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Abstract
In this paper, dynamic behaviors of a turbidostat model with Tissiet functional
response, linear variable yield and time delay are investigated. The existence and
boundedness of solutions, the local asymptotic stability of its equilibria and the
phenomenon of Hopf bifurcation for this system are considered. Using the
Liapunov–LaSalle invariance principle, we show that the washout equilibrium is
global asymptotic stability for any time delay. Furthermore, based on some
knowledge of limit set, we show the necessary and sufficient conditions of
permanent of the turbidostat model. Finally, numerical simulations are offered to
support our results.
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1 Introduction
The turbidostat is an important laboratory apparatus used to culture the microorganisms
continuously. It is of both mathematical and ecological interest since its applicability in
microbiology and population biology. Therefore, the study of the turbidostat model has
been one of the hottest subjects investigated by many mathematical and theoretical biol-
ogists [1–7].

Dynamical behaviors of ecological systems may be affected by many factors such as time
delay, variable yield and functional response. It is well known that the time delay occurs
naturally in daily life and makes ecological systems have more complex dynamic behav-
iors. Therefore, ecological systems with time delay have been investigated in recent years
(discrete delays [8–15], neutral delays [16, 17] and impulsive delay [18]). Taking the time
delay as a parameter, the stability of the equilibrium may be changed and periodic solu-
tions may occur as the time delay varies. So it is also necessary to consider the impact of
the time delay in turbidostat model.

Chemostat models not only with constant yield but also with variable yield [19–24] are
considered. Since actual experiments show that the constant yield cannot explain the os-
cillatory phenomenon in the chemostat, and the greater the nutrient concentrate is the
lower the consuming rate is. However, mostly for the turbidostat model we assume that
the yield term is a constant. Based on the facts, a variable yield should be considered for the
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turbidostat model and the model with variable yield will have more complicated dynamic
behaviors than that with constant yield.

Furthermore, the functional response also has an important impact on the behavior of
biological dynamical systems [25–29]. We note the fact that, in biology, very high nutri-
ent concentration may inhibit the growth of microorganisms actually, and the microor-
ganisms will die eventually as the nutrient concentration increasing unlimitedly. So the

Tissiet functional response μ(S) = μmSe
– S

ki
km+S is introduced, where μm, km and ki are positive

constants.
Based on the above biological phenomenon, in this paper, we consider the combined ef-

fect of time delay due to the digestion, linear variable yield and Tissiet functional response
as the following system:

⎧
⎨

⎩

dx(t)
dt = x(t)( μmS(t–τ )

km+S(t–τ ) e– S(t–τ )
ki – (d + kx(t))),

dS(t)
dt = (S0 – S(t))(d + kx(t)) – μmS(t)

km+S(t) e– S(t)
ki x(t)

A+BS(t) ,
(1.1)

where x(t) and S(t) represent the concentration of microorganism and nutrient at time t,
respectively. S0 > 0 presents the input concentration of the nutrient. A+BS(t) (A > 0, B > 0)
is the linear variable yield. τ ≥ 0 is the delay of digestion, and d + kx(t) (d > 0, k > 0) is the
dilution rate of the turbidostat.

For the sake of simplicity, we usually set

x(t) = S0x̄(t), S(t) = S0y(t), k =
k̄
S0 , km = aS0, ki =

S0

b
, B =

S0

C
.

The bars of x(t) and k are dropped, and system (1.1) becomes
⎧
⎨

⎩

dx(t)
dt = x(t)( μmy(t–τ )

a+y(t–τ ) e–by(t–τ ) – (d + kx(t))),
dy(t)

dt = (1 – y(t))(d + kx(t)) – μmy(t)
a+y(t) e–by(t) x(t)

A+Cy(t) ,
(1.2)

with initial value conditions

x(t) = ϕ1(t) ≥ 0, y(t) = ϕ2(t) ≥ 0, t ∈ [–τ , 0],

where ϕ1(t), ϕ2(t) are continuous functions on [–τ , 0]. By a biological meaning, we further
assume that ϕi(0) > 0 for i = 1, 2.

