in
Sect. 3.

Assume that B(R,R) represents the set of all bounded and continuous functions from
R to R. Then (B(R,R),‖ · ‖) is a Banach space, where ‖ · ‖ denotes the supremum norm
‖w‖ := supt∈R |w(t)|.

Definition 2.1 (see [21, 22]) u(t) ∈ B(R,R) is said to be almost periodic on R if, for any
ε > 0, there exists a real number l = l(ε) > 0 with the property that, for any interval with
length l(ε), it is possible to find a number δ = δ(ε) in this interval such that |u(t +δ) – u(t)| <
ε for all t ∈R.

Let AP(R,R) be the set of the almost periodic functions from R to R, and

PAP0(R,R) =
{

g ∈ B(R,R)
∣
∣ lim

T→+∞
1

2T

∫ T

–T

∣
∣g(t)

∣
∣dt = 0

}
.

A function ϕ ∈ B(R,R) is called pseudo-almost periodic if it can be expressed as ϕ = h + g ,
where h ∈ AP(R,R) and g ∈ PAP0(R,R). Furthermore, (PAP(R,R),‖ · ‖) is a Banach space
and AP(R,R) is a proper subspace of PAP(R,R) [22].

Definition 2.2 (see [22, p. 59]) Suppose that � ⊂ R and K is any compact subset of �.
Let PAP0(R× �,R) consist of all bounded and continuous functions φ such that

lim
T→+∞

1
2T

∫ T

–T

∣∣φ(t, z)
∣∣dt = 0

uniformly with respect to z ∈ K . Let PAP(R× �,R) designate all functions η of the form

η(t, x) = φ1(t, x) + φ2(t, x),
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where φ2 ∈ PAP0(R× �,R), and φ1 is an almost periodic function for t uniformly on �.
In order to study the pseudo-almost periodic solutions for (1.2), we shall assume that

Q ∈ AP(R,R), P, τ1, τ2 ∈ PAP(R,R), f ∈ PAP(R×R,R), τ1 and P are uniformly continuous
on R, and

M[Q] = lim
T→+∞

1
T

∫ t+T

t
Q(s) ds > 0 for all t ∈R.

Lemma 2.1 (see [20, Lemma 2.3]) Set

B =
{
ϕ|ϕ ∈ PAP(R,R) is uniformly continuous on R

}
.

Then B is a closed subset of PAP(R,R).

Lemma 2.2 Every solution x(t) of (1.2) with initial value condition (1.4) exists and is
unique on [0, +∞).

Proof Let us show initially that x(t) exists and is unique on [0, r]. In fact, for t ∈ [0, r], let

y(t) = x(t) – P(t)x
(
t – τ1(t)

)

and

b(t) = –Q(t)P(t)φ
(
t – τ1(t)

)
+ f

(
t,φ

(
t – τ2(t)

))
.

Then

y′(t) = –Q(t)y(t) – Q(t)P(t)x
(
t – τ1(t)

)
+ f

(
t, x

(
t – τ2(t)

))
= –Q(t)y(t) + b(t)

and

y(t) = y(0)e–
∫ t

0 Q(u) du +
∫ t

0
e–

∫ t
s Q(u) dub(s) ds,

x(t) = y(t) + P(t)φ
(
t – τ1(t)

)
.

Hence, x(t) exists and is unique on [0, r]. Consequently, the lemma follows from the in-
duction. �

3 Main results
In this section, we establish the existence and global exponential stability of pseudo-almost
periodic solutions of (1.2) by using the fixed point theorem and Lyapunov functional
method.

Theorem 3.1 Assume that the following conditions hold.
(A1) There exist a positive constant K∗ and a bounded and continuous function Q̃ : R →

(0, +∞) such that

e–
∫ t

s Q(u) du ≤ K∗e–
∫ t

s Q̃(u) du for all t, s ∈ R and t – s ≥ 0.



