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1 Introduction
In this paper, we deal with the following impulsive differential system of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–u′′(t) + g(t)u(t) = fu(u, v), a.e. t ∈ [, T],
–v′′(t) + h(t)v(t) = fv(u, v), a.e. t ∈ [, T],
u() = u(T) = v() = v(T) = ,
�u′(tk) = u′(t+

k ) – u′(t–
k ) = Ik(u(tk)),

�v′(tk) = v′(t+
k ) – v′(t–

k ) = Jk(v(tk)), k = , , . . . , m,

(.)

where t =  < t < t < · · · < tm < tm+ = T , g, h ∈ L∞[, T], fu, fv : R → R are continuous,
and Ik , Jk : R →R, k = , , . . . , m, are continuous.

We point out that many dynamical systems have an impulsive dynamical behavior due
to abrupt changes at certain instants during the evolution process. The mathematical de-
scription of these phenomena leads to impulsive differential equations. Based on the sig-
nificance, a lot of developments have been made in the theory and applications of impul-
sive differential systems by numerous mathematicians. We refer the reader to the classical
monograph (see [, ]), the general works on the theory (see [–]) and applications of
impulsive differential equations which occur in biology, control theory, optimization the-
ory, population dynamics, medicine, mechanics, engineering and chaos theory, etc. (see
[–]). These classical techniques contain fixed point theory, topological degree the-
ory and comparison method (including monotone iterative method and upper and lower
solutions methods).

For a second order differential equation u′′ = f (t, u, u′), one usually considers, as impul-
sive, the position u and the velocity u′. However, in the motion of spacecraft one has to
deal with instantaneous impulses depending on the position that results in jump discon-
tinuities in velocity, but no change in position (see [, –]). The impulses only on the
velocity occur also in impulsive mechanics.
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Many problems can be solved in terms of the minimization of a functional, usually re-
lated to the energy, in an appropriate space of functions. The purpose of this work is to
investigate the variational structure under the impulsive differential system (.). Based
on variational method, we introduce a different concept of solution, that is, a weak solu-
tion to problem (.). The critical points of the corresponding functional are indeed weak
solutions of the impulsive problem (.). For the impulsive Dirichlet boundary value prob-
lems, the known results obtained by variational approach and critical point theory are as
follows.

In [], to the best of our knowledge, Tian and Ge firstly study the impulsive differential
problem by variational method. They deal with the following problem:

⎧
⎪⎨

⎪⎩

(ρ(t)φp(u′(t)))′ + s(t)φp(u(t)) = f (t, u(t)), a.e. t ∈ [a, b],
�(ρ(tj)φp(u′(tj))) = Ij(u(tj)), j = , , . . . , p,
αu′(a) + βu(a) = A, γ u(b) + σu′(b) = B,

(.)

and essentially prove that when f and Ij satisfy some conditions, problem (.) has at least
two positive solutions via variational method.

Nieto and O’Regan [] consider the impulsive linear problem

⎧
⎪⎨

⎪⎩

–u′′(t) + λu(t) = σ (t), a.e. t ∈ [, T],
u() = u(T) = ,
�u′(tj) = u′(t+

j ) – u′(t–
j ) = dj, j = , , . . . , p,

(.)

and the impulsive nonlinear problem

⎧
⎪⎨

⎪⎩

–u′′(t) + λu(t) = f (t, u(t)), a.e. t ∈ [, T],
u() = u(T) = ,
�u′(tj) = Ij(u(tj)), j = , , . . . , p,

(.)

where dj are constants, Ij : R → R, j = , , . . . , p, are continuous, f : [, T] × R → R is
continuous. They exhibit the variational formulations for problems (.) and (.) and
establish the existence and multiplicity of solutions using standard results of critical point
theory. For more results, we refer the reader to [–].

In this paper we consider the impulsive nonlinear coupled differential system (.) mo-
tivated by the results [–]. Our main result extends the studies made in [–] in the
sense that we are concerned with a class of problems that is not considered in the papers.

