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Abstract

An SIOR epidemic model with nonlinear incidence rate and two delays is studied
under the assumption that a susceptible of the host population has a constant input.
Local stability and existence of Hopf bifurcation are analyzed by regarding
combination of the time delay due to the latent period of disease and the time delay
due to the period that the infective and quarantined individuals need to be cured as
the bifurcation parameter. Furthermore, the properties of the Hopf bifurcation are
determined by using the normal form method and center manifold theory. Some
numerical simulations are also carried out in order to verify our theoretical findings.
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1 Introduction

For the last two decades, various epidemic models have been proposed and investigated in
order to understand disease transmissions and behaviours of epidemics. As is well known,
the bilinear incidence rate BSI is frequently used in many epidemic models [1-5]. How-
ever, the bilinear incidence rate is based on the law of mass action, which is more ap-
propriate for communicable diseases, but not for sexually transmitted diseases [6]. It has
been suggested by several authors that the disease transmission process may have a non-
linear incidence rate and the epidemic models with a nonlinear incidence rate have been
studied by many researchers [7-13]. In [11], Song and Pang proposed the following SIQR
(susceptible-infective-quarantined-recovered) epidemic model with constant input and

nonlinear incidence rate:

40 _ A~ BS(0)I(8) - dS(2),

4O~ SOt~ (d+a+y +0)(t),
W0~ 51(t) - (d + b + p)Q),

B~y I(£) + pQ(t) - dR(t),

where S(¢), I(¢), Q(t), and R(£) denote the numbers of the susceptible, infective, quaran-
tined, and recovered individuals at time ¢, respectively. A is the recruitment rate of the
susceptible individual; d is the natural death rate of the susceptible, infective, quarantined
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and recovered individuals; a and b are the death rates of the infective and quarantined
individuals due to the disease, respectively; B, ¥, o, and p are the states transition rates.
Song and Pang studied stability of system (1).

Obviously, they neglected the time delay due to the latent period of the disease and the
time delay due to the period that the infective and quarantined individuals need to be
cured in system (1). As stated in [14], it is necessary to incorporate time delays of one type
or another into a dynamical system in order to reflect dynamics of the system depending
on its history. It is well known that time delays have a strong impact on dynamics of a
dynamical system and effect of time delays on the dynamics of a dynamical system can be
found in [1, 9, 14-20]. Therefore, we consider the following system with delays:

B~ A - BS(t - 1)t - 1) - dS(t),

t> =BS(t-n)(t—n) - (d+a+0)t)-yI(t-T1),
”’Q 9 = 6 1(t) - (d + H)Q(H) - pQUt - ),
dR =yI(t - 1) + pQ(t — 72) — dR(¢),

(2)

where 17 is the latent period delay. 7 is the time delay due to the period that the infective
and quarantined individuals need to be cured.

The structure of this paper is as follows. Section 2 is devoted to the local stability and
existence of the Hopf bifurcation. Explicit formulae for determining the properties of the
Hopf bifurcation are derived in Section 3. Numerical simulations are presented to verify
the obtained theoretical findings in Section 4, and this work is summarised in Section 5.

2 Existence of Hopf bifurcation

2
PA__ 51, then system

According to a direct computation, we know that if Ry = Wdrary ol

(2) has the positive equilibriums E, (S, Iy, Q«, R,) where S, = d*‘””" , Qs = dféjp, R, =
%, and I, is the positive root of the following equation:
d+a+y+0)Bl2—ABl+d(d+a+y +0)=0. (3)

Let u; () = S(¢) — Sy, up(t) = I(£) — Ly, us(t) = Q(t) — Qx, ua(t) = R(t) — R,. Then system (2)

becomes

ds =o1S(t) + p1S(t - 1) + Bol(t — 1) + f1,

‘” = aal(t) + B3S(t = 1) + Bul(t = 1) + BsI(t = 12) + s
dQ(t) = a3l(t) + s Q(t) + Bs Q(t — ),

dR = asR(t) + B71(t — T2) + B Q(t — T2),

(4)

where

oy = —d, oy =—(d+a+o0), o3 =0,

~d+b), as=—d,  Bi=-BL,  B=-2SL,
Bs=BI.,  Pa=2BS.Ls,
Bs=-v, Be=-p,  Br=V, Bs =p
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and

fi = BisS(t — )t — 1) + Bual*(t — 7)) + BisS(t — 1) 2 (¢ — ),

o= BasS(t — 1)t — 1) + Boal*(t — 1) + PosS(t — 1) 2 (£ — 71),
with

,313 = _2,35*1*: ,314 = —,BS*: ,315 = —,3;
Baz =2BS1y, Baa = BS, Bas = B.

The linear system of system (4) is

% =a1S(t) + Bi1S(t — 1) + Bol(t — 1),

B — I (t) + PsS(t - 1) + Bal(t - 10) + B5I(E — 1a), 5)

490 = 31(t) + s Q(t) + PsQt — T2),
RO _ o R(E) + frI(E — 12) + By Qlt — T2).

