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Abstract
In this paper, a fractional-order model of palm trees, the lesser date moth and the
predator is presented. Existence conditions of the local asymptotic stability of the
equilibrium points of the fractional system are analyzed. We prove that the positive
equilibrium point is globally stable also. The numerical simulations come to illustrate
the dynamical behaviors of the model such as bifurcation and chaos phenomenon,
and the numerical simulations confirm the validity of our theoretical results.
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1 Introduction
Date palm is a unisexual fruit tree native to the hot arid regions of the world, mainly grown
in the Middle East and North Africa. Since ancient times this majestic plant has been rec-
ognized as the tree of life because of its integration into human settlement, well-being, and
food security in hot regions of the world, where only a few plant species can flourish [].

It is well known that approximately one third of the world food production is lost due
to pests. Pesticides have a great role in destroying pests and increasing crop yield. But the
excessive use of pesticides exerts harmful effects on human health. The extensive use of
chemical pesticides has had many well documented adverse consequences. So, the present
trend in pest control is to minimize the use of pesticides with optimum reduction in the
pest population. Such a situation can be achieved when the balance between the pest and
its natural enemies is least disturbed by selective use of pesticides [].

The lesser date moth, Batrachedra amydraula (Lepidoptera: Batrachedridae), is a serious
pest of date palms. Its distribution is from Bangladesh to the entire Middle East, as well
as most of North America. It is one of the most important pests on date palms that may
cause more than % loss of the crop [].

In recent decades, the fractional calculus and fractional differential equations have at-
tracted much attention and increasing interest due to their potential applications in sci-
ence and engineering [–]. In this paper, we consider a fractional-order model con-
sisting of palm trees, the lesser date moth and the predator. Sufficient conditions for the
existence of the solutions of the fractional-order model are investigated. The equilibrium
points and their asymptotic stability are discussed. Also, the conditions for the existence
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of a flip bifurcation are considered. The necessary conditions for this system to exhibit
chaotic dynamics are also derived.

2 Fractional calculus
A great deal of research has been conducted on prey-predator models based on fractional-
order differential equations. A property of these fractional models is their nonlocal prop-
erty which is not present in integer-order differential equations. Nonlocal property means
that the next state of a model depends not only upon its current state, but also upon all
of its historical states as the case in epidemics. Fractional-order differential equations can
be used to model phenomena which cannot be adequately modeled by integer-order dif-
ferential equations [, , –]. There are several definitions of fractional derivatives.
One of the most common definitions is the Caputo concept. This definition is often used
in real applications.

Definition  The fractional integral of order β ∈ R+ of the function f (t) is defined by

Iβ f (t) =
∫ t



(t – τ )β–

�(β)
f (τ ) dτ ,

provided the integral on the right-hand side is defined for almost every t > . This occurs,
for example, if f ∈ L(, +∞). The fractional derivative of order α ∈ (n – , n), n ∈ N is
defined as follows for a function f such that the n-order derivative exists and, for example,
f (n) ∈ L(, +∞):

Dα
t f (t) = In–αf (n)(t), α > .

3 Fractional-order lesser date moth model and its discretization
Following [, ], the model of biocontrol of the lesser date moth in palm trees can be
written as a set of three coupled nonlinear ordinary differential equations as follows:

dP
dτ

= rP
(

 –
P
K

)
–

bPL
a + P

,

dL
dτ

= –dL +
mPL
a + P

– pLN ,

dN
dτ

= –μN + qLN .

()

The model consists of three populations. The palm tree whose population density at
time t is denoted by P, the pest (lesser date moth) whose population density is denoted by
L and the predator whose population density is denoted by N . In the absence of predators,
the prey population density grows according to a logistic curve with carrying capacity K
and with an intrinsic growth rate constant r.

The maximal growth rate of the pest is denoted by b. The half saturation a is constant, d
denotes the death rate of the pests, m is the conversion rate of the pests, p is the quantity
that represents decrease in the growth rate of the pests due to predator attack, q is the rate
of increase in the predator population, and μ denotes the intrinsic mortality rate of the
predators. Here all the parameters r, K , b, a, d, m , p, μ, and q are positive.
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One can reduce the number of parameters in system () by using the following transfor-
mations:

P = Kx, L =
Kr
b

y, N =
r
p

z, τ =
t
r

,

then we have the following dimensionless system:

dx
dt

= x( – x) –
xy

β + x
,

dy
dt

= –δy +
γ xy
β + x

– yz,

dz
dt

= –ηz + σyz,

()

where

β =
a
K

, δ =
d
r

, γ =
m
r

, η =
μ

r
and σ =

qk
b

.