Yu and Gong Advances in Difference Equations  (2018) 2018:114 Page 4 of 10

(A2) There exist positive constants Lf and L such that

∣
∣f (t, x1) – f (t, x2)

∣
∣ ≤ Lf |x1 – x2| for all t, x1, x2 ∈R, (3.1)

sup
t∈R

K∗ |Q(t)P(t)| + Lf

Q̃(t)
≤ L, L + P+ < 1, (3.2)

and

sup
t∈R

{
–Q̃(t) + K∗ 1

1 – P+

[∣∣P(t)Q(t)
∣∣ + Lf ]

}
< 0. (3.3)

Then Eq. (1.2) has a unique pseudo-almost periodic solution, and the solution x(t) of
(1.2) with initial condition (1.4) converges exponentially to the pseudo-almost periodic
solution as t → +∞.

Proof Set ϕ ∈ B and F(t, z) = ϕ(t – z). According to Theorem 5.3 in [22, p. 58] and Defini-
tion 2.2, the uniform continuity of ϕ entails that F ∈ PAP(R × �,R) and F is continuous
in z ∈ L and uniformly in t ∈ R for all compact subset L of � ⊂ R. This, together with
τi ∈ PAP(R,R) and Theorem 5.11 in [22, p. 60], involves

ϕ
(
t – τi(t)

) ∈ PAP(R,R), i = 1, 2.

By Corollary 5.12 in [22, p. 61] and the fact that f ∈ PAP(R×R,R), we can show

f (t,ϕ
(
t – τ2(t)

) ∈ PAP(R,R).

For any ϕ ∈ B, we consider an auxiliary equation

x′(t) = –Q(t)x(t) – Q(t)P(t)ϕ
(
t – τ1(t)

)
+ f

(
t,ϕ

(
t – τ2(t)

))
. (3.4)

In view of the fact that M[Q] > 0, it follows from Theorem 2.3 in [23] that the system (3.4)
has exactly one pseudo-almost periodic solution

xϕ(t) =
∫ t

–∞
e–

∫ t
s Q(u) du[–Q(s)P(s)ϕ

(
s – τ1(s)

)
+ f

(
s,ϕ

(
s – τ2(s)

))]
ds, ∀ϕ ∈ B, (3.5)

where

[
xϕ(t)

]′ =
{∫ t

–∞
e–

∫ t
s Q(u) du[–Q(s)P(s)ϕ

(
s – τ1(s)

)
+ f

(
s,ϕ

(
s – τ2(s)

))]
ds

}′

= –Q(t)
{∫ t

–∞
e–

∫ t
s Q(u) du[–Q(s)P(s)ϕ

(
s – τ1(s)

)
+ f (s,ϕ

(
s – τ2(s)

)]
ds

}

– Q(t)P(t)ϕ
(
t – τ1(t)

)
+ f

(
t,ϕ

(
t – τ2(t)

))

= –Q(t)xϕ(t) – Q(t)P(t)ϕ
(
t – τ1(t)

)
+ f

(
t,ϕ

(
t – τ2(t)

))
. (3.6)

Now, we define a mapping T : B −→ AP(R,R) as follows:

(Tϕ)(t) = P(t)ϕ
(
t – τ1(t)

)
+ xϕ(t), ∀ϕ ∈ B.
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Next, we prove that the mapping T is a contraction mapping on B.
For all t ∈ R, (3.6) entails that [xϕ(t)]′ is bounded on R, and xϕ(t) is uniformly con-

tinuous on R. This, together with the uniform continuities of τ1 and P, implies that
P(t)ϕ(t – τ1(t)) ∈ B, and the mapping T is a self-mapping from B to B.

