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Abstract
The boundedness character of positive solutions of the following system of difference

equations: xn+1 = A + ypn
xrn–3

, yn+1 = A + xpn
yrn–3

, n ∈N0, when min{A, r} > 0 and p≥ 0, is

studied.
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1 Introduction
Concrete nonlinear difference equations and systems, especially those which are not
closely related to differential ones, have attracted a lot of attention recently (see, for
example, [–] and the references therein). Among them, symmetric and close to
symmetric systems of difference equations, whose study was essentially initiated by
Papaschinopoulos and Schinas in the mid-s, have attracted a considerable interest
(see, for example, [, –, , , –]). For example, in [] Papaschinopoulos and
Schinas studied the oscillatory behavior, the boundedness character, and the global sta-
bility of positive solutions of the following close to symmetric system of difference equa-
tions:

xn+ = A +
yn

xn–p
, yn+ = A +

xn

yn–q
, n ∈ N,

where A >  and p, q ∈N. It should be noted that the system is rational. On the other hand,
for the case p = q the system obviously becomes symmetric, that is, it is of the following
form:

xn = f (xn–k , yn–l), yn = f (yn–k , xn–l), n ∈ N,

for some k, l ∈N.
On the other hand, a systematic study of positive solutions of nonlinear difference equa-

tions containing non-integer powers of their dependent variables began by Stević et al.,
approximately since the publication of [], where the first nontrivial results related to the
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following difference equation were given:

xn+ = α +
xp

n–

xp
n

, n ∈N, ()

where min{α, p} > .
A good prototype including () is the following difference equation:

xn = α +
xp

n–k
xr

n–l
, n ∈N, ()

where k, l ∈N, k �= l, min{α, r} > , and p ≥ , which was proposed for studying by Stević at
numerous talks. Some special cases of this, the corresponding max-type difference equa-
tion or related equations has been studied considerably (see, for example, [, , , , –,
, ] and the references therein).

Motivated by these two lines of investigations Stević has proposed recently studying
symmetric and close to symmetric systems of difference equations which, among others,
stem from special cases of ().

Motivated by all above mentioned work, and especially by [], here we investigate the
boundedness character of the solutions of the next system of difference equations

xn+ = A +
yp

n

xr
n–

, yn+ = A +
xp

n

yr
n–

, n ∈N, ()

when min{A, r} > , p ≥ , and x–i, y–i > , i ∈ {, , , }. Our results extend and comple-
ment some results in [].

By using the induction and the equations in () we see that if x–i, y–i > , i ∈ {, , , },
then

min{xn, yn} > , n ≥ –,

which means that positive initial values generate positive solutions of system (). More-
over, we have

min{xn, yn} > A, n ∈N. ()

The case p =  is simple. Namely, in this case by using () into () is obtained

max{xn+, yn+} < A +


Ar , n ≥ ,

which means that all positive solutions of system () in this case are bounded. In fact, since

A < min{xn, yn} ≤ max{xn, yn} < A +


Ar , n ≥ ,

they are persistent.
For a solution (xn, yn)n≥– of system () it is said that it is unbounded if

sup
n≥–

∥
∥(xn, yn)

∥
∥
R = sup

n≥–

√

x
n + y

n = +∞.
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Otherwise, the solution is bounded, that is, if there is a nonnegative constant M such that

sup
n≥–

∥
∥(xn, yn)

∥
∥
R ≤ M < +∞.

2 Main results
In this section we prove the main results in this paper, all of which are related to the bound-
edness character, that is, the boundedness of all positive solutions of system () or the ex-
istence of an unbounded solution of the system depending on the values of parameters A,
p, and r.

Theorem  Assume that min{A, p, r} >  and p < r. Then all positive solutions of
system () are bounded.

Proof Using the equations in (), we have

xn+ = A +
yp

n

xr
n–

= A +
(

yn

x
r
p
n–

)p

= A +
(

A

x
r
p
n–

+
xp

n–

x
r
p
n–yr

n–

)p

= A +
(

A

x
r
p
n–

+
(

xn–

x
r

p
n–y

r
p
n–

)p)p

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
yp

n–

x
r

p
n–y

r
p
n–xr

n–

)p)p

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

yn–

x
r

p
n–y

r
p
n–x

r
p
n–

)p)p)p

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

A

x
r

p
n–y

r
p
n–x

r
p
n–

+
x

p– r
p

n–

y
r

p
n–x

r
p
n–yr

n–

)p)p)p

()

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

A

x
r

p
n–y

r
p
n–x

r
p
n–

+
(

xn–

y
r

p /(p– r
p )

n– x
r
p /(p– r

p )

n– y
r/(p– r

p )

n–

)p– r
p

)p)p)p

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

A

x
r

p
n–y

r
p
n–x

r
p
n–

+
(

xn–

ya
n–xb

n–yc
n–

)p– r
p

)p)p)p

, ()

where

a :=
r

p

/(

p –
r

p

)

, b =
r
p

/(

p –
r

p

)

, c := r
/
(

p –
r

p

)

.