Fractional-order models are more accurate than integer-order models as they allow
more degrees of freedom. Fractional differential equations also serve as an excellent tool
for the description of hereditary properties of various materials and processes [, ].
Now we introduce fractional order into the ODE model (). The new system is described
by the following set of fractional-order differential equations:

Dαx = x( – x) –
xy

β + x
,

Dαy = –δy +
γ xy
β + x

– yz,

Dαz = –ηz + σyz,

()

where Dα is the Caputo fractional derivative. Following [, , ], we discretize the frac-
tional lesser date moth and predator model (). After the discretization with piecewise
constant arguments, the system is reduced to

xn+ = xn +
hα

�( + α)

[
xn( – xn) –

xnyn

β + xn

]
,

yn+ = yn +
hα

�( + α)

[
–δyn +

γ xnyn

β + xn
– ynzn

]
,

zn+ = zn +
hα

�( + α)
[–ηzn + σynzn].

()

Remark  If the fractional order α → , then we have the forward Euler discretization of
system ().

In the following, we will study the dynamics of system ().
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4 Dynamical behaviors of the discretized fractional-order lesser date moth
and predator model

4.1 Stability of the fixed points of the system
In this subsection, we study the asymptotic stability of the fixed points of system () which
has the same fixed points of system (). First, we need the following two definitions.

Definition  ([] (Local stability when all eigenvalues are real)) Consider the discrete,
nonlinear dynamical system in () with a steady-state equilibrium x̄. The linearized system
is given by (). The associated Jacobian matrix has three real eigenvalues λi (i = , , ).

Lemma 
(i) The steady-state equilibrium x̄ is called a stable node if |λi| <  for all i = , , .

(ii) The steady-state equilibrium x̄ is called a two-dimensional saddle if one |λi| > .
(iii) The steady-state equilibrium x̄ is called a one-dimensional saddle if one |λi| < .
(iv) The steady-state equilibrium x̄ is called an unstable node if |λi| >  for all i = , , .
(v) The steady-state equilibrium x̄ is called hyperbolic if one |λi| = .

Definition  ([] (Local stability when complex eigenvalues)) Consider the discrete,
nonlinear dynamical system in () with a steady-state equilibrium x̄. The linearized sys-
tem is given by (). The associated Jacobian matrix has a pair of complex eigenvalues
λ, = ρ + ωi and one real eigenvalue λ.

(i) The steady-state equilibrium x̄ is called a sink if |λi| <  for all i = , , .
(ii) The steady-state equilibrium x̄ is called a two-dimensional saddle if one |λ| > .

(iii) The steady-state equilibrium x̄ is called a one-dimensional saddle if one |λ| < .
(iv) The steady-state equilibrium x̄ is called a source if |λi| >  for all i = , , .
(v) The steady-state equilibrium x̄ is called hyperbolic if one |λi| = .

Now, the Jacobian matrix J(E) for system given in () evaluated at E(, , ) is as fol-
lows:

J(E) =

⎛
⎜⎝

 + hα

�(+α)  
  – δhα

�(+α) 
   – ηhα

�(+α)

⎞
⎟⎠ . ()

Theorem  The trivial-equilibrium point E has at least three different topological types
for its all values of parameters as follows:

(i) E is a source if h > max{ α

√
�(+α)

δ
, α

√
�(+α)

η
},

(ii) E is a two-dimensional saddle if  < h < min{ α

√
�(+α)

δ
, α

√
�(+α)

η
},

(iii) E is a one-dimensional saddle if α

√
�(+α)

δ
< h < α

√
�(+α)

η
or

α

√
�(+α)

η
< h < α

√
�(+α)

δ
.