Thus, we can get the characteristic equation

A+ md® + mad® + i+ mg + (n33% + ma)% + mA + ng)e ™
Tl+1’2)

+ (323 + paA® + pih + po)e ™2 + (q2A2 + qik + go)e ™

+ (rzkz + A+ ro)e_2M2 + (s + 80)e H(*21) = o, (6)
where

mp = K104 s, my = —(Ollolz(OhL +a5) + g (o + 012)),
My = 10 + g5 + (1 + o) (0og + as),

msz = —(0oq +ay + oy + ag), Mo = 01004005 By + 0latqts By,
m= —(,31((12064 + 0005 + aa05) + Baloras + onas + (14(15));

ny = Pilay + g + as) + Balon + oy + a5), ng = —(B1 + Pa),
Po = 0104055 + 210205 B,

p1=—(Bs(anas + onas + agors) + oo + ayas + aaas)),
p2=Pslar +ag +as5) + Bs(ay +aa +a5),  p3=—(Bs + Ps),
qo = 01058486 + 205 B1 B + aacts B1 Bs,

q1 = —(B1Bs (s + a5) + B1Bs(aa + ats) + BaBe(ay + 1)),

q2 = B1Bs + B1Be + Bs P, ro = o105 85 Be,

r1 = —PBsPs(1 + as), 1y = B5Pe, 50 = 58185 Ps; $1==P1B5Ps-
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Casel 1) = 1y = 0, equation (6) reduces to

)\,4 + }4’113)\.3 + 7}112)\.2 + Wln)\, + Mo = 0, (7)
where

My = mg + Ny +p0+q0+}"0+50, m11:m1+n1+p1+q1+r1+51,

mypy =my +ny+pr+qatry, my3 = ms + N3 + p3.

Obviously, if the condition (H;): (8)-(11) holds, all the roots of equation (7) must have
negative real parts. Thus, E.(Sy, I, Qx, R,) is locally asymptotically stable in the absence of
delay. We have

Detl = mi3 > 0, (8)
m 1

Det, = 13 >0, (9)
my My
mi3 1 0

Dets = |\myy mp m3| >0, (10)

0 myoy my

mi3 1 0 0
my  mpp 3 1

Det,, >0. (11)

0 mo my mp
0 0 0 mio

Case2 1 >0, 15 = 0. For 7, = 0, equation (6) becomes

A+ 93 A3 + Mg A? + A + Mg + (}’123)\,3 + 1o A2 + oy + nzo)e"\” =0, (12)
where

myo = mo + po + 1o, my =ntp1+rn, Myy =My +ps + 1,

my3 = m3 + p3, na0 =Ny + 4o + So, ny =n +4qi+81,

My =Ny + 42, M3 = n3.

Let A = iw (w; > 0) be the root of equation (12), then

(1’1216()1 - }’lzga)f) sin Tiwy + (7[20 — 1’1220)12) COST1wy = leza)% - a)f — myop, (13)

3 2\ i _ 3
(1’1216()1 - 1’1230)1) CoOSTiwy — (1’120 - }’1220)1) SIN Ty = nga)l — 1y,

Then we can get

(x)i3 + nga)16 + 622(,();L + 0210)% + Cyo = 0, (14)
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with
2 2 2 2
Co0 = My — My, Co1 = AWI21 — "y — 21’1’12071’[22 + 21’1207122,
R S\ 2 2 =m, —n, =2

Co2 = Mlyy — Ny + AW — LI M3 + 2H21 123, C23 = Mly3 — Ny3 — 21123,
Let w? = vy, then equation (14) becomes

V% + ngV? + szV% + Co1V1 + Cy0 = 0. (15)
Define

4 3 2
fl(Vl) =V; +C3V] + CpV] +CnV1 + €20,

3 1

1
3
16623' q20 = 55C23 — 5022023 + €21,

1
2

1 V3,
<q20> (on) L
y21=\?/—@+ 0620+\3/—@—\/06_20,

2 2

y22=520,/—%+ Q20 +ﬁ20‘/ 0120;
23 = B30 ] —qéo o+ ,320,/ N

3c
Vli:yZi_%! i:1:2)3'

P2 =

The discussion about the distribution of the roots of equation (15) is similar to that in
[21]. Thus, we have the following lemma.

Lemma 1 For equation (15), we have:
(i) if ca0 <0, equation (15) has at least one positive root;
(ii) if cao = 0 and ayg > 0, equation (15) has positive roots if and only if vi1 > 0 and
filvir) < 0;
(iii) if coo = 0 and ayg < 0, equation (15) has positive roots if and only if there exists at
least one vy, € {v11, V12, v13} such that vy, > 0 and fi(v14) < 0:
In the following, we assume that (Hy,): the coefficients in fi(v1) satisfy one of the following
conditions in (a)-(c):
(@) €0 <0;
(b) €20 20,30 20, v11 >0, and fi(vn) < 0;
(¢) ¢ =0, ar <0, and there exists at least one vi, € {vi1, V12, V13} such that v, > 0 and
Silvie) 0.
If (Hy) holds, we can conclude that equation (14) has at least a positive root wyy such
that equation (12) has a pair of purely imaginary root Liwg. For any,

