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Abstract
In this article, the authors study the existence of positive periodic solutions for a
prescribed mean curvature p-Laplacian equation with a singularity of repulsive type
and a time-varying delay

(
ϕp

( x′(t)√
1 + (x′(t))2

))′
+ βx′(t) + g(t, x(t), x(t – τ (t))) = p(t),

where g → –∞ when x → 0+. The existence of positive periodic solutions conditions
is devised by using the coincidence degree theory and some analysis methods.
A numerical example demonstrates the validity of the main results.

Keywords: prescribed mean curvature equation; coincidence degree theory;
periodic solutions; singularity; delay

1 Introduction
The problems of periodic solution have been studied widely for some types of differential
equations with a singularity (see [–] and the references therein). For example, in [],
Zhang studied periodic solutions for the following Liénard equation with a singularity:

x′′(t) + f
(
x(t)
)
x′(t) + g

(
t, x(t)

)
= ,

where f : R → R, g : R × (, +∞) → R is an L-Carathéodory function, g(t, x) is a T-
periodic function in the first argument and can be singular at x = , i.e., g(t, x) can be
unbounded as x → +.

On the basis of work of Zhang, Wang in [] further studied periodic solutions for the
Liénard equation with a singularity and a deviating argument, which is different from the
literature [],

x′′(t) + f
(
x(t)
)
x′(t) + g

(
t, x(t – σ )

)
= ,
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where  ≤ σ < T is a constant, f : R → R, g : R × (, +∞) → R is an L-Carathéodory
function, g(t, x) is a T-periodic function in the first argument and can be singular at x = ,
i.e., g(t, x) can be unbounded as x → +.

Nowadays, the prescribed mean curvature equation and its modified forms, which arise
from some problems associated with differential geometry and physics such as com-
bustible gas dynamics, have been studied widely (see [–] and the references therein).
Moreover, we note that the existence of periodic solutions for the prescribed curvature
mean equations has attracted much attention from researchers. In [], Feng considered
a kind of prescribed mean curvature Liénard equation

(
u′(t)√

 + (u′(t))

)′
+ f
(
u(t)
)
u′(t) + g

(
t, u
(
t – τ (t)

))
= e(t), (.)

where τ , e ∈ C(R,R) are T-periodic, and g ∈ C(R × R,R) is T-periodic in the first argu-
ment, T >  is a constant. By applying Mawhin’s continuation theorem and given some
sufficient conditions, the author showed that equation (.) has at least one periodic solu-
tion.

On the basis of work of Feng, various types of prescribed curvature mean equations have
been studied (see [–] and the references therein). But, to the best of our knowledge,
the study of positive periodic solutions for the prescribed mean curvature equation with a
singularity is relatively infrequent. This is due to the fact that the mechanism on which how
the solution is influenced by the singularity and the nonlinear term ( u′(t)√

+(u′(t))
)′ associated

to prescribed mean curvature equation is far away from clear.
To address this issue, recently, Lu and Kong in [] studied periodic solutions for a kind of

prescribed mean curvature Liénard equation with a singularity and a deviating argument:

(
u′(t)√

 + (u′(t))

)′
+ f
(
u(t)
)
u′(t) + g

(
t, u(t – σ )

)
= e(t), (.)

where  ≤ σ < T , g : (, +∞) → R is a continuous function and can be singular at u = .
However, σ = kT , k is an integer. If σ �= kT , it is difficult to estimate a priori bounds of
periodic solutions by using method in []. Therefore, it is significant to consider time-
varying delay for the prescribed mean curvature equations.

Inspired by the above facts, in this paper, we consider the following prescribed mean
curvature Duffing-type equation with a singularity of repulsive type and a time-varying
delay:

(
ϕp

(
x′(t)√

 + (x′(t))

))′
+ βx′(t) + g

(
t, x(t), x

(
t – τ (t)

))
= p(t), (.)

where g : [, T] × (, +∞) × (, +∞) → R is a continuous function. g can be singular at
x = , i.e., g can be unbounded as x → +. τ , p ∈ (R,R) are T-periodic with

∫ T
 p(t) dt = ,

β is a constant. By applying Mawhin’s continuation theorem, we prove that equation (.)
has at least one positive T-periodic solution. So, our research is meaningful and feasible.