Proof The eigenvalues corresponding to the equilibrium point E are λ =  + hα

�(+α) > ,
λ =  – δhα

�(+α) , and λ =  – ηhα

�(+α) , where α ∈ (, ] and h, hα

�(+α) > . Hence, applying the
stability conditions using Definition , one can obtain the results (i)-(iii). �
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The Jacobian matrix J(E) for system (), evaluated at E = (, , ), is given by

J(E) =

⎛
⎜⎝

 – hα

�(+α)
–hα

(+β)�(+α) 
  + δ(R–)hα

�(+α) 
   – ηhα

�(+α)

⎞
⎟⎠ . ()

Theorem  If the semi-trivial equilibrium point E exists, then it has at least three different
topological types for its all values of parameters.

(i) E is a source if h > max{ α
√

�( + α), α

√
�(+α)

μ
},

(ii) E is a two-dimensional saddle if  < h < min{ α
√

�( + α), α

√
�(+α)

η
},

(iii) E is a one-dimensional saddle if α
√

�( + α) < h < α

√
�(+α)

η
or

α

√
�(+α)

η
< h < α

√
�( + α).

Proof The eigenvalues corresponding to the equilibrium point E are λ =  – hα

�(+α) ,
λ =  + δ(R–)hα

�(+α) > , and λ =  – ηhα

�(+α) . Hence, applying the stability conditions using
Definition , one can obtain the results (i)-(iii). �

For investigating the stability of E = ( βδ

γ –δ
, γ (β+)(R–)x


βδ

, ), let J(E) be the Jacobian ma-
trix for the system given in () evaluated at E, then

J(E) =

⎛
⎜⎝

 – hα

�(+α) [x – xy
(β+x) ] –xhα

(β+x)�(+α) 
βγ yhα

(β+x)�(+α)  –yhα

�(+α)

   – hα

�(+α) (η – σy)

⎞
⎟⎠ . ()

The characteristic equation of the Jacobian matrix () is

[
λ –

(
 – H[η – σy]

)][
λ – Trλ + Det

]
= , ()

where H = hα

�(+α) , Tr =  – BH , B = (+β)x


(β+x) [ – R( – β)], Det = AH – BH + , and
A = βγ xy

(β+x) .

Theorem  If  < R < βδη

γ σ (+β)x


+ , then the semi-trivial equilibrium point E has at least
four different topological types for its all values of parameters

(i) E is asymptotically stable (sink) if one of the following conditions holds:
(i.) 
 ≥  and  < h < min{h, h},
(i.) 
 <  and  < h < h;

(ii) E is unstable (source) if one of the following conditions holds:
(ii.) 
 ≥  and h > max{h, h},
(ii.) 
 <  and h > h;

(iii) E is a two-dimensional saddle if the following case is satisfied:

 ≥  and h < min{h, h};

(iv) E is a one-dimensional saddle if one of the following cases is satisfied:
(iv.) 
 ≥  and h < h < h or max{h, h} < h < h,
(iv.) 
 <  and  < h < h;

(v) E is non-hyperbolic if one of the following conditions holds:
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(v.) 
 ≥  and h = h or h,
(v.) 
 <  and h = h,

where

h = α

√
�( + α)
B +

√



, h = α

√
�( + α)
B –

√



,


 = B
 – A, h = α

√
�( + α)
η – σy

.

Proof The eigenvalues corresponding to the equilibrium point E are the roots of the char-
acteristic equation (), which is λ =  – H[η – σy] and λ, = 

 (Tr ±
√

Tr
 – Det) =

 – H
 (B ± √

B
 – A). Hence, applying the stability conditions using Lemma , one can

obtain the results (i)-(v). �

The fourth and fifth equilibrium points are Ej = (xj, yj, zj), j = , , where

x =



[
 – β –

√
( – β) – 

(
η

σ
– β

)]
,

x =



[
 – β +

√
( – β) – 

(
η

σ
– β

)]
,

yj =
η

σ
,

zj =
βγσ

η
(xj – ) + γ – δ.

For the dynamical properties of the interior (positive) equilibrium point Ej (j = , ) we
need to state these lemmas.

Lemma  ([]) Let the equation x + bx + cx + d = , where b, c, d ∈ R. Let further A =
b – c, B = bc – d, C = c – bd, and 
 = B – AC. Then

() The equation has three real roots if and only if 
 ≤ .
() The equation has one real root x and a pair of conjugate complex roots if and only if


 > . Furthermore, the conjugate complex roots x, are

x, =



[
√y + √y – b ± √

i
(

√y – √y
)]

,

where

y, = bA +


(
–B ± √

B – AC
)
.

