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Abstract
In this paper, we study the logarithmic-KP equation. The analysis depends mainly on
the Lie symmetry method. The corresponding vector fields and symmetry reductions
are derived. Furthermore, the conservation laws of the equation are constructed.
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1 Introduction
Nonlinear evolution equations (NLEEs) have been used in many science fields, such as
physics, chemistry, engineering, and other fields. The investigation of the explicit solu-
tions of NLEEs gave rise to much research work. A great many of systematic and effective
methods are used for investigating NLEEs. Some of the methods are the inverse scattering
method [], the Hirota bilinear method [, ], the Bäklund transformation method [–],
Darboux transformation [, ], the Painlevé analysis [], the Lie group method [–],
the solitary wave ansatz method [–], and others.

Conservation laws (CLs) provide a important tool to investigate many problems involv-
ing mathematical physics. A systematic method for the determination of conservation
laws is the famous Noether theorem []. Recently, the direct method was given in [],
a new method to construct the conservation laws was provided in [].

The generalized KP equation is the so-called logarithmic-KP (log-KP) equation given
by []

(
vt +

(
v ln |v|)x + vxxx

)
x + vyy = , ()

where v(x, t) represents the wave profile. In [], the authors studied the Gaussian solitary
waves of the log-KP equation. More explications of the log-KP equation and its applica-
tions can be found in [] and references therein. In [], the authors studied the log-KdV
equation. The KP equation appears in many important fields, such as water waves, fer-
romagnetic media, and so on. Kadomtsev and Petviashvili first derived the famous KP
equation []. There are many papers dealing with these types of equations [–, ,
]. We first employ the following transformation []:

v = eu, ()
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we get

uxt + uxx + uyy + uxxxx + u
xx + u

y

+ uxuxxx + u
x + uuxx + u

xuxx = . ()

In this paper, we use the Lie group method to deal with (). The outline of the paper is
as follows: In Section , the vectors fields are derived. In Section , symmetry reductions
and explicit solutions are constructed. In Section , conservation laws are presented using
the new conservation law theorem. The conclusions are presented in the final section.

2 Lie symmetry analysis
Suppose that () is invariant via the one-parameter Lie group

t∗ = t + εξt(x, y, t, u) + O
(
ε),

x∗ = x + εξx(x, y, t, u) + O
(
ε),

y∗ = y + εξy(x, y, t, u) + O
(
ε),

u∗ = u + εη(x, y, t, u) + O
(
ε),

()

where ε is the group parameter, and the vector fields are

V = ξt(x, y, t, u)
∂

∂t
+ ξx(x, y, t, u)

∂

∂x
+ ξy(x, y, t, u)

∂

∂y
+ η(x, y, t, u)

∂

∂u
. ()

Here

ξt(x, y, t, u) =
dt∗

dε

∣
∣∣
∣
ε=

, ξx(x, y, t, u) =
dx∗

dε

∣
∣∣
∣
ε=

,

ξy(x, y, t, u) =
dy∗

dε

∣∣
∣∣
ε=

, η(x, y, t, u) =
du∗

dε

∣∣
∣∣
ε=

.
()

Under the assumption of the infinitesimal invariance criterion, one gets

pr()V (�)|�= = . ()

According to the Lie group theory, one has

ηxt + ηxx + ηyy + ηxxxx + ηxxuxx + uyη
y + ηxuxxx

+ uxη
xxx + uxη

x + ηuxx + uηxx + uxuxxη
x + u

xη
xx = . ()

Putting () into (), and letting all of the powers of derivatives of u be zero, one can obtain
overdetermined systems. Solving the systems, one can get

ξt = c, ξx = cF(t), ξy = c, η = cFt , ()
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where c, c, and c are arbitrary constants, and F is a smooth function of t. Consequently,
we have

V =
∂

∂t
, V =

∂

∂y
, V = F

∂

∂x
+ Ft

∂

∂u
. ()

In addition, solving the Lie equation

d(x̄(ε))
dε

= ξx
(
x̄(ε), ȳ(ε), t̄(ε), ū(ε)