Ti0 :w—o arccos(((ngla)m - I’lzga)fo) X (nga)fo - lela)lo)
1

+ (1’120 — }’1220)32) X (leza)lzo - a)fo - }’}’Zzo))

/(120 - 1’12260%0)2 + (nywy - "2360130)2))' (16)
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Next, we will verify the transversality condition. Differentiating the two sides of equa-

tion (12) with respect to 11, we get

|: di :|_1_ _ 4)\.3 + 31’1’123)\.2 + 21’1’[22)\ + Mmooy 31’123)\.2 + 21’122)\. + M1 _ E
= )\(

- + .
d'(l )»4 + 7}723)»3 + 7}’122)\.2 + ngl)\. + leo) )\.(1’123)»3 + }’122)»2 + 1’121)\ + 1’120) A

Further, we have

dir - _ fl/(Vl*)
Re[d_n] -

T1=T10 (nywio — ”123(019’0)2 + (120 — 71220)%0)2 ’

where fi(vi) = Vi + ca3V3 + coV? + CuVi + Cog and vy, = wiy. Thus, if the condition (Hay)
fi(n1x) # 0 holds, then Re[4:]-L 0. According to the Hopf bifurcation theorem in [22],

dr) 111=110
we have the following for system (2).

Theorem 1 Ifthe conditions (Hy)-(Hyp) hold, then:
(i) the positive equilibrium E,(Sy, I, Qs Ry) of system (2) is asymptotically stable for
7 € [0, T10);
(ii) system (2) undergoes a Hopf bifurcation at the positive equilibrium E (S, L, Qs Ry)

when 11 = Ty.
Case3 171 =0, 1o > 0. For 7y = 0, equation (6) becomes

)»4 + ngg)»s + ngz)»z + mSl)\ + m3g
3 2 —AT:
+ (p33A® + psad® + paihk + p3o)e ™

+ (7’32)\.2 +r3A+ r?,o)e’z’"2 =0, (17)
where

mszo = mo + Ho, mz = nmiy +m, mgzy = My + My, m33 = ms3 + ns,

P30 = pPo t+ 4o, P =p1t4q, P32 =p2tq> P33 =43,

r30 =To + So, r31 =11+, I3y =13.
Multiplying by €%, equation (17) becomes

P33A> + pd? + pak + pao
+ (A4 + mzsh® + mgoA? + myh + mgo)eM2

+ (7‘32)\2 + 7'31)\. + rgo)e"“z =0. (18)
Let A = iwy (wy > 0) be the root of equation (18), then

M1 (w2) €08 Towy — M (w3) sin Towy = Mz (ws), 19)
M33(w;) sin Towy + M3s(w3) cos Tyws = Mg (ws),
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where

4 2
Msi(w2) = wy — (M3 + r3p)ws + M3g + I3,
3 2
M3y (w2) = (m31 — r31)wy — M33ws, M33(w2) = p32w)y — p3o,
M3a(wr) = wy — (M3 — r32) @) + M3 — 130,

3 2
Mss(ws) = (m31 + r31)wy — M33w5, M3s(ws) = p33w), — pa1ws.

Then we have

Mz (w3) X M3g(ws) + Maz(wz) x Mza(ws)
M1(w2) X Msa(ws) + Map(w2) x Mss (@)
M3 (ws) X Mze(wz) — M3z(wa) x Mss(ws)
M31(w2) X Msa(ws) + May(wz) X Mss(w)

COS Ty =

Sin Tywy =
Therefore, we can obtain the following equation with respect to w;:

cos? Tywy + sin® Tyw, = 1. (20)

Next, we make the following assumption. (Hs;): equation (20) has at least one positive

root. If the condition (H3;) holds, then equation (20) has one positive root wyg such that

equation (18) has a pair of purely imaginary roots Fiw,. For wyg, we have

M3y (wa0) X M3e(wao) + Msz(wao) X Mza(wao)
Tyo = —— arccos .
w20 M31(w20) X Mza(wao) + Msza(wao) X Mss(wao)

In the following, we can obtain
dr 1™ 2 3 2 AT
. = (3p33k +2p3) + p31 + (4A + 3mizz A" + 2mizo ) + 7’)’131)6 2
%)
+ (2rapA + rgl)e_’m)

/()\,(7’32)\,2 +rah + rgo)e_“2 - k()ﬁ‘ + mssh> + mgoA? + mgh + mw)em)

T2

)

which leads to

’

[ dx ]_1 _ P3pQsp + P31Q3;
T9=T20 Q%R + Q%I

where

P3R = (l’l’l31 + 13 — 37}133a)§0) COS Toowop — 2((1’]’[32 — Ygz)a)zo — 2&)30) sin T20W20,
2 : 3
Ps; = (m31 — r31 — 3mzzwyy ) sin Taowag — 2((m32 + r32) w20 — 2w5) €OS Toowao,
3 5 .
Qsr = [(’"30 +m30)wao — (r3a + M32) Wy — a)zo] sin Tygwog

2 4
- ((Vsl - m31)w20 + Wlsawzo) COS Tr0 W20,
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Q31 = [(7”30 — m30)wao — (132 — M32) w3 — wgo] COS Too W20

+ ((}"31 + I’l’lgl)a)go - W[gga)go) sin Toow20-

Obviously, if the condition (Hsz) PsrQsg + P3;Qs; holds, then Re[j—é ;21:120 #0. That is,
if the condition (Hs;) holds, then the transversality condition is satisfied. Thus, we have

the following results according to the Hopf bifurcation theorem in [22].