Lemma  ([–]) Let F(λ) = λ – Trλ+ Det. Suppose that F() > , λ and λ are the two
roots of F(λ) = . Then

(i) |λ| <  and |λ| <  if and only if F(–) >  and Det < ,
(ii) |λ| <  and |λ| >  (or |λ| >  and |λ| < ) if and only if F(–) < ,

(iii) |λ| >  and |λ| >  if and only if F(–) >  and Det > ,
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(iv) λ = – and λ �=  if and only if F(–) =  and Tr �= , ,
(v) λ and λ are complex and |λ| = |λ| if and only if Tr – Det <  and Det = .

The necessary and sufficient conditions ensuring that |λ| <  and |λ| <  are as follows
[]:

(i)  – TrJ + det J > ,

(ii)  + TrJ + det J > ,

(iii) det J < .

()

If one of conditions () is not satisfied, then we have one of the following cases [].
. A saddle-node (often called fold bifurcation in maps), transcritical or pitchfork

bifurcation if one of the eigenvalues =  and other eigenvalues (real) �= . This local
bifurcation leads to the stability switching between two different steady states;

. A flip bifurcation if one of the eigenvalues = –, other eigenvalues (real) �= –. This
local bifurcation entails the birth of a period -cycle;

. A Neimark-Sacker (secondary Hopf ) bifurcation; in this case we have two conjugate
eigenvalues and the modulus of each of them = .

This local bifurcation implies the birth of an invariant curve in the phase plane. The
Neimark-Sacker bifurcation is considered to be an equivalent to the Hopf bifurcation in
continuous time and in fact the major instrument to prove the existence of quasi-periodic
orbits for the map.

Note You can get any local bifurcation (fold, flip and Neimark-Sacker) by taking specific
parameter value such that one of the conditions of each bifurcation is satisfied.

The Jacobian matrix J(Ej) for system () evaluated at the interior equilibrium point Ej is
as follows:

J(Ej) =

⎛
⎜⎜⎝

 – H[xj – xjyj
(β+xj) ] –xjH

β+xj


βγ yjH
(β+xj)  –yjH

 σ zjH 

⎞
⎟⎟⎠ , ()

then the characteristic equation of the Jacobian matrix () is

F(λ) = λ + bjλ
 + cjλ + dj = , ()

where

bj =  – εjH , εj =
xj

β + xj
[xj + β – ],

cj = ψjH – εjH + , ψj =
βγ xjyj

(β + xj) + σyjzj,

and

dj = νjH – ψjH + εjH – , νj = σεjyjzj.
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By some computation, we have

A = b
j – cj =

(
ε

j – ψj
)
H,

B = bjcj – dj = (εjψj – νj)H +
(
ψj – ε

j
)
H,

C = c
j – bjdj =

(
ψ

j – εjνj
)
H + (νj – εjψj)H +

(
ε

j – ψj
)
H,

and


j = 
̄jH,

where


̄j = 
(
ν

j + ε
j νj + ψ

j – ε
j ψ


j – εjψjνj

)
.

It is clear that equation F ′(λ) =  has the following two roots:

λ∗
, =




(
–bj ±

√
b

j – cj

)
=  –

H


(
εj ±

√
ε

j – ψj

)
.

If 
̄j ≤ , then 
j ≤ ; by Lemma , equation () has three real roots λi, i = , ,  (let
λ ≤ λ ≤ λ). From this, we note that two roots λ∗

, (let λ∗
 ≤ λ∗

) of equation F ′(λ) = 
also are real.

When 
̄j > , namely, 
j > , by Lemma , we have that equation () has one real root
λ and a pair of conjugate complex roots λ,. The conjugate complex roots are as follows:

λ, =



[
√y + √y – b ± √

i
(

√y – √y
)]

,

where

y, =
H


(
ε

j – εjψj – νj ± 
√


̄j
)
,

and

F() = νjH and F(–) = – + εjH – ψjH + νjH.

Now, we will introduce the stability of Ej, we have the following theorem.

Theorem  If the positive equilibrium point Ej exists, then it has the following topological
types of its all values of parameters:

() Ej is a sink if one of the following conditions holds:
(.i) 
̄j ≤ , F() > , F(–) <  and – < λ∗

, < ,
(.ii) 
̄j > , F() > , F(–) <  and |λ,| < .