The organization of this paper is as follows. In next section, we analyze the existence
and boundedness of solutions of (1.2) with the initial condition. In Sect. 3, the existence,
local stability of the equilibriums and the existence of the local Hopf bifurcation are con-
sidered. Using the Liapunov–LaSalle invariance principle, we in Sect. 4 discuss the global
asymptotic stability of the washout equilibrium of (1.2). In Sect. 5, the permanence of (1.2)
is discussed by some analytic techniques on limit sets of differential dynamical systems.
Finally, some discussions and numerical simulations are given to illustrate the theoretical
analysis in Sect. 6.

2 Existence and boundedness of solutions
In the section, we investigate the existence and boundedness of solutions of (1.2) with the
initial condition. The following theorem is achieved.
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Theorem 2.1 The solution (x(t), y(t)) of system (1.2) with the initial condition exists and
is positive on [0, +∞). Furthermore,

lim sup
t→+∞

x(t) ≤ μm

k
, lim sup

t→+∞
y(t) ≤ 1, lim inf

t→+∞ y(t) ≥ v1,

where v1 = akdA
akdA+μ2

m
.

Proof From the theory of local existence of solutions of functional differential equations,
we see that (x(t), y(t)) is existent on [0, e) for some positive constant e. We first show that
x(t) > 0 for any t ∈ [0, e). From the first equation of (1.2) and ϕ1(0) > 0, we have

x(t) = x(0)e
∫ t

0
μmy(t–τ )
a+y(t–τ ) e–by(t–τ )–(d+kx(t)) dt > 0, for any t ∈ [0, e).

We further show that y(t) > 0 for any t ∈ [0, e). In fact, if not so, by the continuity of y(t)
and ϕ2(0) ≥ 0, then there is t1 ≥ 0 such that

y(t1) = 0, ẏ(t1) ≤ 0 and y(t) ≥ 0 (–τ ≤ t ≤ t1),

where ẏ(t1) denotes the right-hand derivative, if t1 = 0. From the second equation of (1.2)
and x(t) > 0 for t ∈ [0, e), we see that

ẏ(t1) =
(
1 – y(t1)

)(
d + kx(t1)

)
–

μmy(t1)
a + y(t1)

e–by(t1) x(t1)
A + Cy(t1)

= d + kx(t1) > 0,

which contradicts ẏ(t1) ≤ 0. This shows that y(t) > 0 for any t ∈ [0, e).
In the following, we will show that x(t) and y(t) are bounded on [0, e). In fact, from the

non-negative of x(t) and y(t) on [–τ , e) and system (1.2), we see that for any t ∈ [0, e)

⎧
⎨

⎩

dx(t)
dt ≤ x(t)(μm – kx(t)),

dy(t)
dt ≤ (1 – y(t))(d + kx(t)).

(2.1)

Since the solution u(t) of the following equation:

du(t)
dt

= u(t)
(
μm – ku(t)

)

is existent on [0, +∞) with the initial condition u(t) = ϕ1(t) ≥ 0 for t ∈ [–τ , 0], from the
comparison principle x(t) ≤ u(t) for any t ∈ [0, e) the maximum of d + kx(t) for t ∈ [0, e)
exists, it is denoted by M. Hence, we obtain

⎧
⎨

⎩

dx(t)
dt ≤ x(t)(μm – kx(t)),

dy(t)
dt ≤ M(1 – y(t)).

(2.2)

Similarly, from the solution v(t) of the following equation:

dv(t)
dt

= M
(
1 – v(t)

)
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is existent on [0, +∞) with the initial condition v(t) = ϕ2(t) ≥ 0 for t ∈ [–τ , 0], y(t) ≤ v(t)
for any t ∈ [0, e). Hence, we see that the solution (x(t), y(t)) is bounded on [0, e).

Thus, from the theory of continuation of solutions for functional differential equations,
we see that (x(t), y(t)) is existent and positive on [0, +∞). Further, from (2.2), we have

lim sup
t→+∞

x(t) ≤ μm

k
, lim sup

t→+∞
y(t) ≤ 1.

For sufficiently large T , t > T , it is easy to see that from system (1.2)

dy(t)
dt

≥ d
(
1 – y(t)

)
–

μ2
my(t)
akA

= d –
(

d +
μ2

m
akA

)

y(t),

which implies

lim inf
t→+∞ y(t) ≥ v1,

where v1 = akdA
akdA+μ2

m
.

The proof of Theorem 2.1 is thus completed. �

3 Local asymptotic stability of equilibriums and Hopf bifurcations
In this section, we will investigate the existence and local stability of the equilibriums of
system (1.2) and Hopf bifurcations are induced by delay.