Theorem 2 [fthe conditions (Hz )-(Hsy) hold, then:
(i) the positive equilibrium E,(Sy, I, Qs Ry) of system (2) is asymptotically stable for
73 € [0, 720);
(ii) system (2) undergoes a Hopf bifurcation at the positive equilibrium E,(Sy, L, Qs, Ry)
when 15 = Tyg.

Case4 171 =17, =1>0.For 7y =15 = 7, equation (6) becomes

A+ M4gk3 + m42A2 + Mg + My

+ (ma3A® + 4o d® + nagd + mao) e
2 —2AT —3AT
+(qa2A” + qud + gao)e " + (sah + s40)e T =0, (22)
where
mao = My, my =, Mmyy = My, my3 = ms,
M40 = o + Po, ng =m+p1, Nyy =Ny + pa, Ny3 = N3 + p3,
qa0 = 4o t 1o, qu =q1+r, qa2 =q2 t 1, $40 = S0, S41 = 81.

Multiplying by €%, equation (22) becomes

1’143)\3 + }’142)»2 + }’141)\ + M0
+ ()»4 + MazA + ) + mgh + m4o)e’\’

+ (qa2)® + qaik + gao)e™" + (smh + sa0)e " = 0. (23)

Let A = iw (w > 0) be the root of equation (23), then

g41COSTW — Gap SINTW + g3 = Mgy SIN 27w — gy cOS 2T W, (24)
244 SINTW + g45 COS TW + Gag = Ma1 SIN2Tw + Ngp cOS 2T W,

where

4 2

g1 = 0" — (M2 + q42)0° + My + Gao,
_ 3

842 = My3w" — (ma — 6141)60,
_ 2

843 = Mo — Ny,

4 2
Gaa = 0" — (Mag — Gao) ™ + M4 — Gao,
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3

845 = (41 + 6141)(0 — My3w-,
_ 3
Ja6 = N4 W — Na30°7,

ha = —sqo, has = sa0.
Then we can get

(gucosTw— g sintw +g43)2 + (gaasintw + gascOS T +g46)2 = hil + hﬁz. (25)
Asis well known, sin Tw = ++/1 — cos? Tw. Therefore, we consider the following two cases.

Case I sintw = v/1-cos? tw, then equation (25) can be transformed to the following

form:

2 2 2 2
(ga1coS Tw — ua V1 — cos> Tw + gu3)” + (gaa V1 — cOS? Tw + ga5 COS TW + Gae )

=13 + 2y, (26)
from which we can obtain
Caa COS* T + €43 c08% T + €4 COS% T + €47 COSTW + Cap = O, (27)
where

cro = (8 + 83 + Bha + &hs — My — 1) — 4(gaagas — gngas)”,
a1 =4(gh, +Gas + 8aa + Gio — Moy — hi2)2(g41g43 + g45846)
— 8(g4a845 — gmga2)(€aaga6 — 842843),
Cap = 4(ga1ga3 + Za5gas)” — 4(Qaagas — guigan)” + 4(gaagas — ga2843)*
+2(g + 8iis ~ 8 ~ 8aa) (8> * 8is + Zia + Zis — My — o),
ca3 = (gugas + gasas) (€ + Zis — Lz — &ia) + 8(gaagas — gnga2)(@aas — aras),

2
Ca4 = (gil + gis _giz —gh) +4(g4ag4s —g41g4z)2.

Let cos tw = v4 and denote

4 €43 3 C42 o  C41 C40
fava) =vi+ —Vvyi+ —Vi+ —Va+ —.
Caq Caq Ca4 Caq
Thus,
3cq3 2¢42 cy
five) =4v3 + =02+ “ 5y 4
Caq Ca4 Ca4
Set
3c 2c. c
3 43 o 42 41
v, + — v+ —vp+ — =0. (28)

Ca4 Caq Ca4
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€43
4caq”

Lety, =vq + Then equation (28) becomes

J’i + Ya1ya + vao = 0,

where
_ Ca1 _ 3623 _ 623 _C42C43 ﬂ

YT e 162, 7323, 8, cm
Define

b= (10) (1), g T

41 2 3 ) 42 9 )

3 Y40 3/ Yao
Ya1 = —7+\//341+ —7—\/1341,

Ya2 = ,3/ —% ++/ BarBaz + ,3/ —% -V ﬁ41,3§2,
Va3 = ,3/ —% ++v/BuBi, + ,3/ —% — v/ Ba1 Baa.