() Ej is a source if one of the following conditions holds:
(.i) 
̄j ≤  and one of the following conditions holds:

(.i.a) F() > , F(–) >  and λ∗
 < – or λ∗

 > ,
(.i.b) F() < , F(–) <  and λ∗

 < – or λ∗
 > ,
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(.ii) 
̄j >  and one of the following conditions holds:
(.ii.a) F() <  and |λ,| > ,
(.ii.b) F(–) >  and |λ,| > .

() Ej is a one-dimensional saddle if one of the following conditions holds:
(.i) 
̄j ≤  and one of the following conditions holds:

(.i.a) F() > , F(–) <  and λ∗
 < – or λ∗

 > ,
(.i.b) F() < , F(–) > .

(.ii) 
̄j >  and one of the following conditions holds:
(.ii.a) F() > , F(–) <  and |λ,| > ,
(.ii.b) F() <  and |λ,| < ,
(.ii.c) F(–) >  and |λ,| < .

() Ej is a two-dimensional saddle if one of the following conditions holds:
(.i) 
̄j ≤  and one of the following conditions holds:

(.i.a) F() > , F(–) >  and – < λ∗
 < ,

(.i.b) F() < , F(–) <  and – < λ∗
 < ,

(.ii) 
̄j >  and one of the following conditions holds:
(.ii.a) F(–) <  and |λ,| < ,
(.ii.b) F() >  and |λ,| < .

() Ej is non-hyperbolic if one of the following conditions holds:
(.i) 
̄j ≤  and F() =  or F(–) = ,

(.ii) 
̄j >  and F() =  or F(–) =  or |λ,| = .

Proof Let 
̄j ≤ . From Lemma , equation () has three real roots λi, i = , , . Further,
we obtain that equation F ′(λ) =  has also two real roots λ∗

 and λ∗
. From the expression

of F ′(λ), we have F ′(λ) >  for all λ ∈ (–∞,λ∗
 ) ∪ (λ∗

,∞) and F ′(λ) <  for all λ ∈ (λ∗
 ,λ∗

).
Hence, F(λ) is increasing for all λ ∈ (–∞,λ∗

 ) ∪ (λ∗
,∞) and decreasing for all λ ∈ (λ∗

 ,λ∗
).

Therefore, we finally obtain F(λ∗
 ) ≥ , F(λ∗

 ) ≤ , λ ∈ (–∞,λ∗
 ], λ ∈ [λ∗

 ,λ∗
) and λ ∈

[λ∗
,∞).
If condition (.i) holds, then we obviously have λ ∈ (–,λ∗

 ], λ ∈ [λ∗
 ,λ∗

] and λ ∈ [λ∗
, ).

Therefore, Ej is a sink.
If condition (.i.a) holds. When λ∗

 < –, we have λ < – and λ < –. Since F(λ) is in-
creasing for all λ ∈ [λ∗

,∞) and F(–) > , we can obtain λ < –. Therefore, Ej is a source.
When λ∗

 > –, then from F(–) >  we have λ < –. Hence F(λ) >  for all λ ∈ (–, ).
Consequently, λ >  and λ > . Therefore, Ej is a source.

By the same way, we prove that when condition (.i.b) holds, Ej is also a source.
If condition (.i.a) holds, then, when λ∗

 < – we have λ < – and when λ∗
 >  we have

λ > . From F() >  and F(–) <  we have λ ∈ (–, ). Therefore, Ej is a one-dimensional
saddle.

If condition (.i.b) holds, then we clearly have λ < –, λ ∈ (–, ) and λ > . Therefore,
Ej is a one-dimensional saddle too.

If condition (.i.a) holds, we have λ, ∈ (–, ) and λ∗
 ∈ (–∞, ), F(λ) is increasing for

all λ ∈ (–∞,λ∗
 ], we obtain λ ∈ (–∞, –). Therefore, Ej is a two-dimensional saddle.

By the same way, we can prove that when condition (.i.b) holds, Ej is also a two-
dimensional saddle.

If condition (.i) holds, then we can easily prove that Ej is non-hyperbolic.
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Now, we let 
̄j > . From Lemma , equation () has one real root λ and a pair of
conjugate complex roots λ,. If condition (.ii) holds, then from F() >  and F(–) <  we
have that a real root λ ∈ (–, ). Therefore, from |λ,| <  we obtain that Ej is a sink.