The rest of the paper is organized as follows. In Section , some necessary definitions
and lemmas are introduced. The existence of periodic solutions conditions is presented in
Section . A numerical example is illustrated to show the validity of the proposed method
in Section .
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2 Preliminary
First, we recall the following definition and lemmas.

Definition . Let X and Y be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , respectively.
A linear operator

L : D(L) ⊂ X → Y

is said to be a Fredholm operator of index zero provided that
(i) Im L is a closed subset of Y,

(ii) dim ker L = codim Im L < ∞.

Definition . Let X and Y be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , respectively,
� ⊂ X be an open and bounded set;

L : D(L) ⊂ X → Y

is a Fredholm operator of index zero, and we have a continuous operator

N : � ⊂ X → Y

being L-compact in �̄ provided that
(I) Kp(I – Q)N(�̄) is a relative compact set of X ,

(II) QN(�̄) is a bounded set of Y ,
where we denote X = ker L, Y = Im L. Then we have the decompositions X = X ⊕ X,
Y = Y ⊕ Y, and we let

P : X → X, Q : Y → Y

be continuous linear projectors (meaning P = P and Q = Q), and Kp = L|–
ker P∩D(L).

Lemma . [] Let X and Y be two real Banach spaces, L : D(L) ⊂ X → Y be a Fredholm
operator with index zero, � ⊂ X be an open bounded set, and N : �̄ ⊂ X → Y be L-compact
on �̄. Suppose that all of the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ D(L), ∀λ ∈ (, );
() QNx �= , ∀x ∈ ∂� ∩ ker L;
() deg{JQN ,� ∩ ker L, } �= , where J : Im Q → ker L is a homeomorphism map.

Then the equation Lx = Nx has at least one solution on D(L) ∩ �̄.

In order to use Lemma ., let us consider the following system:

⎧⎨
⎩

x′
(t) = ϕq(x(t))√

–ϕ
q (x(t))

= φ(x(t)),

x′
(t) = –βφ(x(t)) – g(t, x(t), x(t – τ (t))) + p(t),

(.)

where ϕq(s) = |sq–|s, 
p + 

q = , x(t) = ϕp( x′
(t)√

+(x′
(t)) ) = φ–(x′

(t)). Obviously, if x(t) =

(x(t), x(t))� is a solution of (.), then x(t) is a solution of (.).
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Let

X = Y =
{

x | x =
(
x(t), x(t)

)� ∈ C
(
R,R), x(t) = x(t + T)

}
,

where the normal ‖x‖ = max{|x|, |x|}, and |x| = maxt∈[,T] |x(t)|, |x| =
maxt∈[,T] |x(t)|. It is obvious that X and Y are Banach spaces. Furthermore, for ϕ ∈ CT ,
‖ϕ‖r = (

∫ T
 |ϕ(t)|r dt) 

r , r > .
Now we define the operator L

L : D(L) ⊂ X → Y , Lx = x′ =
(
x′

(t), x′
(t)
)�,

where D(L) = {x | x = (x(t), x(t))� ∈ C(R,R), x(t) = x(t + T)}.
Define a nonlinear operator N : �̄ ⊂ X → Y

Nx =
(

ϕq(x(t))√
 – ϕ

q (x(t))
, –βφ

(
x(t)

)
– g
(
t, x(t), x

(
t – τ (t)

))
+ p(t)

)�
.

Then problem (.) can be written as Lx = Nx in �̄.
We know

ker L =
{

x | x ∈ X, x′ =
(
x′

(t), x′
(t)
)� = (, )�

}
,

then x′
(t) = , x′

(t) = , obviously x ∈ R, x ∈ R, thus ker L = R
, and it is also easy to

prove that Im L = {y ∈ Y ,
∫ T

 y(s) ds = }, so L is a Fredholm operator of index zero.
Let

P : X → ker L, Px =

T

∫ T


x(s) ds,

and

Q : Y → Im Q, Qy =

T

∫ T


y(s) ds.