Thus, we can obtain the expression of cos @ and we denote fy;(w) = cos Tw. Then we
can obtain the expression of sin w from equation (26) and we denote f>(w) = sin Tw. Thus,
a function with respect to w in the following form can be obtained:

ffl(a)) +f422(a)) =1. (29)

In order to obtain the main results in this section, we make the following assumption.
(Ha1): equation (29) has at least one positive root w;. For wy;, the corresponding critical
value of the delay is

1
Top = — arccos f41 (wor ). 0
o1

Case Il sintw = —+/1 - cos? tw, then equation (25) becomes

(g41 COSTw + ggovV'1—cos? tw +g43)2 + (g45 COSTw — gaaV1—cos’ tw +g46)2

=Wy + hy. (31)

Similar to Case I, we can obtain the expression of cos T, which is denoted as f}; (w), and
the expression of sin 7w, which is denoted as f;,(w). Then we get

(1) (@) + (i) (@) = 1. (32)

We assumed that equation (32) has at least one positive root denoted as wgy. Then we
get the corresponding critical value of the delay

1
Top = — arccosfy,; (wor). (33)
w02

Page 10 of 20
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Let

To = min{zg;, Toz}. (34)

Thus, we know that equation (22) has a pair of purely imaginary roots +iw, when t = 7.
Differentiating the two sides of equation (22) regarding t, we can get

[d)\]‘l CPy() T

dt] ~Qu() A

where

P41()\.) = 4)&3 + 3}’}443)»2 + 21’/’[42)L + Mg + (31’143)\3 + 21’142)\ + }’141)6_)“
+ (2qaah + qa)e T + sy,

Q41()\,) = )\.(1’143)\3 + Vl42)\2 + 1’141)\. + 1’140)6_}\t + 2\ (6]42)\2 + q41)\ + q40)€_2)\r

+ 3A(sa1 ) + Sa)e”T,

Further we get

Rel:d)»j|l _ PapQup + PaQar

- - 2 2 ’
dr T=10 Q4R + Q4I

where

P4R = 21’1426{)0 sin Towg + (1’141 - 31’[430)3) COS Towo
+ 242w SIN 2Towg + 41 COS 2Towo
+ 841 COS 3Towq + Mgy — 3m43w(2),
2 .
P41 = 21’1420)0 COS Towo — (1’141 - 37[430)0) SN Towo
+ 2qa2wp COS 2Towo — Ga1 SIN 2Towg
— 841 sin 3‘[00)0 + 21’}’142(1)0 - 46{)3,
3\ o 4 2
Q4R = (714,()600 - 7142&)0) SIN Towg + (1’1430)0 — n41a)0) COS Towo
3\ o 2
+ 2(q40w0 — qar ;) SIn2Towo — 2¢41w5 COS 2Towy
+ 3540&)0 sin 31'06()0 - 35410)3 Ccos 31’00)0,
3 4 2\ o
Q4] = (1’1406()0 - }’1420)0) COS Towo — (1’1436()0 — }’1410)0) S1n Towo
2 5) cos2 2¢4w5 sin2
+ 2\q40W0 — a2 ) COS LTpwo + 2441w SIN 2TowWo

+ 3840w0 COS 3Towo + 3s4lw(2) sin 3Tpwo.

Clearly, if the condition (Hap) ParQar + Pa;Qar # 0 holds, then Re[%];i - # 0. According
to the discussion above and the Hopf bifurcation theorem in [22], we have the following
results.



Liu and Wang Advances in Difference Equations (2016) 2016:168 Page 12 of 20

Theorem 3 [f the conditions (Ha)-(Hap) hold, then:
(i) the positive equilibrium E. (S, L, Qx, Ry) of system (2) is asymptotically stable for
T €[0,70);
(ii) system (2) undergoes a Hopf bifurcation at the positive equilibrium E,(Sy, i, Qs, Ry)
when T = 9.

Case5 11 >0, 17, >0,and 1; € (0, T9).
Let A = iw14 (w14 > 0) be the root of equation (3), then

M) (w14) 8in Ty + Msp(w14) €08 Tywrs = Ms3(wiy),

(35)
Ms)(w14) cOs Tyw1, — Msy (1) sin Tyw1, = Msa(wrs),
where
M ( ) — _ 3 _ _ 2 s
51\W1x) = N1 W1 — N30W7, T g1W14 COS TrW1« qo — a7, ) SIN Tr W1«
+ $1W14 COS 2Tow1y — So SIN 2T W14,
Misy(w1y) = no — nyw? i - o’
52\W1x) = Ny — NaWy, + 1015 SM TaW1 + (G0 — g2y, ) COS ToW1x
+ $1W14 SIN 2Ty W14 + S COS 2Tor W1,
2 4 2 3 o
Ms3(w1.) = mwy, — wy, — Mo — (po —pza)l*) COS Tyw1y — (plwl* —pga)l*) Sin Tywiy
— (ro = 1201, ) €08 20201, — Ty @1, SIN 2T2 014,
3 2\ o 3
Msz(w1,) = m3w;, — o, + (po — proy,) sin oy, — (P11 — p3wy, ) €S oy,
2 .
+ (ro - rza)l*) SIN 2T 1y — Y1 W1 COS 2To W1 4.
Thus, we can obtain
Soo(wri) + 2f51(w14) €O Taw1, + 2f5a (1) sin Ty w14
+ 2fs3(w14) €08 2Tr w14 + 2f5a(wry) SIN 275wy, = 0, (36)