If condition (.ii.a) holds, then from F(–) <  we have a real root λ > . Therefore, from
|λ,| >  we obtain that Ej is a source.

By the same way, we can prove that if condition (.ii.b) holds, then Ej is also a source.
If condition (.ii.a) holds, then we have a real root λ ∈ (–, ). Therefore, from |λ,| > 

we have that Ej is a one-dimensional saddle.
By the same way, we can prove that when conditions (.ii.b) and (.ii.c) hold, then Ej is

also a one-dimensional saddle.
If condition (.ii.a) holds, then from F(–) <  we have a real root λ > . Therefore, from

|λ,| >  we have that Ej is a two-dimensional saddle.
By the same way, we can prove that if condition (.ii.b) holds, then Ej is also a two-

dimensional saddle.
Lastly, we can easily prove that if condition (.ii) holds, then Ej is non-hyperbolic. �

Theorem  If the positive equilibrium point Ej exists, then Ej loses its stability via
(i) a saddle-node bifurcation, if one of the following conditions holds:

(i.) 
̄j ≤ , F() =  and F(–) �= ,
(i.) 
̄j > , F() =  and |λ,| �= ;

(ii) flip bifurcation, if one of the following conditions holds:
(ii.) 
̄j ≤ , F(–) =  and F() �= ,
(ii.) 
̄j > , F(–) =  and |λ,| �= ;

(iii) Hopf bifurcation, if the following condition holds:

̄j > , F(–) �= , F() �=  and |λ,| = .

Proof ([]) (i) introduced a thorough study of the main types of bifurcations for -D
maps. In line with this study, we can see that Ej undergoes a saddle-node bifurcation
when a single eigenvalue becomes equal to . Therefore Ej can lose its stability through
the saddle-node bifurcation when one of λi = , i = , , . A saddle-node bifurcation of Ej

may occur if the parameters vary in the small neighborhood of the following sets:

S =
{

(h,α,β ,γ , δ,η,σ ) : 
̄j ≤ , F() =  and F(–) �= 
}

,

or

S =
{

(h,α,β ,γ , δ,η,σ ) : 
̄j > , F() =  and |λ,| �= 
}

.

By the same way, we can prove (ii).
(iii) When the Jacobian has a pair of complex conjugate eigenvalues of modulus , we get

the Hopf bifurcation, then Ej can lose its stability through the Hopf bifurcation when one
of |λ,| = , and then it also implies that all the parameters locate and vary in the small
neighborhood of the following set:

S =
{

(h,α,β ,γ , δ,η,σ ) : 
̄j > , F(–) �= , F() �=  and |λ,| = 
}

. �
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4.2 Numerical simulations
In this section, we give the phase portraits, the attractor of parameter β and bifurcation di-
agrams to confirm the above theoretical analysis and to obtain more dynamical behaviors
of the palm trees, lesser date moth and predator model. Since most of the fractional-order
differential equations do not have exact analytic solutions, approximation and numerical
techniques must be used.

From the numerical results, it is clear that the approximate solutions depend on the frac-
tional parameters h, α see Figure . The approximate solutions xn, yn, and zn are displayed
in the figures below.

We use some documented data for some parameters like β = ., γ = , δ = η = , and
σ = , then we have (x, y, z) = (., ., .). Other parameters will be (a) h = ., α =
., (b) h = ., α = ., (c) h = ., α = ., and (d) h = ., α = ..

Figure  depicts the phase portraits of model () according to the chosen parameter
values and for various values of the fractional-order parameters h and α. We can see that,
whenever the value of α is fixed and the value of h increases, then E moves from the
stabilized to the chaotic band. Figure (c) depicts the phase portrait for model ().

By computing, we have E � (., ., .), and we can get the critical value of flip bi-
furcation for model (). In Figure (a) we have 
̄ = ,,, > , F() � . > ,
F(–) � –. < , and |λ,| � . < . In this case we get E is a sink according to case
(.ii) in Theorem .

In Figure (b) we have 
̄ = ,,. > , F() � . > , F(–) � –. < ,
and |λ,| � . < . In this case we get E is a sink according to case (.ii) in Theorem .