Stević et al. Advances in Difference Equations  (2015) 2015:315 Page 4 of 11

Now using the first equation in () in () we get

xn+ = A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

· · · +
(

A
ya

n–xb
n–yc

n–

+
yp–a

n–

xb
n–yc

n–xr
n–

)p– r
p

)p)p)p

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

· · · +
(

A
ya

n–xb
n–yc

n–

+
(

yn–

x
b

p–a
n– y

c
p–a
n– x

r
p–a
n–

)p–a)p– r
p

)p)p)p

= A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

· · · +
(

A
ya

n–xb
n–yc

n–

+
(

yn–

xa
n–yb

n–xc
n–

)p–a)p– r
p

)p)p)p

, ()

where

a :=
b

p – a
, b =

c

p – a
, c :=

r
p – a

.

Assume that for some k ≥  we have proved that the following equalities hold:

xn+ = A +
(

A

x
r
p
n–

+ · · ·
(

xn–k+

yak–
n–k xbk–

n–k–yck–
n–k–

)p–ak–

· · ·
)p

()

= A +
(

A

x
r
p
n–

+ · · ·
(

yn–k

xak–
n–k–ybk–

n–k–xck–
n–k–

)p–ak–

· · ·
)p

, ()

where the sequences ak , bk , and ck are defined by

ak+ =
bk

p – ak
, bk+ =

ck

p – ak
, ck+ =

r
p – ak

, ()

with

a =
r

p , b =
r

p , c =
r
p

.

Using again the equations in () and the recurrent relations in (), we have

xn+ = A +
(

A

x
r
p
n–

+ · · ·
(

yn–k

xak–
n–k–ybk–

n–k–xck–
n–k–

)p–ak–

· · ·
)p

= A +
(

A

x
r
p
n–

+ · · ·
(

A
xak–

n–k–ybk–
n–k–xck–

n–k–

+
xp–ak–

n–k–

ybk–
n–k–xck–

n–k–yr
n–k–

)p–ak–

· · ·
)p

()
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= A +
(

A

x
r
p
n–

+ · · ·
(

A
xak–

n–k–ybk–
n–k–xck–

n–k–

+
(

xn–k–

y
bk–

p–ak–
n–k– x

ck–
p–ak–
n–k– y

r
p–ak–
n–k–

)p–ak–)p–ak–

· · ·
)p

= A +
(

A

x
r
p
n–

+ · · ·
(

A
xak–

n–k–ybk–
n–k–xck–

n–k–

+
(

xn–k–

yak–
n–k–xbk–

n–k–yck–
n–k–

)p–ak–)p–ak–

· · ·
)p

, ()

xn+ = A +
(

A

x
r
p
n–

+ · · ·
(

A
yak–

n–k–xbk–
n–k–yck–

n–k–

+
yp–ak–

n–k–

xbk–
n–k–yck–

n–k–xr
n–k–

)p–ak–

· · ·
)p

()

= A +
(

A

x
r
p
n–

+ · · ·
(

yn–k–

x
bk–

p–ak–
n–k– y

ck–
p–ak–
n–k– x

r
p–ak–
n–k–

)p–ak–

· · ·
)p

= A +
(

A

x
r
p
n–

+ · · ·
(

yn–k–

xak
n–k–ybk

n–k–xck
n–k–

)p–ak–

· · ·
)p

. ()

From (), (), (), (), and the method of induction it follows that () and () hold for
every k ≥ , and for every n ≥ k.

If p > r, then

a =
r

p <
r

p

/(

p –
r

p

)

= a,

b = r/p <
r
p

/(

p –
r

p

)

= b,

c = r/p < r
/
(

p –
r

p

)

= c.

From this and by using recurrent relations (), it follows that ak , bk , and ck increase, as
far as ak < p. On the other hand, () implies

ak+ =
r

(p – ak)(p – ak–)(p – ak–)
, k ≥ .

Hence, if ak < p for every k ∈ N we see that there is a finite limit limk→∞ ak = x∗ ∈ (, p],
and that x∗ is a solution of the equation

f (x) = x(p – x) – r = .