Throughout the paper, we need the following conditions.

(H) Assume that α > –λ, where α = min{ess inft∈[,T] g(t), ess inft∈[,T] h(t)} and λ = π

T is
the first eigenvalue of the problem

{
–u′′(t) = λu(t), t ∈ [, T],
u() = u(T) = .

(H) There exist a, b >  and γ,γ ∈ [, ) such that

∣
∣fx(x, y)

∣
∣ ≤ a + b|x|γ for every (x, y) ∈R
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and

∣
∣fy(x, y)

∣
∣ ≤ a + b|y|γ for every (x, y) ∈ R

.

(H) There exist ak , bk >  and βk ∈ [, ) (k = , , . . . , m) such that

∣
∣Ik(u)

∣
∣ ≤ ak + bk|u|βk for every u ∈R

and

∣
∣Jk(v)

∣
∣ ≤ ak + bk|v|βk for every v ∈R.

The main result of this paper is the following.

Theorem . Let assumptions (H)-(H) be satisfied. Then problem (.) has at least one
nontrivial solution.

Obviously, Theorem . in [] is a special case of Theorem . in this paper.
This paper is organized as follows. In Section , we introduce a Hilbert space X =

H
(, T) × H

(, T), on which the corresponding functional � of problem (.) is defined.
Furthermore, we give some necessary notations and preliminaries. In Section , we prove
the main result via variational approach.

2 Variational structure
Let Lp[, T] be the space formed by functions which are p-times integrable on [, T] under
the norm

‖u‖Lp =
(∫ T



∣
∣u(t)

∣
∣p dt

) 
p

and C[, T] be the space of all continuous functions on [, T] with the norm

‖u‖∞ = max
t∈[,T]

∣
∣u(t)

∣
∣.

In the Sobolev space H
(, T), we consider the inner conduct

(u, v) =
∫ T


u′(t)v′(t) dt

and

(u, v) =
∫ T


u(t)v(t) dt +

∫ T


u′(t)v′(t) dt,

which induce the corresponding norms

‖u‖ =
(∫ T



∣
∣u′(t)

∣
∣ dt

) 
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and

‖u‖ =
(∫ T



∣
∣u(t)

∣
∣ dt +

∫ T



∣
∣u′(t)

∣
∣ dt

) 


.

By Poincaré’s inequality,

λ

∫ T


u(t) dt ≤

∫ T



∣
∣u′(t)

∣
∣ dt for any u ∈ H

(, T),

we easily obtain that the norms ‖ · ‖ and ‖ · ‖ are equivalent. Set X = H
(, T)×H

(, T).
In the Hilbert space X, for any (u, v) ∈ X, we set the norm

∥
∥(u, v)

∥
∥ = ‖u‖

 + ‖v‖
 .

By (H), we also introduce the norm

∥
∥(u, v)

∥
∥

X =
(∫ T



(∣
∣u′(t)

∣
∣ + g(t)u(t)

)
dt +

∫ T



(∣
∣v′(t)

∣
∣ + h(t)v(t)

)
dt

) 


.

We have the following results.

Lemma . Assume that assumption (H) holds, then, for the Sobolev space X, the norm
‖ · ‖ and the norm ‖ · ‖X are equivalent.

Proof Since α > –λ, there exists c ∈ (, ) such that –α ≤ λ( – c). Using Poincaré’s
inequality, we have

( – c)
∫ T



∣
∣u′(t)

∣
∣ dt ≥ ( – c)λ

∫ T



∣
∣u(t)

∣
∣ dt

≥ –α

∫ T



∣
∣u(t)

∣
∣ dt

for any u ∈ H
(, T). Thus, we get

∥
∥(u, v)

∥
∥

X =
∫ T



(∣
∣u′(t)

∣
∣ + g(t)u(t)

)
dt +

∫ T



(∣
∣v′(t)

∣
∣ + h(t)v(t)

)
dt

≥ c
(‖u‖

 + ‖v‖

)

= c
∥
∥(u, v)

∥
∥.