Furthermore, for all ϕ,ψ ∈ B, (3.5), (A1) and (A2) yield

‖Tϕ – Tψ‖

≤ sup
t∈R

{∣∣P(t)
[
ϕ
(
t – τ1(t)

)
– ψ

(
t – τ1(t)

)]∣∣

+
∫ t

–∞
e–

∫ t
s Q̃(u) duK∗∣∣–Q(s)P(s)

(
ϕ
(
s – τ1(s)

)
– ψ

(
s – τ1(s)

))

+
(
f
(
s,ϕ

(
s – τ2(s)

))
– f

(
s,ψ

(
s – τ2(s)

)))∣∣ds
}

≤ ‖ϕ – ψ‖
{

P+ + sup
t∈R

∫ t

–∞
e–

∫ t
s Q̃(u) duK∗[∣∣Q(s)P(s)

∣∣ + Lf ]ds
}

≤ ‖ϕ – ψ‖
[

P+ + sup
t∈R

∫ t

–∞
e–

∫ t
s Q̃(u) duQ̃(s)L ds

]

≤ (
P+ + L

)‖ϕ – ψ‖.

Thus, the mapping T is a contraction on B. Using Theorem 0.3.1 of [24], we see that the
mapping T possesses a unique fixed point x∗ ∈ B, Tx∗ = x∗, i.e.,

x∗(t) = P(t)x∗(t – τ1(t)
)

+ xx∗ (t)

= P(t)x∗(t – τ1(t)
)

+
∫ t

–∞
e–

∫ t
s Q(u) du[–Q(s)P(s)x∗(s – τ1(s)

)
+ f

(
s, x∗(s – τ2(s)

))]
ds,

which, together with (3.6) leads to

[
x∗(t) – P(t)x∗(t – τ1(t)

)]′ = –Q(t)x∗(t) + f
(
t, x∗(t – τ2(t)

))
,

and x∗(t) is a pseudo almost periodic solution of equation (1.2).
Finally, we prove that x∗(t) is globally exponentially stable.
Suppose that x(t) is an arbitrary solution of (1.2) associated with initial value φ ∈

C([–τ , 0],R). We trivially extend x(t) to R by letting x(t) = x(–τ ) for t ∈ (–∞, –τ ]. Let

y(t) = x(t) – x∗(t), Y (t) = y(t) – P(t)y
(
t – τ1(t)

)
for all t ∈R.

Then y(t) and Y (t) are bounded and continuous on (–∞, 0]. From (1.2), we have

Y ′(t) =
[
y(t) – P(t)y

(
t – τ1(t)

)]′

= –Q(t)Y (t) – Q(t)P(t)y
(
t – τ1(t)

)

+
[
f
(
t, x

(
t – τ2(t)

))
– f

(
t, x∗(t – τ2(t)

))]
. (3.7)
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According to (3.3), it is possible to find a constant λ ∈ (0, Q̃–) satisfying

sup
t∈R

{
λ – Q̃(t) + K∗

[
eλτ+

1

1 – P+eλτ+
1

∣∣P(t)Q(t)
∣∣ + Lf eλτ+

2

1 – P+eλτ+
1

]}
< 0. (3.8)

Define

‖φ‖ξ = sup
t≤0

∣
∣y(t) – y

(
t – τ1(t)

)∣∣. (3.9)

For any ε > 0, we can choose a sufficiently large constant M such that

∣∣Y (0)
∣∣ <

(‖φ‖ξ + ε
)

< M
(‖φ‖ξ + ε

)
, (3.10)

∣
∣Y (t)

∣
∣ <

(‖φ‖ξ + ε
)
e–λt < M

(‖φ‖ξ + ε
)
e–λt for all t ∈ (–∞, 0], (3.11)

and

M > 1 + K∗. (3.12)

In the following, we will show

∣∣Y (t)
∣∣ < M

(‖φ‖ξ + ε
)
e–λt for all t > 0. (3.13)

Otherwise, there must exist θ > 0 such that

⎧
⎨

⎩
|Y (θ )| = M(‖φ‖ξ + ε)e–λθ ,

|Y (t)| < M(‖φ‖ξ + ε)e–λt for all t ∈ (–∞, θ ).
(3.14)

Furthermore,

eλν
∣
∣y(ν)

