
Niyom et al. Advances in Difference Equations  (2016) 2016:165 
DOI 10.1186/s13662-016-0897-0

R E S E A R C H Open Access

Boundary value problems with four orders
of Riemann-Liouville fractional derivatives
Somboon Niyom1, Sotiris K Ntouyas2,3, Sorasak Laoprasittichok4 and Jessada Tariboon4,5*

*Correspondence:
jessada.t@sci.kmutnb.ac.th
4Nonlinear Dynamic Analysis
Research Center, Department of
Mathematics, Faculty of Applied
Science, King Mongkut’s University
of Technology North Bangkok,
Bangkok, 10800, Thailand
5Centre of Excellence in
Mathematics, CHE, Sri Ayutthaya
Rd., Bangkok, 10400, Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper we study a new class of boundary value problems for fractional
differential equations which contains Riemann-Liouville fractional derivatives of four
orders, two in a fractional differential equation and two in boundary conditions. Our
results are based on some classical fixed point theorems. Some illustrative examples
are also included.
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1 Introduction
In this paper, we investigate a boundary value problem which contains Riemann-Liouville
fractional derivatives of four orders, two in a fractional differential equation and two in
boundary conditions, of the form

{
(λDα + ( – λ)Dβ)x(t) = f (t, x(t)), t ∈ (, T),
x() = , μDγ x(T) + ( – μ)Dγ x(T) = γ,

(.)

where Dφ is the Riemann-Liouville fractional derivative of order φ ∈ {α,β ,γ,γ} such
that  < α,β <  and  < γ,γ < α – β , γ ∈ R, the given constants  < λ ≤ ,  ≤ μ ≤ ,
and f ∈ C([, T] ×R,R) is a continuous function.

Observe that the Riemann-Liouville fractional derivatives appearing in the differential
equation and in the boundary conditions depend on the values of the constants λ and μ,
respectively. If λ = , then the first equation of (.) is reduced to a single order fractional
derivative. Also in boundary conditions, the value of constant μ has an effect for fractional
derivative of order γ and γ. In applications, it seems that the values of λ and μ can be
interpreted as the adjustable instruments for a suitable real world phenomenon.

Fractional calculus has found numerous miscellaneous applications connected with real
world problems as they appear in many fields of science and engineering, including fluid
flow, signal and image processing, fractal theory, control theory, electromagnetic theory,
fitting of experimental data, optics, potential theory, biology, chemistry, diffusion, and vis-
coelasticity. For a detailed account of applications and recent results on initial and bound-
ary value problems of fractional differential equations, we refer the reader to [–] and
the references therein.
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The paper is organized as follows. In Section , we present the framework in which the
boundary value problem (.), is formulated in a fixed point equation. Section  is devoted
to the main results. Illustrative examples are also presented.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [, ]
and we present preliminary results needed in our proofs later.

Definition . The Riemann-Liouville fractional integral of order α >  of a function g :
(,∞) →R is defined by

Iαg(t) =
∫ t



(t – s)α–

�(α)
g(s) ds,

provided the right-hand side is point-wise defined on (,∞), where � is the Gamma func-
tion.

Definition . The Riemann-Liouville fractional derivative of order α >  of a continuous
function g : (,∞) →R is defined by

Dαg(t) =


�(n – α)

(
d
dt

)n ∫ t



g(s)
(t – s)α–n+ ds, n –  < α < n,

where n = [α] + , [α] denotes the integer part of real number α, provided the right-hand
side is point-wise defined on (,∞).

From the definition of the Riemann-Liouville fractional derivative, we can obtain the
following lemmas.

Lemma . (see []) Let α >  and y ∈ C(, ) ∩ L(, ). Then the fractional differential
equation Dαy(t) =  has a unique solution

y(t) = ctα– + ctα– + · · · + cntα–n,

where ci ∈R, i = , , . . . , n, and n –  < α < n.

Lemma . (see []) Let α > . Then for y ∈ C(, ) ∩ L(, ) we have

IαDαy(t) = y(t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈R, i = , , . . . , n, and n –  < α < n.

For convenience we use the constant

� =
μ�(α)Tα–γ–

�(α – γ)
+

( – μ)�(α)Tα–γ–

�(α – γ)
. (.)
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Lemma . The boundary value problem (.) is equivalent to the following integral equa-
tion:

x(t) =
λ – 

λ�(α – β)

∫ t


(t – s)α–β–x(s) ds +


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds

+
tα–

�

(
γ –

μ(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

–
( – μ)(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

)
, t ∈ J := [, T], (.)

where the nonzero constant � is defined by (.).