Let Kp = L|–
ker p∩D(L), then it is easy to see that

(Kpy)(t) =
∫ T


G(t, s)y(s) ds,

where

G(t, s) =

{
s–T

T ,  ≤ t ≤ s;
s
T , s ≤ t ≤ T .

It implies that ∀� ⊂ X is an open and bounded set with �̄ ⊂ X, Kp(I – Q)N(�̄) is a relative
compact set of X, QN(�̄) is a bounded set of Y , so the operator N is L-compact in �̄.
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3 Main results
Theorem . For problem (.), assume the following conditions hold:

(g) (Balance condition) There exist positive constants A and A with A < A such that if
x is a positive continuous T-periodic function satisfying

∫ T
 g(t, x(t), x(t – τ (t))) dt = ,

then

A ≤ x(ε) ≤ A

for some ε ∈ [, T].
(g) (Degree condition) g(x) <  for all x ∈ (, A) and g(x) >  for all x > A, where g(x) =


T
∫ T

 g(t, x(t), x(t – τ (t))) dt, x > .
(g) (Decomposition condition) g(t, x(t), x(t – τ (t))) = g(t, x(t – τ (t))) + g(x(t)), where g is

a continuous function and there exist positive constants ai, ci, i = , , and b such that

g
(
t, x(t), x

(
t – τ (t)

))≤ ax(t) + ax
(
t – τ (t)

)
+ b, (t, x) ∈ [, T] × (, +∞).

Meanwhile, |g(t, x)| ≤ cx + c.
(g) (Strong force condition at x = )

∫ 
 g(x) dx = –∞.

(g) B := (
∫ T

 |p(t)| dt) 
 + supt∈[,T] |p(t)| < +∞, |β| > cT , and

|β|M + T
[
(a + a)M + b + B

]
< ,

where M = A + cAT+cT+B
√

T
|β|–cT .

Then equation (.) has at least one positive T-periodic solution.

Proof Let � = {x ∈ �̄, Lx = λNx,∀λ ∈ (, )}. If, ∀x ∈ �, we have

⎧⎨
⎩

u′(t) = λ
ϕq(v(t))√
–ϕ

q (v(t))
= λφ(v(t)),

v′(t) = –λβφ(v(t)) – λg(t, u(t), u(t – τ (t))) + λp(t),
(.)

where v(t) = φ–( u′(t)
λ

) = ϕp(

λ

u′(t)√
+ (u′(t))

λ

).

Integrating the second equation of (.) from  to T , we have

∫ T


g
(
t, u(t), u

(
t – τ (t)

))
dt = . (.)

Combining with (g), we can see that there exist positive constants A, A, and ε ∈ [, T]
such that

A ≤ u(ε) ≤ A. (.)
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Therefore, we have

|u| = max
t∈[,T]

∣∣u(t)
∣∣≤ max

t∈[,T]

∣∣∣∣u(ε) +
∫ t

ε

u′(s) ds
∣∣∣∣

≤ A +
∫ T



∣∣u′(s)
∣∣ds

≤ A +
√

T
∥∥u′∥∥

. (.)

Multiplying the second equation of (.) by u′(t) and integrating on the interval [, T], we
can get

 =
∫ T


v′(t)u′(t) dt

= –
∫ T


β
(
u′(t)

) dt – λ

∫ T


g
(
t, u(t), u

(
t – τ (t)

))
u′(t) dt + λ

∫ T


p(t)u′(t) dt.

It follows from (g) that

∫ T


β
(
u′(t)

) dt = –
∫ T


g
(
t, u(t), u

(
t – τ (t)

))
u′(t) dt + λ

∫ T


p(t)u′(t) dt

= –
∫ T



[
g
(
t, u
(
t – τ (t)

))
+ g

(
u(t)
)]

u′(t) dt + λ

∫ T


p(t)u′(t) dt

= –
∫ T


g
(
t, u(t), u

(
t – τ (t)

))
u′(t) dt + λ

∫ T


p(t)u′(t) dt,

i.e.,

|β|
∫ T



∣∣u′(t)
∣∣ dt ≤

∫ T



∣∣g
(
t, u
(
t – τ (t)