where

Solor) = i, + (p3 + m3 = n3 = 2m; ),
+ (m% +p§ - n% - q% —2myms — 2p1ps + 2nmins + 2m0)wf*
+(p} 411+ 10 =1} — g} — 57 — 2momy — 2pops
+2ngny — 2rory + 2qoq2)w12* + Do+ Mg + T — 15 — g — So,
Sor(@1x) = (m3p3 —Pz)wf* + (mypy + pary — p3r — Mp3 — M3py
— naqy + n3q1 + po)wy, + (mypy — mops — mapo — pora
—p2ro + pirt —mdqi + noqs + naqo — qi1s1 + Q250)wf*
+ mopo + Poro — Noqo — qoSo,
So2(w1y) = —Pswz* + (mop3 — mapa — p3ra + N34, +P1)wf*

+ (Wl1172 — myp1 — mop3 + mzpo — par1 — piry — ps3ro — niq
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3
+ Mgy — N3qo + S142) 07,
+ (mop1 — mipo + por1 — piro — Hoqi + M1qo + qoS1 — 150) W1
— 6 4
fss(wl*) =—rwy, t+ (mory — mzry + n3sy + "0)601*
2
+ (myr — mory — mary — M8y + N280) W5, + MoTo — HoSo,
— 5 3
f54(w1*) =(r - msrz)wl* + (myry — mary + msrg — n3so + 1’1251)601*

+ (mory — myry — nosy + N180) Wi

Suppose that (Hs;): equation (36) has at least one positive root. Then there exists wj, > 0

such that equation (6) has a pair of purely imaginary roots +iwj,. For o},

M ) X M )+ M ) X M. -
— arccos 51 (wlo) 524 (in) 32 (in) 53 (wm) ) (37)
w19 M5, (wfy) + Mz, (@])

*
T10

In addition, we can get

[dx T _Pa(d) m

e _

S Qa(h) A
with

Psi(A) = 4A% + 3m3A” + 2muh + my + (3n3A” + 2mph + 1y )e ™

Top3A° — (3ps — Tap2)A* — (2p2 — op1)h — p1 + Tapo) e

~A(T1+72)

~(
— (2q22* = 22 — Taq) X — @1 + T2 o) €

— (212r2A? = (21, — 2T511) A — 11 + 2770 )€ ™2

— (27282 + 2Tp80)e M T1+272)

Qs1(A) = (n3A4 +mrd +mA? + no)\)e_Ml + (q2k3 + A+ qo)»)e_’\(’””)

+ (slk2 + sok)e_x(’”z”).

Define

Rel:ﬂ:r _ P5pQsgr + P5Qs1
dTl =15 QgR + Qg[

Clearly, if the condition (Hsp) PsgQsr + P5;Qs; # 0 holds, then Re[%];11:rf0 # 0. There-
fore, we can have the following results according to the Hopf bifurcation theorem in [22].

Theorem 4 If the conditions (Hs;)-(Hsy) hold, then:
(i) the positive equilibrium E.(Sx, L, Qx, Ry) of system (2) is asymptotically stable for

7 € [0, 75p);
(ii) system (2) undergoes a Hopf bifurcation at the positive equilibrium E,(Sy, L, Qs, Ry)

when 1, = 3.
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3 Properties of the Hopf bifurcation

In this section, we investigate the direction, stability, and period of the Hopf bifurcation
for 1; > 0, 75 € (0, 730). We assume that 73, < 175, where 7} € (0, 799) in this section. Let
T =T+, 4 € R uy = S(1it), up = (1), uz = Q(11£), s = R(11£). Then system (2) becomes

u(t) = Lyue + F(, uy), (38)

where

L/t(»b = (sz) + ,U.) (Amax¢(0) + BZmax(p (_:_2_*0> + Blmax¢(_1)),

10

and
F(,LL, Mt) = (sz) + /’L)(FhFZr 0; O)T¢
with

$(0) = (¢1(6), $2(6), $3(6), $4(0))" € C(I-1,0, R*),

o 0 0 0 ,31 ,32 0 0
0 (65) 0 0 /33 ,34 0 0
A pa—— y B ax — )
"0 w3 o 0O ™o 0 0 0
0 0 0 a5 0O 0 0 O
0O 0 0 O
0 B 0 O
By max = ,
2 max 0 0 ,36 0
0 Bz Bs O

and

Fy = Bizp1 (12 (1) + Bradp; (1) + Bisr (-1)3 (1),
Ey = Bospi(=1)2(=1) + Baady (=1) + Pash1 (~1)¢p; (-1).