Proof From the first equation of (.), we have

Dαx(t) =
λ – 

λ
Dβx(t) +


λ

f
(
t, x(t)

)
, t ∈ J . (.)

Taking the Riemann-Liouville fractional integral of order α to both sides of (.), we get

x(t) =
λ – 

λ�(α – β)

∫ t


(t – s)α–β–x(s) ds +


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds

+ Ctα– + Ctα–

for C, C ∈ R. Since  < α < , the first boundary condition of (.) implies that C = .
Hence

x(t) =
λ – 

λ�(α – β)

∫ t


(t – s)α–β–x(s) ds

+


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds + Ctα–. (.)

Applying the Riemann-Liouville fractional derivative of order ψ ∈ {γ,γ} such that  <
ψ < α – β to (.), we have

Dψx(t) =
λ – 

λ�(α – β – ψ)

∫ t


(t – s)α–β–ψ–x(s) ds

+


λ�(α – ψ)

∫ t


(t – s)α–ψ–f

(
s, x(s)

)
ds + C

�(α)
�(α – ψ)

tα–ψ–.

Substituting the values ψ = γ and ψ = γ into the above relation and using the second
condition of (.), we obtain

γ =
μ(λ – )

λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

+
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds +

μ�(α)Tα–γ–

�(α – γ)
C
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+
( – μ)(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

+
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds +

( – μ)�(α)Tα–γ–

�(α – γ)
C,

which leads to

C =

�

[
γ –

μ(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

–
( – μ)(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

]
.

Substituting the value of the constant C into (.), we deduce the integral equation (.).
The converse follows by direct computation. This completes the proof. �

3 Main results
Let C = C(J ,R) denotes the Banach space of all continuous functions from J := [, T] to R

endowed with the usual sup-norm ‖u‖ = supt∈J |u(t)|.
By Lemma ., the boundary value problem (.) can be transformed to a fixed point

problem x = Fx, where the operator F : C → C is given by

Fx(t) =
λ – 

λ�(α – β)

∫ t


(t – s)α–β–x(s) ds +


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds

+
tα–

�

(
γ –

μ(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

–
( – μ)(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

)
, (.)

where � �=  is defined by (.). Observe that the boundary value problem (.) has a solu-
tion if and only if the associated fixed point problem x = Fx has a fixed point.

For the sake of computational convenience, we use the notations


 =
Tα–β |λ – |

λ�(α – β + )
+

Tα–β–γ–μ|λ – |
λ��(α – β – γ + )

+
Tα–β–γ–( – μ)|λ – |

λ��(α – β – γ + )
, (.)


 =
Tα

λ�(α + )
+

Tα–γ–μ

λ��(α – γ + )
+

Tα–γ–( – μ)
λ��(α – γ + )

. (.)
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3.1 Existence and uniqueness result via Banach’s fixed point theorem
In the first result we prove an existence and uniqueness result by means of Banach’s con-
traction mapping principle.

Theorem . Suppose that f : J ×R →R is a continuous function and satisfies the follow-
ing assumption:

(H) there exists a constant L >  such that |f (t, x) – f (t, y)| ≤ L|x – y|, for each t ∈ J and
x, y ∈R.

If

L
 + 
 < , (.)

where 
, 
 are defined by (.) and (.), respectively, then the boundary value problem
(.) has a unique solution on J .

Proof Setting supt∈J |f (t, )| = N < ∞, and choosing

R ≥ �N
 + |γ|Tα–

�( – L
 – 
)
, (.)

where � is given by (.), as a first step, we show that FBR ⊂ BR, where BR = {x ∈ C : ‖x‖ ≤
R}. For any x ∈ BR, we have

∣∣Fx(t)
∣∣ ≤ sup

t∈J

∣∣∣∣ λ – 
λ�(α – β)

∫ t


(t – s)α–β–x(s) ds +


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds

+
tα–

�

(
γ –

μ(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

–
( – μ)(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

)∣∣∣∣
≤ |λ – |

λ�(α – β)

∫ T


(T – s)α–β–∣∣x(s)

∣∣ds

+


λ�(α)

∫ T


(T – s)α–∣∣f (s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣ds

+
Tα–

�

(
|γ| +

μ|λ – |
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–∣∣x(s)

∣∣ds

+
μ

λ�(α – γ)