))∣∣∣∣u′(t)
∣∣dt +

∫ T



∣∣p(t)
∣∣∣∣u′(t)

∣∣dt

≤
∫ T



(
c
∣∣u(t – τ (t)

)∣∣ + c
)∣∣u′(t)

∣∣dt +
∫ T



∣∣p(t)
∣∣∣∣u′(t)

∣∣dt

≤ c|u|
√

T
∥∥u′∥∥

 + c
√

T
∥∥u′∥∥

 + B
∥∥u′∥∥

,

which together with (.) gives

|β|∥∥u′∥∥
 ≤ c|u|

√
T
∥∥u′∥∥

 + c
√

T
∥∥u′∥∥

 + B
∥∥u′∥∥



≤ c
[
A +

√
T
∥∥u′∥∥



]√
T
∥∥u′∥∥

 + c
√

T
∥∥u′∥∥

 + B
∥∥u′∥∥



= cT
∥∥u′∥∥

 + (cA
√

T + c
√

T + B)
∥∥u′∥∥

. (.)

It follows from |β| > aT that

∥∥u′∥∥
 ≤ cA

√
T + c

√
T + B

|β| – cT
. (.)

Substituting (.) into (.), we obtain

|u| ≤ A +
cAT + cT + B

√
T

|β| – cT
:= M. (.)
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Furthermore, from the second equation of (.), we can get

∫ T



∣∣v′(t)
∣∣dt ≤

∫ T


|β|∣∣u′(t)

∣∣dt + λ

∫ T



∣∣g(t, u(t), u
(
t – τ (t)

))∣∣dt

+ λ

∫ T



∣∣p(t)
∣∣dt. (.)

Write

I+ =
{

t ∈ [, T] : g
(
t, u(t), u

(
t – τ (t)

))≥ 
}

;

I– =
{

t ∈ [, T] : g
(
t, u(t), u

(
t – τ (t)

))≤ 
}

.

Then we can get from (.) and (g)

∫ T



∣∣g(t, u(t), u
(
t – τ (t)

))∣∣dt

=
∫

I+

g
(
t, u(t), u

(
t – τ (t)

))
dt –

∫

I–

g
(
t, u(t), u

(
t – τ (t)

))
dt

= 
∫

I+

g
(
t, u(t), u

(
t – τ (t)

))
dt

≤ a

∫ T


u(t) dt + a

∫ T


u
(
t – τ (t)

)
dt + 

∫ T


b dt

≤ (a + a)T |u| + bT . (.)

Substituting (.) into (.) and combining with (.) and (.), we obtain

∫ T



∣∣v′(t)
∣∣dt ≤ |β|√T

∥∥u′∥∥
 + λ

[
(a + a)T |u| + bT

]
+ λBT

≤ |β|M + T
[
(a + a)M + b + B

]
. (.)

Integrating the first equation of (.) on the interval [, T], we have

∫ T



ϕq(v(t))√
 – ϕ

q (v(t))
dt = .

Then we can see that there exists η ∈ [, T] such that v(η) = . It implies that

∣∣v(t)
∣∣ =
∣∣∣∣
∫ t

η

v′(s) ds + v(η)
∣∣∣∣≤
∫ T



∣∣v′(s)
∣∣ds,

which combining with (.) gives

∣∣v(t)
∣∣≤
∫ T



∣∣v′(s)
∣∣ds

≤ |β|M + T
[
(a + a)M + b + B

]

:= ρ.
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Since |β|M + T((a + a)M + b + B) < , we have

|v| = max
t∈[,T]

∣∣v(t)
∣∣≤ ρ < . (.)

From (.), we can also have

∣∣u′∣∣
 ≤ λ · max

t∈[,T]

|v(t)|q–
√

 – v(q–)(t)
≤ λρq–

 – ρ(q–) . (.)

On the other hand, from the second equation of (.) and by (g), we can see that

v′(t) = –βu′(t) – λg
(
t, u(t), u

(
t – τ (t)

))
+ λp(t).