First, we define the subset

G =
{
ϕ = (ϕ1,ϕ2) ∈ C|ϕ1 ≥ 0, v1 ≤ ϕ2 ≤ 1

}

and show that G is a positively invariant set with respect to (1.2).
For any ϕ = (ϕ1,ϕ2) ∈ G, let (x(t), y(t)) be the solution of (1.2) with the initial function ϕ,

we see that (x(t), y(t)) is positive on [0, +∞) from Theorem 2.1. We show y(t) ≤ 1 for any
t ≥ 0. In fact, if there is a t2 > 0 such that y(t2) > 1, from the Lagrange mean value theorem,
we see that ẏ(t3) > 0 and y(t3) = 1 for some t3 ∈ (0, t2). From the second equation of (1.2),
we see that

dy(t3)
dt

=
(
1 – y(t3)

)(
d + kx(t3)

)
–

μmy(t3)
a + y(t3)

e–by(t3) x(t3)
A + Cy(t3)

< 0,

which contradicts ẏ(t3) > 0.
We further show that y(t) ≥ v1 for any t ≥ 0. If not so, there must be t4 ≥ 0 such that

y(t4) = v1, y(t) ≥ v1 for all t ∈ [–τ , t4] and ẏ(t4) ≤ 0. From the second equation of (1.2), we
see that

dy(t4)
dt

=
(
1 – y(t4)

)(
d + kx(t4)

)
–

μmy(t4)
a + y(t4)

e–by(t4) x(t4)
A + Cy(t4)

> d(1 – v1) –
μ2

mv1

akA

= d – v1
μ2

m + akdA
akdA

= 0,
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which contradicts ẏ(t4) ≤ 0.
Therefore, G is a positively invariant set with respect to (1.2). It is enough to consider

system (1.2) on G.
Next, we will consider the existence of the equilibriums of (1.2).
From the right part of (1.2), we see that (1.2) always has a washout equilibrium E0 = (0, 1).

As far as the positive equilibrium is concerned, the analysis of the equation μmy
a+y e–by – k(1 –

y)(A + Cy) – d = 0 is needed. We define

f (y) = μmye–by – k(1 – y)(A + Cy)(a + y) – d(a + y),

then accordingly we have

f ′(y) = μme–by – μmbye–by + 3kCy2 + 2k(aC + A – C)y – Ak + ak(A – C) – d,

f ′′(y) = –2μmbe–by + μmb2ye–by + 6kCy + 2k(aC + A – C),

f ′′′(y) = 3μmb2e–by – μmb3ye–by + 6kC,

f ′′′′(y) = μmb3e–by(by – 4).

Notice that

f (0) = –ad – akA < 0, f (1) = μme–b – d – ad,

f ′(0) = μm + Ak(a – 1) + akC – d, f ′′(0) = –2μmb + 2k(aC + A – C),

f ′′′(0) = 3μmb2 + 6kC > 0, f ′′′(1) = μmb2(3 – b)e–b + 6kC,

f ′′′′(0) = –4μmb3 < 0, f ′′′′(1) = μmb3(b – 4)e–b.

For convenience, we assume that

(H1) b < 4, f ′′′(1) > 0, f ′′(0) > 0 and f ′(0) > 0;

(H2)
μme–b

1 + a
≤ d;

(H3)
μme–b

1 + a
> d.

Hence, we have the following results.

Theorem 3.1
(1) If (H1) and (H2) hold, then there is no root for f (y) = 0 on [0, 1], i.e., system (1.2) only

has the washout equilibrium E0 = (0, 1).
(2) If (H1) and (H3) hold, then there is a positive root for f (y) = 0 on [0, 1], denoted by y∗,

i.e., system (1.2) has a unique positive equilibrium E∗ = (x∗, y∗), where
x∗ = (1 – y∗)(A + Cy∗).

In the following, we will discuss the locally asymptotical stability of the washout equi-
librium E0 = (0, 1) of system (1.2).
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Theorem 3.2 If μme–b

1+a < d, then E0 is locally asymptotically stable; If μme–b

1+a = d, then the
trivial solution of the linearized system of (1.2) about E0 is stable; if μme–b

1+a > d, then E0 is
unstable.