∣
∣ ≤ eλν

∣
∣y(ν) – P(ν)y

(
ν – τ1(ν)

)∣∣ + eλν
∣
∣P(ν)y

(
ν – τ1(ν)

)∣∣

≤ eλν
∣∣Y (ν)

∣∣ + P+eλτ+
1 eλ(ν–τ1(ν))∣∣y

(
ν – τ1(ν)

)∣∣

≤ M
(‖ϕ‖ξ + ε

)
+ P+eλτ+

1 sup
s∈(–∞,t]

eλs∣∣y(s)
∣∣, (3.15)

for all ν ∈ (–∞, t], t ∈ (–∞, θ ), which entails that

eλt∣∣y(t)
∣
∣ ≤ sup

s∈(–∞,t]
eλs∣∣y(s)

∣
∣ ≤ M(‖φ‖ξ + ε)

1 – P+eλτ+
1

for all t ∈ (–∞, θ ). (3.16)

Note that

Y ′(s) + Q(s)Y (s) = –P(s)Q(s)y
(
s – τ1(s)

)

+
[
f
(
s, x

(
s – τ2(s)

))
– f

(
s, x∗(s – τ2(s)

))]
,

s ∈ [0, t], t ∈ [0, θ ]. (3.17)
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Multiplying both sides of (3.17) by e
∫ s

0 Q(u) du, and integrating it on [0, t], we get

Y (t) = Y (0)e–
∫ t

0 Q(u) du +
∫ t

0
e–

∫ t
s Q(u) du{–P(s)Q(s)y

(
s – τ1(s)

)

+
[
f
(
s, x

(
s – τ2(s)

))
– f

(
s, x∗(s – τ2(s)

))]}
ds, t ∈ [0, θ ].

Thus, with the help of (3.8), (3.10), (3.11), (3.12), (3.14) and (3.16), we have

∣∣Y (θ )
∣∣ =

∣
∣∣
∣Y (0)e–

∫ θ
0 Q(u) du +

∫ θ

0
e–

∫ θ
s Q(u) du{–P(s)Q(s)y

(
s – τ1(s)

)

+
[
f
(
s, x

(
s – τ2(s)

))
– f

(
s, x∗(s – τ2(s)

))]}
ds

∣∣
∣∣

≤ ∣
∣Y (0)

∣
∣K∗e–

∫ θ
0 Q̃(u) du +

∫ θ

0
e–

∫ θ
s Q̃(u) duK∗∣∣–P(s)Q(s)y

(
s – τ1(s)

)

+
[
f
(
s, x

(
s – τ2(s)

))
– f

(
s, x∗(s – τ2(s)

))]∣∣ds

≤ (‖φ‖ξ + ε
)
K∗e–

∫ θ
0 Q̃(u) du +

∫ θ

0
e–

∫ θ
s Q̃(u) duK∗[∣∣P(s)Q(s)

∣
∣
∣
∣y

(
s – τ1(s)

)∣∣

+ Lf ∣∣y
(
s – τ2(s)

)∣∣]ds

≤ (‖φ‖ξ + ε
)
K∗e–

∫ θ
0 Q̃(u) du

+
∫ θ

0
e–

∫ θ
s Q̃(u) duK∗

[
M(‖φ‖ξ + ε)e–λs

1 – P+eλτ+
1

∣
∣P(s)Q(s)

∣
∣eλτ+

1

+ Lf M(‖φ‖ξ + ε)
1 – P+eλτ+

1
e–λseλτ+

2

]
ds

=
(‖φ‖ξ + ε

)
e–λθ K∗e–

∫ θ
0 [Q̃(u)–λ] du

+
∫ θ

0
e–

∫ θ
s [Q̃(u)–λ] duK∗ 1

1 – P+eλτ+
1

[
eλτ+

1
∣∣P(s)Q(s)