)
, x̄() = x,

d(ȳ(ε))
dε

= ξy
(
x̄(ε), ȳ(ε), t̄(ε), ū(ε)

)
, ȳ() = y,

d(t̄(ε))
dε

= ξt
(
x̄(ε), ȳ(ε), t̄(ε), ū(ε)

)
, t̄() = t,

d(ū(ε))
dε

= η
(
x̄(ε), ȳ(ε), t̄(ε), ū(ε)

)
, ū() = u,

()

where ε is a group parameter, we get the Lie symmetry group,

g : (x, y, t, u) → (x̄, ȳ, t̄, ū). ()

The associated one-parameter groups gi(ε) generated by Vi for i = , ,  are

g : (x, y, t, u) �→ (x, t + ε, y, u),

g : (x, y, t, u) �→ (x, t, y + ε, y, u),

g : (x, y, t, u) �→ (x + Fε, y, t, u + Ftε).

()

In addition, we get the following associated theorem.

Theorem  If u = f (x, y, t) is a solution of the logarithmic-KP equation, the functions

g(ε) · f (x, y, t) = f (x, y, t – ε),

g(ε) · f (x, y, t) = f (x, y – ε, t),

g(ε) · f (x, y, t) = f (x – Fε, y, t) + Ftε,

()

are also solutions of ().

Taking the following Gaussian solitary wave solution []:

u(x, t) =
c
k

+



–
k + r

k (kx + ry – ct), ()

we can derive a new explicit solution of () using g,

u(x, t) =
c
k

+



–
k + r

k

(
k(x – Fε) + ry – ct

) + Ftε. ()

Hence, one can get new solutions of (),

v(x, t) = e
c
k + 

 – 
k (k(x–Fε)+ry–ct)+Ftε . ()
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In particular, letting F(t) = t, one can get

v(x, t) = e
c
k + 

 – 
k (k(x–tε)+ry–ct)+tε , ()

setting F(t) = sin t, one has

v(x, t) = e
c
k + 

 – 
k (k(x–sin tε)+ry–ct)+cos tε , ()

and setting F(t) = tanh t, one obtains

v(x, t) = e
c
k + 

 – 
k (k(x–tanh tε)+ry–ct)+(–tanh t)ε , ()

setting F(t) = et , one can arrive at

v(x, t) = e
c
k + 

 – 
k (k(x–etε)+ry–ct)+etε , ()

setting F(t) = sin(et), one can lead to

v(x, t) = e
c
k + 

 – 
k (k(x–sin(et )ε)+ry–ct)+cos(et )etε , ()

setting F(t) = ln(t), one can have

v(x, t) = e
c
k + 

 – 
k (k(x–ln(t)ε)+ry–ct)+ 

t ε . ()

Remark  Many new explicit solutions can be derived via the solutions obtained [].

3 Symmetry reductions and explicit solutions
3.1 Symmetry reductions
In the present subsection, we will present symmetry reductions and explicit solutions of
().

() V.
For the generator V, we have

fxx + fyy + fxxxx + f 
xx + f 

y + fxfxxx + f 
x + ffxx + f 

x fxx = . ()

For this equation, we found that it also is a PDE. In order to reduce this equation, once
again, we use the Lie group method to deal with this equation. As in the previous step, one
can get the corresponding vectors,

ϒ =
∂

∂x
, ϒ =

∂

∂y
. ()

(.) ϒ.
For ϒ, we have

gyy + g
y = . ()
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Solving this equation, one can get

g = ln(cy + c). ()

That is to say,

u = ln(cy + c). ()

Also, one can get

v = cy + c. ()

(.) ϒ.
For ϒ, we get

gxx + gxxxx + g
xx + gxgxxx + g

x + ggxx + g
x gxx = . ()

() V.
In the case of V, we get the group-invariant solution,

u = f (x, t), ()

fxt + fxx + fxxxx + f 
xx + fxfxxx + f 

x + ffxx + f 
x fxx = . ()