Therefore, according to the Riesz representation theorem, there exists a function n(6, i)
for 6 € [-1,0] such that

0
L= f dn(6,W$(0), ¢ < C(1-1,0],R").
1
In fact, we choose

(71*0 + 1) (Amax + Bimax + Bamax), 0 =0,

(71% + 1) (Bimax + Bamax)s 0 e [—?—*0,0),
n@,u) = 0’
(7:1*0 + M)Blmax: 0e (—1, —%),

0, 0=-1
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For ¢ € C([-1,0],R*), we define

Lo, ~1<6<0,
A(u)g = -
1% dn6,1)66), 6=0,

and

0, -1<6<0,
F(u,¢), 6=0.

R(p)g =

Then system (38) can be transformed into the following form:

u(t) = A(puy + R(w)u;.
For ¢ € C([-1,0], (R*)*), the adjoint operator A* of A is defined by

. —d‘;f), 0<s<l1,
A¥(p) =

L% dn"(s,0)p(-s), s=0,

associated with a bilinear form

0 4
(o100 =000~ [ [ 56 -0)dn@w(e)de. 9)

where n(0) = 1(6,0).
Next, we calculate the eigenvector p(6) of A(0) belonging to the eigenvalue +it;jw}; and
the eigenvector p*(s) belonging to the eigenvalue it} ;. According to a direction com-

putation, we obtain p(0) = (1, o2, p3, pa)Teimo®io? ) p*(0) = V1, 0P3r O3> p;“)e”ﬁ)"’fos, where

. ik ¥ . ik %
iwjy — o1 — Pre 1010 az(iojy — o — e 10%0)

2 - 3= -
g BaeM0%l0 P27 Balicoty — a4 - Bo)e o

. % %
p B702 + Bsp3 iwfy + oy + PreMo%1o
4= — -

05 =
iwi‘o — U5 2 ﬁSeiTI*OwikO ’
itk o ) itk ¥ it o *

N (B Bge ™00 + iwjy + oo + Bae'M0%0 + Bse'20 1o)p2

P3 = . o ’
Baliwfy + og + Pge’™0710) — a3 g

. (iwly +ag + Bee™o®0) pi

Py =— .

ik *
Bge'20%10

From equation (39), we have

(0%(5), 0(0)) = V[1 + 25 + 0355 + paly + Tipe ™00 (By + B3 s + p2 (BB + Baby))

+ T30€" 00 (003 (Bs oy + B173) + pa(Bsis + Bsiy)) -
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Let (p*(s), p(0)) = 1, then
V =1+ pafs + p3ps + paly + Thhe Mol (B1 + B3ps + p2(BB2 + Ban3))
.l

+ 1306 500 (ppy (Bs 53 + B70%) + 0a (B3 + Bs3))]

Next, we can get expressions of g20, g11, 02, and g1, which can determine the properties
of the Hopf bifurcation by the algorithms introduced in [22], and using a similar compu-

tation process as used in [23, 24]:

€0 =215 V[ (Bis + B2353) oV (1) pP (1) + (Bua + Baasy) (0P (1)),
gu = V[ (B13 + B2303) (0P (-1) 5@ (-1) + 5V (-1)p@(-1))

+2(Bua + Baais) P (1P (-1)],
02 = 2155 V[ (Bis + B2353) AV (162 (1) + (Bu + Baay) (P (1)) 7],

o =215V [(ﬂ13+ﬂ23p2)( R ) WZO( 15?(-1) + WP(-1)pW(-1)
. %Wéﬁ)(—l)ﬁ(‘“(—l)>
+ (Bua + Boais3) 2 W (-1) 0@ (1) + Wi (-1) 5P (-1))

+(Bis + Bs3) (FV (D (PP (D) + 2p<l>(—1>p<2)<—1)ﬁ<2><—1))],

with
Wzo(e) lggop(O) n' 0@l0f lgoip(g)e—irﬁwfoé +E162i1'1*0wi‘09’
Tio@io ELSO
Wi () = _18up(0) irrone , 81PO) icnue +E,,

PR
Tip®io T10®10

where E; and E; can be obtained by the following two equations, respectively:

o ~Bae ol 0 0\ " (EV
E =2 —Bae Mmoo o 0 0 EP ,
0 —a3 oy 0 0
0 _1373‘2”2*0’”% _138@‘2”;0“% o 0
o+ By B2 a3 0\ EY
Ey=_ Bz o+ Pa+pPs 0 0 EY ’
0 o3 ag+B¢ O 0
0 B7 Bs os 0
where

’ . % —2it W
o) = 2iwjy — oy — Pre %o,

’ .k —2it]5 i —2it, w3,
oy = 210)10 — oy — Pae 0% — Brem“T20%10,
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’ ) -2t 0
ay = 2wy — o4 — Bee” 20710,

Iy %
o5 = 2wy — as,

and

ED = Bisp®(-1)p2(-1) + fua (02 (1),

Eiz) = Bo3pW(=1)p? (1) + ,324(,0(2)(_1))2’
EY = Bis (0" (<15 (1) + 5D (-1)p? (-1)) + 2140 (-1) 5P (1),

EY = Bos(pV(-1)5P(<1) + V(1) pP (<1)) + 28240 (-1) 5P (-1).