∫ T


(T – s)α–γ–∣∣f (s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣ds

+
( – μ)|λ – |

λ�(α – β – γ)

∫ T


(T – s)α–β–γ–∣∣x(s)

∣∣ds

+
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–∣∣f (s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣ds
)
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≤ (
L‖x‖ + N

)[ Tα

λ�(α + )
+

Tα–γ–μ

λ��(α – γ + )
+

Tα–γ–( – μ)
λ��(α – γ + )

]

+ ‖x‖
[

Tα–β |λ – |
λ�(α – β + )

+
Tα–β–γ–μ|λ – |

λ��(α – β – γ + )

+
Tα–β–γ–( – μ)|λ – |

λ��(α – β – γ + )

]
+

|γ|Tα–

�

= (L
 + 
)R + N
 +
|γ|Tα–

�
≤ R.

This means that ‖Fx‖ ≤ R, which leads to FBR ⊂ BR.
Next, we let x, y ∈ C . Then, for t ∈ J , we have

∣∣Fx(t) – Fy(t)
∣∣

≤ |λ – |
λ�(α – β)

∫ T


(T – s)α–β–∣∣x(s) – y(s)

∣∣ds

+


λ�(α)

∫ T


(T – s)α–∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
Tα–

�

(
μ|λ – |

λ�(α – β – γ)

∫ T


(T – s)α–β–γ–∣∣x(s) – y(s)

∣∣ds

+
μ

λ�(α – γ)

∫ T


(T – s)α–γ–∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
( – μ)|λ – |

λ�(α – β – γ)

∫ T


(T – s)α–β–γ–∣∣x(s) – y(s)

∣∣ds

+
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds
)

≤ L‖x – y‖
[

Tα

λ�(α + )
+

Tα–γ–μ

λ��(α – γ + )
+

Tα–γ–( – μ)
λ��(α – γ + )

]

+ ‖x – y‖
[

Tα–β |λ – |
λ�(α – β + )

+
Tα–β–γ–μ|λ – |

λ��(α – β – γ + )

+
Tα–β–γ–( – μ)|λ – |

λ��(α – β – γ + )

]

= (L
 + 
)‖x – y‖,

which implies that ‖Fx – Fy‖ ≤ (L
 + 
)‖x – y‖. Since L
 + 
 < , F is a contrac-
tion. Therefore, by the Banach contraction mapping principle, we see that F has a fixed
point which is the unique solution of the boundary value problem (.). The proof is com-
pleted. �

Example . Consider the following boundary value problem which contains Riemann-
Liouville fractional derivatives of two orders in a differential equation and the conditions:

{
( 

 D/ + 
 D/)x(t) = e–t

(–t) ( x(t)+|x(t)|
|x(t)|+ ), t ∈ [, ],

x() = , 
 D/x() + 

 D/x() = 
 .

(.)
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Here α = /, β = /, λ = /, μ = /, γ = /, γ = /, γ = /, T = , and
f (t, x) = (e–t/( – t))((x + |x|)/(|x| + )). Since |f (t, x) – f (t, y)| ≤ (/)|x – y|, then (H)
is satisfied with L = /. By direct computation, we have � ≈ . �= , 
 ≈ .,
and 
 ≈ .. Thus L
 + 
 ≈ . < . Hence, by Theorem ., the problem
(.) has a unique solution on [, ].

3.2 Existence result via Krasnoselskii’s fixed point theorem
Next, we prove an existence result based on Krasnoselskii’s fixed point theorem.

Theorem . (Krasnoselskii’s fixed point theorem []) Let M be a closed, bounded, con-
vex, and nonempty subset of a Banach space X. Let A, B be operators such that

(a) Ax + By ∈ M where x, y ∈ M;
(b) A is compact and continuous;
(c) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Theorem . Let f : J × R → R be a continuous function satisfying (H) in Theorem ..
In addition, assume that:

(H) |f (t, x)| ≤ ν(t), ∀(t, x) ∈ J ×R and ν ∈ C(J ,R+).

Then the boundary value problem (.) has at least one solution on J , provided


 < , (.)

where 
 is defined by (.).