We have f () = f (p) = –r and f ′(x) = (x – p)(p – x). Hence maxx∈[,p] f (x) = f (p/). Since
by a condition of the theorem

f (p/) =
p


– r < ,

we arrive at a contradiction.
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This guarantees the existence of the smallest l ∈ N such that al– < p and al ≥ p. This,
along with () with l = k – , implies that

xn+ = A +
(

A

x
r
p
n–

+ · · ·
(

A

y
ak–
n–k–x

bk–
n–k–y

ck–
n–k–

+
y

p–ak–
n–k–

x
bk–
n–k–y

ck–
n–k–xr

n–k–

)p–ak–

· · ·
)p

≤ A +
(



A
r
p –

+ · · ·
(


Aak–+bk–+ck––

+


Aak–+bk–+ck–+r–p

)p–ak–

· · ·
)p

,

for n ≥ k + , which implies the boundedness of xn in this case. Due to the symmetry
of system () the boundedness of yn follows and consequently the boundedness of the
solution. If l = k – , then from () it follows that

xn+ = A +
(

A

x
r
p
n–

+ · · ·
(

A

x
ak–
n–k–y

bk–
n–k–x

ck–
n–k–

+
x

p–ak–
n–k–

y
bk–
n–k–x

ck–
n–k–yr

n–k–

)p–ak–

· · ·
)p

≤ A +
(



A
r
p –

+ · · ·
(


Aak–+bk–+ck––

+


Aak–+bk–+ck–+r–p

)p–ak–

· · ·
)p

,

for n ≥ k + , which implies the boundedness of xn in this case.
Due to the symmetry of system () we also have

yn+ ≤ A +
(



A
r
p –

+ · · ·
(


Aak–+bk–+ck–– +


Aak–+bk–+ck–+r–p

)p–ak–

· · ·
)p

,

for n ≥ k + , which along with the previous inequality implies the boundedness of the
solution.

If p ≤ r, then using () in () we get

xn+ = A +
(

A

x
r
p
n–

+
(

A

x
r

p
n–y

r
p
n–

+
(

A

x
r

p
n–y

r
p
n–x

r
p
n–

+
x

p– r
p

n–

y
r

p
n–x

r
p
n–yr

n–

)p)p)p

≤ A +
(



A
r
p –

+
(



A
r

p + r
p –

+
(



A
r

p + r
p + r

p –
+



A
r

p + r
p + r

p +r–p

)p)p)p

,

for n ≥ , from which the boundedness follows in the case.
Due to the symmetry of system () we see that the inequality

yn+ ≤ A +
(



A
r
p –

+
(



A
r

p + r
p –

+
(



A
r

p + r
p + r

p –
+



A
r

p + r
p + r

p +r–p

)p)p)p

,
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holds for n ≥ , from which along with the previous inequality the boundedness of the
solution follows. �

Remark  Note that if ak = p for some k ∈ N, then ak+, bk+, and ck+ are not defined.
However, if this happens then above mentioned index l is chosen to be this k. For such
chosen l is obtained an upper bound for positive solutions of system () in the way de-
scribed in the proof of Theorem .

Theorem  Assume that min{A, p, r} > , p ≥ r, and p ≥ / (where at least one of
these two inequalities is strict), or r < p –  < /. Then system () has positive unbounded
solutions.

Proof Assume that (xn, yn)n≥– is a positive solution of (). Then we have

xn+ ≥ yp
n

xr
n–

, ()

yn+ ≥ xp
n

yr
n–

, ()

for n ∈N.
Let

zn = ln(xnyn), n ≥ –.

Taking the logarithm of the both sides in (), (), then summing such obtained inequal-
ities, it follows that

zn+ – pzn + rzn– ≥ , n ∈N. ()

Let

P(λ) = λ – pλ + r. ()

Then P() = r and

P′(λ) = λ(λ – p),

from which it follows that the polynomial P(λ) has a local minimum at λ = p/, and ac-
cording to the conditions of the theorem

P(p/) = –p/ + r ≤ . ()

If p > /, then p/ > . From this, () and since

lim
λ→+∞ P(λ) = +∞, ()

it follows that there is λ >  such that P(λ) = . If p = /, inequality () is strict, p/ = ,
and since () holds, we also see that there is λ >  such that P(λ) = .
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Now assume that r < p –  < /. Then P() =  – p + r <  and since () holds, we again
see that there is λ >  such that P(λ) = .

Let

P(λ) = P(λ)/(λ – λ) = λ + aλ + bλ + c

and

un = zn + azn– + bzn– + czn–.