In Figure (c) we have 
̄ = ,,. > , F() � . > , F(–) � –. < ,
and |λ,| � . > . In this case we get E is a one-dimensional saddle according to
case (.ii.a) in Theorem . We see that the fixed point E loses its stability at the Hopf
bifurcation parameter value h � .. For h = [, .], there is a cascade of bifurcations.
When r increases at certain values, for example, at h = ., independent invariant circles
appear. When the value of h is increased (Figure (c)), the circles break down and some
cascades of bifurcations lead to chaos.

Figures (c) and (d) explain the effect of the parameter α on the behavior of x, y, and z.
Figure  demonstrates the sensitivity to initial conditions of system (). We compute two
orbits with initial points (x, y, z) and (x, y + ., z), respectively. The compositional
results are shown in Figure . From this figure it is clear that at the beginning the time series
are indistinguishable; but after a number of iterations, the difference between them builds
up rapidly, which shows that the model has sensitive dependence on the initial conditions
of model (), y-coordinates of the two orbits, plotted against time; the y-coordinates of
initial conditions differ by ., and the other coordinates do not change. In Figure  we use
some documented data for some parameters like β = ., γ = , δ = η = , σ = , α = .,
then we have (x, y, z) = (., ., .), another parameter will be h = . : .. Figure 
describes the Hopf bifurcation diagram with respect to h, we note that, as h increases, the
behavior of this model () becomes very complicated, and the changes of parameter h has
an effect on the stability of system (). The Hopf bifurcation diagrams of system () in the
(h – x), (h – y) and (h – z) planes are given in Fig. .

After calculation for the fixed point E of map (), the Hopf bifurcation emerges from
the fixed point (., ., .) at h = . and (h,α,β ,γ , δ,η,σ ) ∈ HBE . From Figure ,
we observe that the fixed point E of map () loses its stability through a discrete Hopf
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Figure 1 Phase portraits of model (4).



El-Shahed et al. Advances in Difference Equations  (2017) 2017:295 Page 13 of 16

Figure 2 Phase portraits of model (4).

Figure 3 Hopf bifurcation diagram with respect to h.

bifurcation for h = [, .]. In Figure  we use some documented data for some param-
eters like γ = , δ = η = , σ = , h = ., α = ., other parameters will be (a) β = .,
(b) β = ., (c) β = ., and (d) β = ..

Figure (a) describes the stable equilibrium of model () according to the values of the
parameters set out above. From Figure (f ), (g) we can see that reducing and decreasing
β causes disappearance of first-periodic orbits and increase in the chaotic attractors.

In Figure , we introduce the - test for detecting the chaos. Figure (a) indicates
that, for β = ., one obtains K = –. ≈ . Then the dynamics is regular. More-
over, Figure (b) depicts bounded trajectories in the (Pc(n), Qc(n)) plane. Figure (c) in-
dicates that, for β = ., one obtains K = . ≈ . Then the dynamics is chaotic.
Moreover, Figure (d) depicts Brownian-like (unbounded) trajectories in the (Pc(n), Qc(n))
plane.

In Figure (e)-(f ), we show the asymptotic growth rate K as a function of c for regular
(chaotic) dynamics. In the case of regular (chaotic) dynamics, most values of c yield K ≈ 
(K ≈ ) as expected.

Figure (e)-(f ) show the two mean square displacements Mc for system () with β = .
(β = .), which corresponds to regular (chaotic) dynamics.

5 Conclusion
In this paper, we consider the fractional-order model consisting of palm trees, the lesser
date moth and the predator. We have got a sufficient condition for the existence and
uniqueness of the system solution. We have also studied the local stability of all the equilib-
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Figure 4 Hopf bifurcation diagram with respect to β .

rium states of the discretized fractional-order system. Moreover, it has been found that the
fractional parameter α has an effect on the stability of the discretized system. To support
our theoretical discussion, we also present numerical simulations. We analyze the bifur-
cation both by theoretical point of view and by numerical simulations. One also needs to
mention that when dealing with real life problems, the order of the system can be deter-
mined by using the collected data. The transformation of a classical model into a fractional
one makes it very sensitive to the order of differentiation α: a small change in α may result
in a big change in the final result. From the numerical results, it is clear that the approxi-
mate solutions depend continuously on the fractional derivative α.
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Figure 5 The 0-1 test for detecting chaos.
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