Proof Denoting ‖ν‖ = supt∈J |ν(t)|, we consider the set Br = {x ∈ C : ‖x‖ ≤ r}, where

r ≥ �‖ν‖
 + |γ|Tα–

�( – 
)
, (.)

and �, 
, and 
 are given by (.), (.), and (.), respectively.
For t ∈ J let us introduce the operators F and F on Br as

Fx(t) =
(λ – )

λ�(α – β)

∫ t


(t – s)α–β–x(s) ds

–
tα–μ(λ – )

λ��(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
tα–( – μ)(λ – )
λ��(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds,

Fx(t) =


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds

+
tα–

�

[
γ –

μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

–
( – μ)

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

]
.
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To show that Fx + Fy ∈ Br , we let x, y ∈ Br . Then we have

∣∣Fx(t) + Fy(t)
∣∣

≤ sup
t∈[,T]

∣∣∣∣ (λ – )
λ�(α – β)

∫ t


(t – s)α–β–x(s) ds +


λ�(α)

∫ t


(t – s)α–f

(
s, y(s)

)
ds

–
tα–μ(λ – )

λ��(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
tα–( – μ)(λ – )
λ��(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

+
tα–

�

[
γ –

μ

λ�(α – γ)

∫ T


(T – s)α–β–γ–f

(
s, y(s)

)
ds

–
( – μ)

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, y(s)

)
ds

]∣∣∣∣
≤ ‖x‖

[
Tα–β |λ – |

λ�(α – β + )
+

Tα–β–γ–μ|λ – |
λ��(α – β – γ + )

+
Tα–β–γ–( – μ)|λ – |

λ��(α – β – γ + )

]
+

|γ|Tα–

�

+ ‖ν‖
[

Tα

λ�(α + )
+

Tα–γ–μ

λ��(α – γ + )
+

Tα–γ–( – μ)
λ��(α – γ + )

]

≤ r
 + ‖ν‖
 +
|γ|Tα–

�
≤ r.

It follows that Fx + Fy ∈ Br . This claim that the condition (a) of Theorem . holds. To
prove that F is a contraction mapping, for x, y ∈ Br , we have

∣∣Fx(t) – Fy(t)
∣∣

≤ |λ – |
λ�(α – β)

∫ T


(T – s)α–β–∣∣x(s) – y(s)

∣∣ds

+
Tα–μ|λ – |

λ��(α – β – γ)

∫ T


(T – s)α–β–γ–∣∣x(s) – y(s)

∣∣ds

+
Tα–( – μ)|λ – |
λ��(α – β – γ)

∫ T


(T – s)α–β–γ–∣∣x(s) – y(s)

∣∣ds

≤
{

Tα–β |λ – |
λ�(α – β + )

+
Tα–β–γ–μ|λ – |

λ��(α – β – γ + )

+
Tα–β–γ–( – μ)|λ – |

λ��(α – β – γ + )

}
‖x – y‖

= 
‖x – y‖,

which is a contraction, since 
 < . Therefore, the condition (c) of Theorem . is satisfied.
Using the continuity of the function f , we see that the operator F is continuous. For

x ∈ Br , it follows that

‖Fx‖ ≤ ‖ν‖
{

Tα

λ�(α + )
+

Tα–γ–μ

λ��(α – γ + )
+

Tα–γ–( – μ)
λ��(α – γ + )

}
= 
‖ν‖,
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which implies that the operator F is uniformly bounded on Br . Now we are going to prove
that F is equicontinuous. Setting supt∈J ,x∈R |f (t, x)| = f , for each t, t such that t > t and
for x ∈ Br , we have

∣∣Fx(t) – Fx(t)
∣∣

≤
∣∣∣∣ 
λ�(α)

[∫ t


(t – s)α–f

(
s, x(s)

)
ds –

∫ t


(t – s)α–f

(
s, x(s)

)
ds

]

+
|tα–

 – tα–
 |

�

[
|γ| +

μ

λ�(α – γ)

∫ T


(T – s)α–β–γ–f

(
s, x(s)

)
ds

+
( – μ)

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

]∣∣∣∣
≤ f


λ�(α)

[∫ t



[
(t – s)α– – (t – s)α–]ds +

∫ t

t

(t – s)α– ds
]

+ f
|tα–

 – tα–
 |

�

[
|γ| +

μ

λ�(α – γ)

∫ T


(T – s)α–β–γ– ds

+
( – μ)

λ�(α – γ)

∫ T


(T – s)α–γ– ds

]

≤ f
{

(t – t)α + |tα
 – tα

 |
λ�(α + )

+
|tα–

 – tα–
 |

�

[
|γ| +

μTα–γ

λ�(α – γ + )

+
( – μ)Tα–γ

λ�(α – γ + )

]}
,

which is independent of x and tends to zero as t → t. Hence F is equicontinuous. There-
fore F is relatively compact on Br and, by the Arzelá-Ascoli theorem, F is compact on Br .
Thus the condition (b) of Theorem . is satisfied. Therefore all conditions of Theorem .
are satisfied, and consequently, the boundary value problem (.) has at least one solution
on J . This completes the proof. �

Example . Consider the following boundary value problem which contains Riemann-
Liouville fractional derivatives of two orders in a differential equation and the conditions:

{
( 

 D/ + 
 D/)x(t) = cos t

(–t) ( |x(t)|
|x(t)|+ ), t ∈ [, ],

x() = , 
 D/x() + 

 D/x() = 
 .