Then we get the following coefficients:

i |g02|2) Jo1
Ci(0) = — -2 2_ =,
1(0) T (gngzo lgu 3 3
Re{C;(0)}
[y =~
Re{k (TIO)} (40)

B2 = 2Re{C1(0)},

T - Im{C1(0)} + o Im{A'(7}5)}
2 == a— .
T10%10

According to the analysis of the properties of Hopf bifurcation in [22], we have the fol-
lowing results.

Theorem 5 For system (2), if o > 0 (2 < 0), the Hopf bifurcation is supercritical (sub-
critical). If By < 0 (B2 > 0), the bifurcating periodic solutions are stable (unstable). If T, > 0
(T, < 0), the period of the bifurcating periodic solutions increases (decreases).

4 Numerical solutions

In this section, a numerical example of system (2) is provided to illustrate the validity of
our obtained theoretical results in Sections 2 and 3. We take A =10, 8 = 0.002, d = 0.01,
a=0.01,0 =03,y =0.2,b=0.25, p = 0.6. Then we can get a specific case of system (2).

By a direct computation, we get Ry = 18.4911 > 1 and the positive equilibrium E,(13.1765,
19.7365, 6.884:8,776.6628). It can be verified that the condition (H;) and other conditions
for existence of the Hopf bifurcation are satisfied.

For 71 > 0, 75 = 0. We can obtain wy = 3.6828, 119 = 0.5720. According to Theorem 1,
we know that E,(13.1765,19.7365, 6.8848,776.6628) is asymptotically stable when 7; €
[0,0.5720), which can be illustrated by the simulation in Figure 1. However, once the value
of 11 is above the critical value 719 = 0.5720, then E,(13.1765,19.7365,6.8848,776.6628)
will lose stability and a Hopf bifurcation occurs and a family of periodic solutions bifurcate
from E,(13.1765,19.7365, 6.8848,776.6628). This phenomenon is described in Figure 2.
Similarly, we have wyo = 1.9205, 759 = 1.1461 for r; = 0, 72 > 0, and wy = 1.6026, 79 = 0.4085
for 71 = 7y = T > 0, respectively. The corresponding waveforms are omitted here.

Lastly, we have o, = 2.9448, 1} = 0.3727 when 7; > 0 and 7, = 0.45 € (0, 739). The cor-
responding waveforms can be shown in Figures 3-4. Further, we obtain C;(0) = -7.6083 —
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Figure 1 The trajectory graphs with 71 = 0.45 < 719 = 0.5720 and initial value data ‘2.15, 29.39, 9.36,

2oﬁ 'H U '\ U"W 'U' f" 25
= \qJ ‘Jm i | Il ,}1 ’W! \I o H,‘U\ i ’1” -
12 muu b ”“ ““H“]IH ”W 15

Figure 2 The trajectory graphs with 71 = 0.75 < 779 = 0.5720 and initial value data ‘2.15, 29.39, 9.36,
775.105.

0.2944i and A(t};) = 0.9642 + 1.0027i. Further, we have p1, =7.8908 > 0, B, = —15.2166 <
0, and T, = —-6.9408 > 0. Therefore, we can conclude that the Hopf bifurcation is super-
critical, the bifurcating periodic solutions are stable and the period of the bifurcating pe-
riodic solutions decreases according to Theorem 5.

5 Conclusions

In the present paper, a delayed SIQR epidemic model with constant input and nonlinear
incidence rate is investigated based on the model studied in [11]. Compared with the epi-
demic model studied in [11], we not only consider the time delay due to the latent period
of the disease, but also the time delay due to the period that the infective and quarantined
individuals need to be cured. Therefore, the proposed model in the present paper is more
general. The main results are given in terms of local stability and Hopf bifurcation.
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Figure 3 The trajectory graphs with 71 = 0.27 < 7}, = 0.3727, 7 = 0.45 and initial value data ‘2.15,
29.39,9.36, 775.105..
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Figure 4 The trajectory graphs with 71 = 0.47 < 7}, = 0.3727, 7 = 0.45 and initial value data ‘2.15,
29.39, 9.36, 775.105"

Sufficient conditions for local stability and existence of the Hopf bifurcation are obtained
by regarding different combination of the two delays as a bifurcation parameter and ana-
lyzing distribution of roots of corresponding characteristic equation. It is found that both
the two delays can affect the stability of the model. When the delay is suitable small, the
model is asymptotically stable. In this case, the disease can be controlled easily. However,
once the value of the delay is above the critical value, the epidemic model will lose its sta-
bility and a Hopf bifurcation occurs and a family of periodic solutions bifurcate from the
positive equilibrium of the model. In this case, the disease is out of control and this is not
helpful to predict the law of propagation of the disease. Therefore, we should take some
measures such as introduced in [25] to control the occurrence of the Hopf bifurcation and

we leave this for future work.
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