Take ω ∈ [, T], then

v′(ω) = –βu′(ω) – λg
(
ω, u(ω), u

(
ω – τ (ω)

))
+ λp(ω)

= –βu′(ω) – λ
[
g
(
ω, u

(
ω – τ (ω)

))
+ g

(
u(ω)

)]
+ λp(ω). (.)

Multiplying both sides of equation (.) by u′(ω), we have

v′(ω)u′(ω) = –βu′(ω)u′(ω) – λ
[
g
(
ω, u

(
ω – τ (ω)

))
+ g

(
u(ω)

)]
u′(ω)

+ λp(ω)u′(ω). (.)

Let ε ∈ [, T] be as in (.). For any ω ∈ [ε, T], integrating equation (.) on the interval
[ε, T], we have

λ

∫ u(ω)

u(ε)
g(u) du = λ

∫ ω

ε

g
(
u(ω)

)
u′(ω) dω

= –
∫ ω

ε

v′(ω)u′(ω) dω –
∫ ω

ε

β
(
u′(ω)

) dω

– λ

∫ ω

ε

g
(
ω, u

(
ω – τ (ω)

))
u′(ω) dω + λ

∫ ω

ε

p(ω)u′(ω) dω. (.)

By (.) and (.), we get

λ

∣∣∣∣
∫ u(ω)

u(ε)
g(u) du

∣∣∣∣

= λ

∣∣∣∣
∫ ω

ε

g
(
u(ω)

)
u′(ω) dω

∣∣∣∣

≤
∫ ω

ε

∣∣v′(ω)u′(ω)
∣∣dω +

∫ ω

ε

∣∣β(u′(ω)
)∣∣dω

+ λ

∫ ω

ε

∣∣g
(
ω, u

(
ω – τ (ω)

))
u′(ω)

∣∣dω + λ

∫ ω

ε

∣∣p(ω)u′(ω)
∣∣dω

≤ ∣∣u′∣∣


∫ ω

ε

∣∣v′(t)
∣∣dt + |β|T∣∣u′∣∣

 + λGM T
∣∣u′∣∣

 + λT |p|
∣∣u′∣∣



≤ ∣∣u′∣∣


[|β|M + T(a + a)M + bT + BT
]

+ |β|T∣∣u′∣∣
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+ λTGM + λT |p|]

≤ λρq–

 – ρ(q–)

[
|β|M + T(a + a)M + bT + BT

+ |β|T λρq–

 – ρ(q–) + λTGM + λT |p|
]

, (.)

where GM = max|u|≤M g(t, u). It follows from (.) that

∣∣∣∣
∫ u(ω)

u(ε)
g(u) du

∣∣∣∣ < +∞.

According to (g), we can see that there exists a constant M >  such that, for ω ∈ [ε, T],

u(ω) ≥ M. (.)

For the case ω ∈ [, ε], we can handle it similarly. Thus, we have

u(t) ≥ M, ∀t ∈ [, T]. (.)

Let us define

 < D = min{A, M} and D = max{A, M}.

Then by (.), (.), and (.) we can obtain

D ≤ u(t) ≤ D. (.)

Set

� =
{

x = (u, v)� ∈ X :
D


< u(t) < D + , |v| < ρ <

ρ + 


}
.

Then the condition () of Lemma . is satisfied. Suppose that there exists x ∈ ∂� ∩ ker L
such that QNx = 

T
∫ T

 Nx(s) ds = (, )�, i.e.,

⎧⎪⎨
⎪⎩


T
∫ T


ϕq(v(t))√
–ϕ

q (v(t))
dt = ,


T
∫ T

 [–β
ϕq(v(t))√
–ϕ

q (v(t))
– g(t, u(t), u(t – τ (t))) + p(t)] dt = .

(.)

Since ker L = R
, and u ∈R, v ∈R are constant, combining with the first equation of (.),

we obtain

v =  < ρ.

From the second equation of (.), we have


T

∫ T


g
(
t, u(t), u

(
t – τ (t)

))
dt = .
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From (g) we can see that

D


< D < A ≤ u(t) ≤ A < D < D + ,

which contradicts the assumption x ∈ ∂�. So, for all x ∈ ker L ∩ ∂�, we have QNx �= .
Then the condition () of Lemma . is satisfied.