∣∣

+ Lf eλτ+
2
]

dsM
(‖φ‖ξ + ε

)
e–λθ

≤ (‖φ‖ξ + ε
)
e–λθ K∗e–

∫ θ
0 [Q̃(u)–λ] du

+
∫ θ

0
e–

∫ θ
s [Q̃(s)–λ] du[Q̃(u) – λ

]
dsM

(‖φ‖ξ + ε
)
e–λθ

= M
(‖φ‖ξ + ε

)
e–λθ

[(
K∗

M
– 1

)
e–

∫ θ
0 (Q̃(u)–λ) du + 1

]

< M
(‖φ‖ξ + ε

)
e–λθ ,

which contradicts the fact that |Y (θ )| = M(‖φ‖ξ +ε)e–λθ . Hence, (3.13) holds. Letting ε −→
0+ entails that

∥∥Y (t)
∥∥ ≤ M‖φ‖ξ e–λt for all t > 0. (3.18)

Then, arguing as in the proof of (3.15) and (3.16), in view of (3.18), we can show

eλt∣∣y(t)
∣
∣ ≤ sup

s∈(–∞,t]
eλs∣∣y(s)

∣
∣ ≤ M‖ϕ‖ξ

1 – P+eλτ+
1

,
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and

∣
∣y(t)

∣
∣ ≤ M‖φ‖ξ

1 – P+eλτ+
1

e–λt for all t > 0,

which completes the proof. �

Remark 3.1 The results on periodic solutions or almost periodic solutions of (1.2) in refer-
ences [1–11] are established under the condition that the decay term coefficient function
Q(t) is not oscillating. In this paper, the assumption (A1) relaxes the above technical con-
dition. In fact, one can see Example 4.1 and Remark 4.1 for details.

4 An example and its numerical simulations
Example 4.1 Consider the following first-order neutral differential equations with time-
varying delays and coefficients:

[
x(t) –

| sin t|
100

x
(
t – (4 + sin t + sin

√
2t)

)]′

= –(1 + 2 sin 200t)x(t) + 10 cos
√

2t + 10 cos t + 10e–2t4 sin2 t + ecos
√

2t

+
1

100
x
(
t –

(
1 + sin2 √

3t
))

, (4.1)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P(t) = | sin t|
100 , P+ = 1

100 , τ1(t) = 4 + sin t + sin
√

2t, τ2(t) = 1 + sin2 √
3t,

Q(t) = 1 + 2 sin 200t, Q+ = 3, Q̃(t) = 1, M[Q] = 1, K∗ = e
1

50 ,

f (t, x) = 10 cos
√

2t + 10 cos t + 10e–2t4 sin2 t + ecos
√

2t + 1
100 x,

Lf = 1
100 , L = 1

25 .

Then

sup
t∈R

K∗ |Q(t)P(t)| + Lf

Q̃(t)
≤ 1

25
e

1
50 , L + P+ ≤ 1

20
,

and

sup
t∈R

{
–Q̃(t) + K∗ 1

1 – P+

[∣∣P(t)Q(t)
∣∣ + Lf ]

}
< –0.6,

which imply that (4.1) satisfies all conditions in Theorem 3.1. Hence, Eq. (4.1) has exactly
one positive almost periodic solution x∗(t). The corresponding simulation results of the
solutions are seen in Fig. 1.

Remark 4.1 It should be mentioned that there is no research on the global exponen-
tial convergence of the pseudo-almost periodic solution for first-order neutral differen-
tial equations with time-varying delays and coefficients. Moreover, because Q(t) = 1 +
2 sin 200t is oscillating on R, one can see that all results in Refs. [1–11] cannot be ap-
plied to illustrate that all solutions for (4.1) converge exponentially to x∗(t). We all know
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Figure 1 Numerical solutions x(t) of system (4.1) for initial value ϕ(s) = 15, 5, –5, respectively, where s ∈ [–6, 0]

that the pseudo-almost periodic functions contain almost periodic functions, thus, the
derived results are still novel if we reduce all time-varying delays and coefficients of (1.2)
to periodic functions or almost periodic functions.
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