Proof Let y1(t) = y(t) – 1 and rewrite y1(t) as y(t). We obtain the linear system
⎧
⎨

⎩

dx(t)
dt = ( μme–b

1+a – d)x(t),
dy(t)

dt = – μme–b

(1+a)(A+C) x(t) – dy(t).
(3.1)

The following characteristic equation can be obtained from (3.1):

(λ + d)
(

λ –
μme–b

1 + a
+ d

)

= 0. (3.2)

It is obvious that (3.2) has a negative root λ1 = –d. We will further study the sign of the
root λ2 = μme–b

1+a – d.
If μme–b

1+a < d, then λ2 < 0. Hence, E0 is locally asymptotically stable.
If μme–b

1+a = d, then λ2 = 0. Hence, we see that the trivial solution of the linearized system
of (1.2) about E0 is stable.

If μme–b

1+a > d, then λ2 > 0. Hence, E0 is unstable.
The proof of Theorem 3.2 is completed. �

To consider the local stability of E∗ and the existence of Hopf bifurcations, we set

M = –kx∗, N =
μme–by∗x∗(a – aby∗ – by∗2 )

(a + y∗)2 , P =
–d

A + Cy∗ ,

Q = –d – kx∗ –
μme–by∗x∗(–bCy∗3 – (abC + Ab + C)y∗2 – Aaby∗ + Aa)

((a + y∗)(A + Cy∗))2 ,

and make the following assumptions:

(H4) Q + M < 0, MQ – PN > 0;

(H5) MQ + PN < 0.

Theorem 3.3 If (H4) and (H5) hold, then E∗ is locally asymptotically stable for τ < τ0; E∗ is
unstable for τ > τ0; Hopf bifurcation occurs when τ = τj, j = 0, 1, 2, . . . , that is, a family of
periodic solutions bifurcate from the positive equilibrium E∗ as τ passes through the critical
values τj, j = 0, 1, 2, . . . .

Proof Let x̄(t) = x(t)–x∗, ȳ(t) = y(t)–y∗ and drop the bars, then we obtain the linear system

⎧
⎨

⎩

dx(t)
dt = Mx(t) + Ny(t – τ ),

dy(t)
dt = Px(t) + Qy(t).

(3.3)

The following characteristic equation can be achieved from (3.3):

λ2 – (Q + M)λ – PNe–λτ + MQ = 0. (3.4)
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When τ = 0, (3.4) becomes

λ2 – (Q + M)λ + MQ – PN = 0. (3.5)

According to the Routh–Hurwitz criterion, one can see that (3.5) always has two roots
with negative real parts when (H4) holds.

Now for τ > 0, suppose that λ = iw (w > 0) is a root of (3.4) for some τ , then we have

–w2 – (Q + M)wi + MQ – PNe–iwτ = 0.

Separating the real and imaginary parts, we obtain

⎧
⎨

⎩

–w2 + MQ – PN cos wτ = 0,

–(Q + M)w + PN sin wτ = 0,
(3.6)

which implies the following equation:

w4 +
(
Q2 + M2)w2 + (MQ)2 – (PN)2 = 0. (3.7)

It is easy to see that when (H5) holds, (3.7) has only one positive real root,

w0 =

√

–(Q2 + M2) +
√

(Q2 + M2)2 – 4((MQ)2 – (PN)2)
2

.

By substituting w0 into (3.6) and solving for τ , we can obtain

τj =
1

w0

(

arccos

(
–w2

0 + MQ
PN

)

+ 2jπ
)

, j = 0, 1, 2, . . . . (3.8)

Thus, when τ = τj, the characteristic equation (3.4) has a pair of purely imaginary roots
±iw0.

Let λ(τ ) = α(τ ) + iβ(τ ) be the root of (3.4) near τ = τj satisfying α(τj) = 0 and β(τj) = w0.
Next, we will prove the transversality condition of a Hopf bifurcation.

Differentiating (3.4) with respect to τ , we have

(
dλ

dτ

)–1

=
2λ – (Q + M)

–PNe–λτ λ
–

τ

λ
, (3.9)

which together with (3.4) leads to

sign

{

Re

(
dλ

dτ

)

τ=τj

}

= sign

{

Re

(
dλ

dτ

)–1

τ=τj

}

= sign

{

Re

(
Q + M – 2λ

λ(λ2 – (Q + M)λ + QM)

)

τ=τj

}

= sign

{
Q2 + M2 + 2w2

0
(Q + M)2w2

0 + (QM – w2
0)2

}

= 1. (3.10)
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Hence, if (H5) holds, then there is a Hopf bifurcation at τ = τj. Therefore, if (H4) and (H5)
hold, then E∗ is locally asymptotically stable for τ < τ0, E∗ is unstable for τ > τ0 and there
is a periodic solution around E∗ for τ = τj, j = 1, 2, . . . .