(.)

Here α = /, β = /, λ = /, μ = /, γ = /, γ = /, γ = /, T = , and f (t, x) =
(cos t/(( – t)))((|x|/(|x| + ))). By direct computation, we have � ≈ . �=  and

 ≈ . < . Clearly,

∣∣f (t, x)
∣∣ =

∣∣∣∣ cos t
( – t)

( |x|
|x| + 

)∣∣∣∣
≤ cos t

( – t) .

Hence, by Theorem . the problem (.) has at least one solution on [, ].
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3.3 Existence result via Leray-Schauder’s nonlinear alternative
Our final existence result is based on Leray-Schauder’s nonlinear alternative.

Theorem . (Nonlinear alternative for single valued maps []) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U → C is
a continuous, compact (that is, F (U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with x = λF (x).

Theorem . Suppose that f : J ×R → R is a continuous function and the following con-
ditions hold:

(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
ϕ ∈ C(J ,R+) such that

∣∣f (t, x)
∣∣ ≤ ϕ(t)ψ

(‖x‖) for each (t, x) ∈ J ×R;

(H) there exists a constant M >  such that

M�

M�
 + ψ(M)‖ϕ‖�
 + Tα–|γ| > ,

where �, 
, 
 are defined by (.), (.) and (.), respectively.

Then the boundary value problem (.) has at least one solution on J .

Proof Consider the operator F defined by (.). We will show that the boundary value
problem (.) has at least one solution on J . To accomplish this, firstly, we shall show that
F maps bounded sets (balls) into bounded sets in C . For a number ρ > , let Bρ = {x ∈ C :
‖x‖ ≤ ρ} be a bounded ball in C . Then for t ∈ J we have

∣∣Fx(t)
∣∣ ≤ sup

t∈J

∣∣∣∣ λ – 
λ�(α – β)

∫ t


(t – s)α–β–x(s) ds

+


λ�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds

+
tα–

�

(
γ –

μ(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

–
( – μ)(λ – )
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

–
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

)∣∣∣∣
≤ ψ

(‖x‖)‖ϕ‖
[

Tα

λ�(α + )
+

Tα–γ–μ

λ��(α – γ + )
+

Tα–γ–( – μ)
λ��(α – γ + )

]

+ ‖x‖
[

Tα–β |λ – |
λ�(α – β + )

+
Tα–β–γ–μ|λ – |

λ��(α – β – γ + )
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+
Tα–β–γ–( – μ)|λ – |

λ��(α – β – γ + )

]
+

|γ|Tα–

�

= ψ(ρ)‖ϕ‖
 + ρ
 +
|γ|Tα–

�

and, consequently,

‖Fx‖ ≤ ψ(ρ)‖ϕ‖
 + ρ
 +
|γ|Tα–

�
.

After that we will show that the operator F maps bounded sets into equicontinuous sets
of C . Let t, t ∈ J such that t < t and x ∈ Bρ . Then we have

∣∣Fx(t) – Fx(t)
∣∣

≤ |λ – |
λ�(α – β)

[∫ t


(t – s)α–β–x(s) ds –

∫ t


(t – s)α–β–x(s) ds

]

+


λ�(α)

[∫ t


(t – s)α–f

(
s, x(s)

)
ds –

∫ t


(t – s)α–f

(
s, x(s)

)
ds

]

+
|tα–

 – tα–
 |

�

(
|γ| +

μ|λ – |
λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

+
μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

+
( – μ)|λ – |

λ�(α – β – γ)

∫ T


(T – s)α–β–γ–x(s) ds

+
 – μ

λ�(α – γ)

∫ T


(T – s)α–γ–f

(
s, x(s)

)
ds

)

≤ ‖x‖
[

[(t – t)α–β + |tα–β
 – tα–β

 ]|λ – |
λ�(α – β + )

+
|tα–

 – tα–
 |

�

( |λ – |μTα–β–γ

λ�(α – β – γ + )

+
|λ – |( – μ)Tα–β–γ

λ�(α – β – γ + )

)]
+

|tα–
 – tα–

 ||γ|
�

+ f
[

(t – t)α– + |tα–
 – tα–

 |
λ�(α + )

+
|tα–

 – tα–
 |

�

(
μTα–γ

λ�(α – γ + )

+
( – μ)Tα–γ

λ�(α – γ + )

)]
.