In the following, we prove that the condition () of Lemma . is also satisfied.
Let

z = Kx = K

(
u
v

)
=

(
u – A+A


v

)
,

then we have

x = z +

(
A+A


v

)
.

Define J : Im Q → ker L to be a linear isomorphism with

x = z +

(
v

–u

)
,

and define

H(μ, x) = μKx + ( – μ)JQNx, ∀(x,μ) ∈ � × [, ].

Then

H(μ, x) =

(
μu – μ(A+A)


μv

)
+

 – μ

T

⎛
⎜⎝
∫ T

 [ cvq–√
–v(q–)

+ g(t, u(t), u(t – τ (t)))] dt
∫ T


vq–√

–v(q–)
dt

⎞
⎟⎠ . (.)

Now we claim that H(μ, x) is a homotopic mapping. Assume, by way of contradiction, that
there exist μ ∈ [, ] and x =

( u
v

) ∈ ∂� such that H(μ, x) = .
Substituting μ and x into (.), we have

H(μ, x) =

⎛
⎜⎜⎝

μu – μ(A+A)
 + ( – μ) cvq–

√
–v(q–)



+ ( – μ)g(u)

μv + ( – μ) vq–
√

–v(q–)


⎞
⎟⎟⎠ . (.)

Since H(μ, x) = , we can see that

μv + ( – μ)
vq–

√
 – v(q–)



= .

Combining with μ ∈ [, ], we obtain v = . Thus u = A or A.
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If u = A, it follows from (g) that g(u) < , then substituting v =  into (.), we have

μu –
μ(A + A)


+ ( – μ)

βvq–
√

 – v(q–)


+ ( – μ)g(u)

= μu –
μ(A + A)


+ ( – μ)g(u)

< μ

(
u –

A + A



)
< . (.)

If u = A, it follows from (g) that g(u) > , then substituting v =  into (.), we have

μu –
μ(A + A)


+ ( – μ)

βvq–
√

 – v(q–)


+ ( – μ)g(u)

= μu –
μ(A + A)


+ ( – μ)g(u)

> μ

(
u –

A + A



)
> . (.)

Combining with (.) and (.), we can see that H(μ, x) �= , which contradicts the
assumption. Therefore H(μ, x) is a homotopic mapping and x�H(μ, x) �= , ∀(x,μ) ∈ (∂�∩
ker L) × [, ]. Then

deg(JQN ,� ∩ ker L, ) = deg
(
H(, x),� ∩ ker L, 

)

= deg
(
H(, x),� ∩ ker L, 

)

= deg(Kx,� ∩ ker L, )

=
∑

x∈K–()

sgn
∣∣K ′(x)

∣∣

=  �= .

Thus, the condition () of Lemma . is also satisfied. Therefore, by applying Lemma .,
we can conclude that equation (.) has at least one positive T-periodic solution. �

4 Numerical example
In this section, we provide an example to illustrate results from the previous sections.

Example . As an application, we consider the following example:

(
ϕp

(
x′(t)√

 + (x′(t))

))′
+




u′(t) +



( + sin t)u

(
t – sin t

)

–


u(t)
=




sin t. (.)

Conclusion Problem (.) has at least one positive π
 -periodic solution.
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Proof Corresponding to Theorem . and (.), we have

p(t) =



sin t,

g
(
t, u(t), u

(
t – sin t

))
=




( + sin t)u
(
t – sin t

)
–


u(t)

,

then we can have and choose

T =
π


, a = c = ., a = c =




, b =



, β =




,

A = , A = ,

and B := (
∫ T

 |p(t)| dt) 
 + supt∈[,T] |p(t)| < 

 < +∞. Then we can see that (g)-(g) hold.
Moreover, |β| > cT and

|β|M + T
[
(a + a)M + b + B

]≈ . < .

Hence, by applying Theorem ., we can see that equation (.) has at least one positive
T-periodic solution. �

Remark . Since all the results in [–] and the references therein cannot be applica-
ble to equation (.) for solving positive periodic solutions, Theorem . in this paper is
essentially new.
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