The proof of Theorem 3.3 is completed. �

4 Global asymptotic stability analysis of E0

In Sect. 3, we have studied the local stability of E0. In this section, we will analyze the
global asymptotic stability of E0 by the Liapunov–LaSalle invariance principle. We obtain
the following theorem.

Theorem 4.1 For any time delay τ , if (H1) holds, then the washout equilibrium E0 is glob-
ally asymptotically stable for μme–b

1+a < d, and globally attractive for μme–b

1+a = d.

Proof We have shown that G = {ϕ = (ϕ1,ϕ2) ∈ C|ϕ1 ≥ 0, v1 ≤ ϕ2 ≤ 1} is a positively invari-
ant set with respect to (1.2).

Consider the function V on G as follows:

V (x, y) = eV1 , (4.1)

where V1 = –y(t) +
∫ t

0 d(1 – y(t) – x(t)
A+Cy(t) ) dt. It is clear that V (x, y) is continuous on G. Its

derivative along the solution of (1.2) satisfies

V̇ (x, y)|(1.2) = eV1

(

–ẏ(t) + d
(

1 – y(t) –
x(t)

A + Cy(t)

))

= eV1

(

–
(
1 – y(t)

)(
d + kx(t)

)
+

μmy(t)
a + y(t)

e–by(t) x(t)
A + Cy(t)

+ d
(

1 – y(t) –
x(t)

A + Cy(t)

))

= eV1
x(t)

(a + y(t))(A + Cy(t))
(
μmy(t)e–by(t)

– k
(
1 – y(t)

)(
a + y(t)

)(
A + Cy(t)

)
– d

(
a + y(t)

))

= eV1
x(t)

(a + y(t))(A + Cy(t))
f
(
y(t)

)
. (4.2)

Since (1.2) has a unique equilibrium E0, we have f (y) ≤ 0 for any y ∈ [0, 1]. Hence, for any
t ≥ 0

V̇ (x, y)|(1.2) ≤ 0.

This implies that V (x, y) is a Liapunov function of (1.2) on G.
Define the subset E of G as E = {(x(t), y(t)) ∈ G | V̇ (x, y)|(1.2) = 0}. From (4.2), we see that

E =
{(

x(t), y(t)
) ∈ G | x(t) = 0 or f

(
y(t)

)
= 0

}
.

Let M be the largest invariant set of (1.2) in E. Since E0 = (0, 1) ∈ M, M is not empty. We
discuss the following two cases, respectively.
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(i) If μme–b

1+a < d, then f (y(t)) < 0 on [0, 1]. Hence,

E =
{(

x(t), y(t)
) ∈ G | x(t) = 0

}
.

Let (x(t), y(t)) ∈ M ⊂ E be the solution of (1.2). We have x(t) ≡ 0 for any t ∈ R. From the
second equation of system (1.2), we see that ẏ(t) = d(1 – y(t)) for any t ∈ R. Since y(t) → 1
as t → +∞, we have y(t) ≡ 1 for any t ∈ R. Therefore,

M =
{

(0, 1)
}

= {E0}.

By the Liapunov–LaSalle invariance principle, we see that E0 is globally attractive. From
Theorem 3.2, we see that E0 is globally asymptotically stable.

(ii) If μme–b

1+a = d, then we have f (y) = 0 for y = 1. Hence,

E =
{(

x(t), y(t)
) ∈ G | x(t) = 0 or y(t) = 1

}
.

If y(t) = 1 for some t ∈ R, from the invariance of G, the function y(t) takes local maximum
at t. Hence, it must see that ẏ(t) = 0. From the second equation of system (1.2), we see that

ẏ(t) =
(
1 – y(t)

)(
d + kx(t)

)
–

μmy(t)
a + y(t)

e–by(t) x(t)
A + Cy(t)

= 0.