As t – t → , the right-hand side of the above inequality tends to zero independently
of x ∈ Bρ . Therefore, by the Arzelá-Ascoli theorem, the operator F : C → C is completely
continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Theorem .) once
we have proved the boundedness of the set of the solutions to equations x = θFx for θ ∈
(, ).

Let x be a solution. Then, for t ∈ J , and following similar computations to the first step,
we have

∣∣x(t)
∣∣ ≤ ψ

(‖x‖)‖ϕ‖
 + ‖x‖
 +
|γ|Tα–

�
,
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which leads to

‖x‖�
‖x‖�
 + ψ(‖x‖)‖ϕ‖�
 + Tα–|γ| ≤ .

In view of (H), there exists a constant M such that ‖x‖ �= M. Setting the set

U =
{

x ∈ C : ‖x‖ < M
}

,

we see that the operator F : U → C is continuous and completely continuous. From the
choice of U , there is no x ∈ ∂U such that x = θFx for some θ ∈ (, ). Consequently, by
the nonlinear alternative of Leray-Schauder type, we see that the operator F has a fixed
point x ∈ U which is a solution of the boundary value problem (.). This completes the
proof. �

Example . Consider the following boundary value problem which contains Riemann-
Liouville fractional derivatives of two orders in a differential equation and the conditions:

{
( 

 D/ + 
 D/)x(t) = 

(t+) ( x(t)
|x(t)|+ + |x(t)|

|x(t)|+ ), t ∈ [, ],
x() = , 

 D/x() + 
 D/x() = 

 .
(.)

Here α = /, β = /, λ = /, μ = /, γ = /, γ = /, γ = /, T = 
and f (t, x) = (/(t + ))((x/(|x| + )) + (|x|/(|x| + ))). By direct computation, we have
� ≈ . �= , 
 ≈ ., and 
 ≈ .. Clearly,

∣∣f (t, x)
∣∣ =

∣∣∣∣ 
(t + )

(
x

|x| + 
+

|x|
|x| + 

)∣∣∣∣
≤ 

(t + )
(|x| + 

)
.

Choosing ϕ(t) = /(t + ) and ψ(|x|) = |x| + , we can show that there exists M > .
satisfying

M�

M�
 + ψ(M)‖ϕ‖�
 + Tα–|γ| > .

Hence, by Theorem ., the problem (.) has at least one solution on [, ].

3.4 Special cases
In this section, we discuss some special cases of the problem (.) which can be reduced to
boundary value problems of Riemann-Liouville fractional derivatives with three orders. If
λ = , then the problem (.) is reduced to

{
Dαx(t) = f (t, x(t)), t ∈ J ,
x() = , μDγ x(T) + ( – μ)Dγ x(T) = γ.

(.)

Therefore, we have the following existence results.
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Corollary . Assume that the condition (H) holds. If L
 < , then the boundary value
problem (.) has a unique solution on J .

Corollary . Let the conditions (H) and (H) be satisfied. Then the boundary value prob-
lem (.) has at least one solution on J , provided 
 < .

Corollary . Suppose that the condition (H) is fulfilled. If there exists a positive constant
M such that

M�

ψ(M)‖ϕ‖�
 + Tα–|γ| > ,

then the boundary value problem (.) has at least one solution on J .

If μ = , then we have

{
(λDα + ( – λ)Dβ )x(t) = f (t, x(t)), t ∈ J ,
x() = , Dγ x(T) = γ,

(.)

and also a nonzero constant

� =
�(α)Tα–γ–

�(α – γ)
. (.)

Corollary . Suppose that the condition (H) holds. If L
 + 
 < , where 
, 
 are
defined by (.) and (.) and � by (.), then the boundary value problem (.) has a
unique solution on J .

Corollary . Assume that the conditions (H) and (H) are satisfied and suppose that

 <  with � defined by (.). Then the boundary value problem (.) has at least one
solution on J .

Corollary . Assume that the conditions (H) and (H) are true with � defined by (.).
Then the boundary value problem (.) has at least one solution on J .
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