Then inequality () can be written in the following form:

un+ – λun ≥ . ()

Choose x–i, y–i, i ∈ {, , , }, such that u > . For example, to get u > , it is enough to
choose x–i, y–i, i ∈ {, , , }, such that

xy > |a||x–y–| + |b||x–y–| + |c||x–y–|.

From this and () it follows that

un ≥ λn
 u. ()

Since u >  and λ > , by letting n → ∞ in () we obtain un → +∞ as n → ∞. If zn

were bounded then un would be also bounded, which would be a contradiction. Hence zn

is unbounded. From this and since

√

x
n + y

n ≥ xnyn = ez
n, n ∈N,

we have

sup
n≥–

√

x
n + y

n = +∞,

that is, the solution of system () is unbounded, completing the proof of the theorem. �

Theorem  Assume that min{A, p, r} >  and p = r + . Then system () has positive un-
bounded solutions.

Proof Let

xy > x–y– > x–y– > x–y– > . ()

Since p = r + , system () is

xn+ = A +
yr+

n
xr

n–
, yn+ = A +

xr+
n

yr
n–

, n ∈N. ()
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Multiplying these two equations we easily obtain

xn+yn+

xnyn
>

(
xnyn

xn–yn–

)r

, ()

from which with n = , it follows that

xy

xy
>

(
xy

x–y–

)r

> .

Assume that we have proved

xkyk > xk–yk–, for – ≤ k ≤ n. ()

Then from () and () we have

xn+yn+

xnyn
>

(
xnyn

xn–yn–

)r

> , n ∈N. ()

Hence

xn+yn+ > xnyn,

for every n ≥ –. If xnyn was bounded, then there would be a finite positive
limn→∞ xnyn = c. Letting n → ∞ in the product of equations in () we would obtain
c ≥ A + c, which would be a contradiction. Hence, all the solutions of () satisfying ()
are unbounded. �

Theorem  Assume that min{A, r} >  and p ∈ (, ). Then every positive solution of system
() is bounded.

Proof Since xn > A, n ∈N, we have

xn+ ≤ A +
yp

n

Ar , yn+ ≤ A +
xp

n

Ar ,

for n ≥ , where (xn, yn)n≥– is an arbitrary positive solution of system ().
Hence

xn+ + yn+ ≤ A +
(xn + yn)p

Ar , ()

for n ≥ .
Let (zn)n≥ be the solution of the equation

zn+ = A +
zp

n

Ar , n ≥ , ()

such that z = x + y.
Since

f (x) = A +
xp

Ar
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is increasing on R+, a simple inductive argument shows that

xn + yn ≤ zn, for n ≥ . ()

Since p ∈ (, ) function f is concave, which implies that there is a unique fixed point x∗

of f and that the next condition

(

f (x) – x
)(

x – x∗) < , x ∈ (,∞) \ {

x∗}, ()

holds.
If z ∈ (, x∗] condition () implies that (zn)n≥ is nondecreasing and bounded above

by x∗, and if z ≥ x∗ that it is nonincreasing and bounded below by x∗. Hence (zn)n≥

is bounded, which along with () implies the boundedness of (xn)n≥ and (yn)n≥, from
which the result easily follows. �

In the next theorem we use the fact that the comparison equation is a linear first order
difference equation, which is solvable in closed form. For recent application of this and
related equations see, for example, [, , , –, ].

Theorem  Assume that p = , r > , and A > r√. Then every positive solution of system
() is bounded.

Proof From the proof of Theorem  we see that any positive solution (xn, yn)n≥– of system
() satisfies () with p = .

Let (zn)n≥ be the solution of the equation

zn+ = A +
zn

Ar , n ≥ , ()

such that z = x + y. Then clearly () also holds.
It is well known that () is solvable. Using its solution in closed form is easily proved

that

lim
n→∞ zn =

Ar+

Ar – 
,

from which the boundedness of (zn)n≥ follows. This fact along with () implies the
boundedness of (xn)n≥ and (yn)n≥, from which the result easily follows. �

Remark  The boundedness character of positive solutions of system () in the following
two cases:

(a) r ≤ p/,  < p < r + , r < /;
(b) r ≤ p/, p = , A ∈ (, r√],

is not known to us. Hence, we leave the cases to the interested reader.
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21. Stević, S: On a nonlinear generalized max-type difference equation. J. Math. Anal. Appl. 376, 317-328 (2011)
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32. Stević, S, Alghamdi, MA, Alotaibi, A, Shahzad, N: Boundedness character of a max-type system of difference equations

of second order. Electron. J. Qual. Theory Differ. Equ. 2014, Article No. 45 (2014)
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