Since y(t) = 1, we see that x(t) = 0. Therefore, it has x(t) ≡ 0 for any t ∈ R. From the proof
of case (i), one also has M = {(0, 1)} = {E0}. Thus, from the Liapunov–LaSalle invariance
principle, we see that E0 is globally attractive, again.

The proof of Theorem 4.1 is completed. �

5 Permanence
In this section, we will use the same method as [30] to prove the permanence of (1.2). We
have the following theorem.

Theorem 5.1 Under the condition (H1), for any time delay τ , (H3) is the necessary and
sufficient condition for the permanence of (1.2).

Proof If (H3) is not valid, then the washout equilibrium E0 of (1.2) is globally asymptot-
ically stable or globally attractive. Thus, we only need to prove the sufficiency. From the
definition of permanence, we need to prove

lim inf
t→+∞ x(t) ≥ v2, (5.1)

where v2 is some positive constant which does not depend on the initial function ϕ. The
proof is divided into two steps.

In a first step, we will prove

lim inf
t→+∞ x(t) > 0. (5.2)
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Since we have the invariance of G, it is enough to consider the solution (x(t), y(t)) (t ≥ 0)
with the initial function ϕ ∈ G. From the above discussion, we see that the omega limit set
ω(ϕ) of (x(t), y(t)) (t ≥ 0) is nonempty, compact, invariant and ω(ϕ) ⊂ G.

If lim inft→+∞ x(t) = 0, we will show that there is a contradiction.
In fact, since lim inft→+∞ x(t) = 0, we see that there exists a positive time sequence {tn}:

tn → +∞ as n → +∞ such that

lim
tn→+∞ x(tn) = 0, ẋ(tn) ≤ 0, x(t) ≥ x(tn) (tn – τ ≤ t ≤ tn).

By Theorem 2.1, the solution (x(t), y(t)) is bounded for any t ≥ 0. From (1.2), the solution
(x(t), y(t)) is uniformly continuous for any t ≥ 0. Hence, by Ascoli’s theorem, there is a
subsequence of {tn}, still denoted by {tn}, such that

lim
tn→+∞

(
x(tn), y(tn)

)
=

(
x̄(t), ȳ(t)

)

uniformly on R in the wider sense. From the invariance of G and Theorem 4.1, we see
that (x̄(t), ȳ(t)) ∈ G for any t ∈ R, and that, for any τ ∈ R, the function (x̄(t + τ ), ȳ(t + τ )) of
t is the solution of (1.2) with the initial function (x̄τ , ȳτ ). Here we note that x̄(0) = 0 and
v1 ≤ ȳ(t) ≤ 1 for t ∈ R.

We claim that (x̄(t), ȳ(t)) = (0, 1) for all t ∈ R. In fact, if ϕ1(0) > 0, then we see that the
solution (x(t), y(t)) of (1.2) exists and x(t) > 0 and y(t) > 0 for all t ≥ 0. Hence, from x̄(0) = 0,
we further see that x̄(t) = 0 for any t < 0. Thus, from (1.2), we see that x̄(t) ≡ 0 for any t ∈ R
and that ȳ′(t)) = d(1 – ȳ(t)) for any t ≥ τ . Thus,

ȳ(t) = ȳ(0)e–dt + 1 – e–dt (t ≥ τ ).

From the arbitrariness of τ , we see that

ȳ(t) = 1 +
(
ȳ(0) – 1

)
e–dt .

From Theorem 2.1, we know that ȳ(t) is bounded for any t ∈ R. Thus, we have ȳ(0) = 1,
which implies ȳ(t) = 1 for any t ∈ R. From system (1.2) and the invariance of G, we see that
(x̄(t), ȳ(t)) = (0, 1) for any t ∈ R. Thus, the above claim holds.

Specially, we see that

lim
n→+∞ x(tn) = x̄(0) = 0,

lim
n→+∞ y(tn – τ ) = ȳ(–τ ) = 1,

lim
n→+∞

μmy(tn – τ )
a + y(tn – τ )

e–by(tn–τ ) =
μme–b

a + 1
> d.

For sufficiently small ε > 0 and sufficiently large n, we have

μmy(tn – τ )
a + y(tn – τ )

e–by(tn–τ ) – kx(tn) >
μme–b

a + 1
– ε > d.
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Hence,

ẋ(tn) =
(

μmy(tn – τ )
a + y(tn – τ )

e–by(tn–τ ) – d – kx(tn)
)

x(tn)

>
(

μme–b

a + 1
– ε – d

)

x(tn) > 0,

which contradicts ẋ(tn) ≤ 0.
The proof of lim inft→+∞ x(t) > 0 is completed.
In a second step, we will prove

lim inf
t→+∞ x(t) ≥ v2.