As in the previous step, we get the associated vectors,

� =
∂

∂x
, � =

∂

∂t
. ()

(.) �.
For �, we get the trivial solution,

u = c. ()

(.) �.
For �, we arrive at

gxx + gxxxx + g
xx + gxgxxx + g

x + ggxx + g
x gxx = . ()

() V.
For this case, we get

u =
g(y, t)

F
+

Ftx
F

. ()

Plugging () into (), one arrives at


F

(
FFtt + Fgyy + g

y
)

= . ()
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By solving this equation, one obtains

g = –



ln

(
FttF

(F sin(
√

Ftty√
F

) – F cos(
√

Ftty√
F

))

)
F . ()

In this way, we get

u = –



ln

(
FttF

(F sin(
√

Ftty√
F

) – F cos(
√

Ftty√
F

))

)
+

Ftx
F

. ()

Thus, one can get the explicit solution of (),

v = eu = e
– 

 ln( Ftt F

(F sin(
√

Ftt y√
F

)–F cos(
√

Ftt y√
F

))
)+ Ft x

F

=
(

FttF

(F sin(
√

Ftty√
F

) – F cos(
√

Ftty√
F

))

)– 


e
Ft x
F , ()

where Ftt �= , F and F are functions of t.
In particular, if we set F = t, we have

u =
g(y, t)

t
+

x
t

. ()

Substituting () into (), we obtain


t

(
tgyy + g

y
)

= . ()

Solving this equation, one can get

g = t ln

(
F(t)y + F(t)

t

)
. ()

Therefore, one gets

u = ln

(
F(t)y + F(t)

t

)
+

x
t

. ()

Therefore, one can derive the explicit solution of (),

v = eu =
(

F(t)y + F(t)
t

)
e

x
t . ()

() V + V.
For this case, we get

u = f (ξ , τ ), ξ = x, τ = y – t. ()

Plugging () into (), one arrives at

–fξτ + fξξ + fττ + fξξξξ + f 
ξξ + f 

τ + fξ fξξξ + f 
ξ + ffξξ + f 

ξ fξξ = . ()
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As in the previous step, we obtain the associated vectors,

� =
∂

∂ξ
, � =

∂

∂τ
. ()

(.) �.
For �, we get

f = g(τ ) ()

and

g
τ + gττ = . ()

(.) �.
For �, we have

gξξ + gξξξξ + g
ξξ + gξ gξξξ + g

ξ + ggξξ + g
ξ gξξ = . ()

(.) � + λ� (traveling wave transformation).
For this case, we get

f = g(π ), π = ξ – τ = x – λ(y – t) ()

and

λgππ + gππ + λgππ + gππππ + g
ππ + λg

π + gπ gπππ

+ g
π + ggππ + g

π gππ = . ()

4 Conservation laws
In the present section, we derive the conservation laws of the logarithmic-KP equation.

4.1 Necessary preliminaries
For a conserved vector the following conservation equation holds:

Dt
(
Ct) + Dx

(
Cx) + Dy

(
Cy) = , ()

where Ct = Ct(t, x, y, u, . . .), Cx = Cx(t, x, y, u, . . .), Cy = Cy(t, x, y, u, . . .).
A formal Lagrangian for () is

L = p(x, y, t)
[
uxt + uxx + uyy + uxxxx + u

xx

+ u
y + uxuxxx + u

x + uuxx + u
xuxx

]
. ()

Here p(x, y, t) is a new dependent variable.
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Theorem  [] Every Lie point, Lie-Bäcklund, and nonlocal symmetry of equation ()
provides a conservation law for this equation and the adjoint equation. Then the elements
of conservation vector are given by the following formula:

Ci = ξ iL + W α

[
∂L
∂uα

i
– Dj

(
∂L
∂uα

ij

)
+ DjDk

(
∂L

∂uα
ijk

)
– · · ·

]
+ Dj

(
W α

)[(
∂L
∂uα

ij

)

– Dk

((
∂L

∂uα
ijk

))
+ · · ·

]
+ DjDk

(
W α

)[ ∂L
∂uα

ijk
– · · ·

]
, ()

where W α = ηα – ξ juα
j .