For any initial functions sequence {ϕn} = {(ϕ(n)
1 ,ϕ(n)

2 )} ⊂ G, let (x(n)(t), y(n)(t)) be the solu-
tion of (1.2) with the initial function ϕn. Let ωn(ϕn) be the omega limit set of (x(n)(t), y(n)(t)).
We see that there is some compact and invariant set ω∗ ⊂ G such that dist(ωn(ϕn),ω∗) → 0
as n → +∞. Here, dist(ωn(ϕn),ω∗) means Hausdorff distance.

If (5.1) does not hold, for some initial function sequence {ϕn} = {(ϕ(n)
1 ,ϕ(n)

2 )} ⊂ G such
that ϕ

(n)
1 (0) > 0, we see that there is some ϕ̄ = (ϕ̄1, ϕ̄2) ∈ ω∗ such that ϕ̄1(θ0) = 0 for some

θ0 ∈ [–τ , 0]. Now, let (x̄(t), ȳ(t)) be the solution of (1.2) with the initial function ϕ̄. Then,
from the invariance of ω∗, we see that (x̄t , ȳt) ∈ ω∗ for any t ∈ R. From ϕ̄1(θ0) = 0 and the
positivity of all solutions, we easily see that x̄(t) = 0 for all t ≤ θ0. Thus, from (1.2), we have
ϕ̄1(θ ) = 0 (–τ ≤ θ ≤ 0) and x̄(t) = 0 (t ∈ R). This implies that x̄(t) = 0, ȳ(t) = h(t) for all t ∈ R,
where h(t) = 1 + (ϕ̄2(0) – 1)e–dt .

If ϕ̄2(0) < 1, we see that the negative semi-orbit (x̄t , ȳt) (t ≤ 0) is unbounded. This is a
contradiction.

If ϕ̄2(0) = 1, we see that x̄(t) = 0, ȳ(t) = 1 for any t ∈ R. This shows that ϕ̄ = (0, 1) = E0 ∈ ω∗.
We will show that E0 is isolated. That is, there exists some neighborhood U of E0 in G such
that E0 is the largest invariant set in U . In fact, we choose

U =
{
ϕ | ϕ = (ϕ1,ϕ2) ∈ Ḡ,‖ϕ – E0‖ < ε

}
,

for some sufficiently small positive constant ε and ε < μme–b–d(a+1)
μme–b–d . We shall show that E0

is the largest invariant set in U for some ε.
If not, for any sufficiently small ε, there exists some invariant set W (W ⊂ U) such that

W \ E0 is not empty. Let ϕ = (ϕ1,ϕ2) ∈ W \ E0 and (xt , yt) be the solution of (1.2) with the
initial function ϕ. Then, (xt , yt) ∈ W for all t ∈ R.

If ϕ1(0) = 0, by the invariance of W and Theorem 2.1, we also have the contradiction
that ϕ = E0 or that the negative semi-orbit (xt , yt) t < 0 of (1.2) through ϕ is unbounded.

If ϕ1(0) > 0, from Theorem 2.1, we have x(t) > 0 for all t ≥ 0. Now, let us consider the
following continuous function:

P(t) = x(t) + ρ

∫ t

0
kx2(t) dt. (5.3)
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for some constant ρ > 1. Since (xt , yt) ∈ W for all t ∈ R, we have 1 – ε ≤ y(t) ≤ 1 for all
t ∈ R. The time derivative of P(t) along the solution (x(t), y(t)) satisfies

Ṗ(t) = ẋ(t) + ρkx2(t)

= x(t)
(

μmy(t – τ )
a + y(t – τ )

e–by(t–τ ) –
(
d + kx(t)

)
)

+ ρkx2(t)

= (ρ – 1)
(
d + kx(t)

)
x(t) + x(t)

(
μmy(t – τ )
a + y(t – τ )

e–by(t–τ ) – dρ

)

≥ (ρ – 1)
(
d + kx(t)

)
x(t) + x(t)

(
μme–b(1 – ε)

a + 1 – ε
– dρ

)

. (5.4)

Since ε < μme–b–d(a+1)
μme–b–d and μme–b

a+1 > d, we see that μme–b(1–ε)
a+1–ε

> d. We can choose ρ > 1 such

that 1 < ρ < μme–b(1–ε)
d(a+1–ε) . From (5.2), for some constant η and all large t ≥ t5 > 0, we see that

x(t) ≥ η > 0. Thus, from (5.4)

Ṗ(t) ≥ (ρ – 1)
(
d + kx(t)

)
x(t) > 0. (5.5)

Thus, P(t) → +∞ as t → +∞. This is a contradiction to Theorem 2.1. We see that E0 is
isolated.

It is easy to see that the semigroup defined by the solution of (1.2) satisfies the conditions
of Lemma 4.3 in [31] with M = E0. Thus, from the lemma, we see that there is some ξ =
(ξ1, ξ2) such that ξ ∈ ω∗ ∩ (W s(E0) \ E0). Here, W s(E0) is the stable set of E0.

If ξ1(0) = 0, by the invariance of M and Theorem 2.1, we have the contradiction that
ξ = E0 or that the negative semi-orbit (x̃t , ỹt) (t < 0) of (1.2) through ξ is unbounded.

If ξ1(0) > 0, by Theorem 2.1, we see that x̃(t) > 0, ỹ(t) > 0 for any t > 0. From ξ ∈ ω∗ ∩
(W s(E0) \ E0), we have limt→+∞ x̃(t) = 0, limt→+∞ ỹ(t) = 1, which is a contradiction to (5.2).
This shows that (5.1) holds. Hence, (1.2) is permanent.

The proof of Theorem 5.1 is completed. �

6 Discussion and numerical simulation
We have studied a turbidostat model with Tissiet functional response, linear variable yield
and time delay in this paper. Using comparison principle and some knowledge of func-
tional differential equations, we obtain the global existence and boundedness of solutions
of (1.2). Furthermore, based on the Liapunov–LaSalle invariance principle, we also ob-
tain the global attraction and global asymptotic stability of the washout equilibrium of
(1.2). The results tell us that the time delay is harmless for the local and global stability of
the washout equilibrium of (1.2). However, the stability of the positive equilibrium will be
changed and Hopf bifurcations will occur with the time delay varying. Finally, we show that
the system is permanent if and only if the positive equilibrium E∗ exists. Unfortunately, in
this paper, we only consider one of the cases of the existence of the positive equilibriums.
The other cases shall be left as future work.

In the section, we present numerical simulation to illustrate the analytical results. By set-
ting a = 1.2, μm = 2.5, b = 0.1, d = 0.2, k = 0.5, A = 0.2 and C = 1.8, we obtain the following
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specific example of system (1.2):

⎧
⎨

⎩

dx(t)
dt = x(t)( 2.5y(t–τ )

1.2+y(t–τ ) e–0.1y(t–τ ) – (0.2 + 0.5x(t))),
dy(t)

dt = (1 – y(t))(0.2 + 0.5x(t)) – 2.5y(t)
1.2+y(t) e–0.1y(t) x(t)

0.2+1.8y(t) .
(6.1)

It is easy to see that the conditions (H1) and (H3) hold. Thus, system (6.1) has a positive
equilibrium E∗ = (x∗, y∗) = (0.5, 0.27). Through a simple calculation, conditions (H4) and
(H5) hold, we have w0

.= 0.206, τ0
.= 10.1 and Re{( dλ

dτ
)–1
λ=iw0

} = 12.42 > 0. By Theorem 3.3,
the positive equilibrium E∗ is asymptotically stable when τ = 9 < τ0 (see Fig. 1). The pos-

Figure 1 The positive equilibrium E∗ = (0.5, 0.27) of
(6.1) is asymptotically stable when τ = 9 < τ0

.
= 10.1.

Here (x(0), y(0)) = (0.2, 0.4)
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Figure 2 The positive equilibrium E∗ = (0.5, 0.27) of
(6.1) is unstable and a bifurcating periodic solution
occurs from E∗ when τ = 11 > τ0

.
= 10.1. Here (x(0),

y(0)) = (0.2, 0.4)

itive equilibrium E∗ is unstable and a Hopf bifurcation occurs, i.e., a bifurcating periodic
solution occurs from E∗ when τ = 11 > τ0 (see Fig. 2).
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