4.2 Conservation laws
The adjoint equation of () has the form

F = –uypy – puyy + pyy + pxt + uxpxuxx + pxx + upxx

+ u
xpxx – uxxpxx – uxpxxx + pxxxx = . ()

It is easily found that on substituting u instead of p in equation (), equation () is not
recovered. Thus, equation () is not self-adjoint. The Lagrangian is

L = p
[
uxt + uxx + uyy + uxxxx + u

xx + u
y

+ uxuxxx + u
x + uuxx + u

xuxx
]
. ()

From (), one gets

Ct = ξtL + W
(

–Dx
∂L
∂utx

)
+ Dx(W )

∂L
∂utx

, ()

Cx = ξL + W
(

∂L
∂ux

– Dx
∂L

∂uxx
– Dt

∂L
∂uxt

+ D
x

∂L
∂uxxx

– D
x(W )

∂L
∂uxxxx

)

+ Dx(W )
(

∂L
∂uxx

– Dx
∂L

∂uxxx
+ D

x
∂L

∂uxxxx

)

+ D
x(W )

(
∂L

∂uxxx
– Dx(W )

∂L
∂uxxxx

)
, ()

Cy = ξyL + W
(

∂L
∂uy

– Dy
∂L

∂uyy

)
+ Dy(W )

∂L
∂uyy

, ()

which leads to

Ct = –vxW + vWx, ()

Cx = W
(
uxv – vx – vxu – u

xvx – vt – vxxx + uxvxx
)

+ (Wx)
(
v + vuxx + uv + u

xv – uxvx + vxx
)

+ Wxx(uxv – vx), ()

Cy = vWuy – Wvy + vWy. ()
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In particular:
. For the case V = ∂y, we get W = –uy, and

Ct = vxuy – vuyx, ()

Cx = – uy
(
uxv – vx – vxu – u

xvx – vt – vxxx + uxvxx
)

– uxy
(
v + vuxx + uv + u

xv – uxvx + vxx
)

– uyxx(uxv – vx), ()

Cy = –vu
y + uyvy – vuyy. ()

. For V = ∂t , one has W = –ut , and

Ct = utvx – vutx, ()

Cx = – ut
(
uxv – vx – vxu – u

xvx – vt – vxxx + uxvxx
)

– (utx)
(
v + vuxx + uv + u

xv – uxvx + vxx
)

– utxx(uxv – vx), ()

Cy = –vutuy + utvy – vuty. ()

. For the case V = F∂x + Ft∂u, we have W = Ft – Fux, and we arrive at

Ct = –vx(Ft – Fux) + v(Ft – Fux)x

= Fvxux – Ftvx + Ftxv – Fxvux – Fvuxx, ()

Cx = (Ft – Fux)
(
uxv – vx – vxu – u

xvx – vt – vxxx + uxvxx
)

+ (Ftx – Fxux – Fuxt)
(
v + vuxx + uv + u

xv – uxvx + vxx
)

+ (Ftxx – Fxxux – Fxuxx – Fxuxt – Fuxxt)(uxv – vx), ()

Cy = vWuy – Wvy + vWy,

= vuyFt – vuyFux – Ftvy + Fuxvy + vFty – vFyux – Fvuxy. ()

5 Concluding remarks
In this paper, we studied the logarithmic-KP equation. The Lie group method was applied
to conduct the analysis for this work. Symmetry reductions and explicit solutions were
obtained. These solutions maybe explain some complex physical phenomena. It is to be
noted that conservation laws were also constructed. We hope that the results obtained may
be useful in further numerical analysis. Comparing with [], it can be seen that our results
are new. In the future work, we will try to employ more methods, such as nonclassical Lie
groups, the nonlocal symmetry method, and other methods, to derive more novel exact
solutions of the logarithmic types of equations.
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