Moreover, one has

∥
∥(u, v)

∥
∥

X =
∫ T



(∣
∣u′(t)

∣
∣ + g(t)u(t)

)
dt +

∫ T



(∣
∣v′(t)

∣
∣ + h(t)v(t)

)
dt

≤ ‖g‖∞
∫ T


u(t) dt + ‖h‖∞

∫ T


v(t) dt +

∫ T



(∣
∣u′(t)

∣
∣ +

∣
∣v′(t)

∣
∣)dt

≤
(

max

{‖g‖∞
λ

,
‖h‖∞

λ

}

+ 
)

∥
∥(u, v)∥∥.

Thereby, the norm ‖ · ‖ and the norm ‖ · ‖X are equivalent. �
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Lemma . For any (u, v) ∈ X, there exists c >  such that ‖u‖∞,‖v‖∞ ≤ c‖(u, v)‖X .

Proof For any (u, v) ∈ X, by the mean value theorem, there exists a constant τ ∈ [, T] such
that

u(τ ) =

T

∫ T


u(s) ds.

Furthermore, using Hölder’s inequality and Poincaré’s inequality, we have

∣
∣u(t)

∣
∣ =

∣
∣
∣
∣u(τ ) +

∫ t

τ

u′(s) ds
∣
∣
∣
∣

≤ 
T

∫ T



∣
∣u(s)

∣
∣ds +

∫ T



∣
∣u′(s)

∣
∣ds

≤ T– 
 ‖u‖L + T



∥
∥u′∥∥

L

≤ (
(λT)– 

 + T


)∥
∥u′∥∥

L

≤ (
(λT)– 

 + T


)∥
∥(u, v)

∥
∥. (.)

Combining Lemma . and (.), there exists c >  such that

‖u‖∞ ≤ c
∥
∥(u, v)

∥
∥

X .

Similarly, we can get

‖v‖∞ ≤ c
∥
∥(u, v)

∥
∥

X . �

In the following, we are concerned with problem (.) subject to impulses in the deriva-
tive at the prescribed instants tk , k = , , . . . , m. We are interested in the solution (u, v) of
problem (.) satisfying the impulse conditions

�u′(tk) = u′(t+
k
)

– u′(t–
k
)

= Ik
(
u(tk)

)
(.)

and

�v′(tk) = v′(t+
k
)

– v′(t–
k
)

= Jk
(
v(tk)

)
, k = , , . . . , m. (.)

For u, v ∈ H(, T), we have that u, v, u′ and v′ are both absolutely continuous. Mean-
while, u′′, v′′ ∈ L(, T). Hence, u′(t+) = u′(t–) and v′(t+) = v′(t–) for any t ∈ [, T]. If
u, v ∈ H

(, T), then u, v are absolutely continuous and u′, v′ ∈ L(, T). In this case, the
one-sided derivatives u′(t+), u′(t–), v′(t+) and v′(t–) may not exist. Thus, we need to intro-
duce a concept of solution which is different from a classical solution. We say that (u, v) is
a classical solution of problem (.) if it satisfies the corresponding equations a.e. on [, T],
the limits u′(t+

k ), u′(t–
k ), v′(t+

k ) and v′(t–
k ), k = , , . . . , m, exist and (.), (.) hold.

Taking (ϕ,ψ) ∈ X and multiplying the two sides of the equalities

–u′′(t) + g(t)u(t) = fu(u, v)
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and

–v′′(t) + h(t)v(t) = fv(u, v)

by ϕ and ψ respectively, then integrating from  to T , we have

–
∫ T


u′′(t)ϕ dt +

∫ T


g(t)u(t)ϕ(t) dt =

∫ T


fu

(
u(t), v(t)

)
ϕ(t) dt (.)

and

–
∫ T


v′′(t)ψ dt +

∫ T


h(t)v(t)ψ(t) dt =

∫ T


fv
(
u(t), v(t)

)
ψ(t) dt. (.)

The first terms of (.) and (.) are now

–
∫ T


u′′(t)ϕ dt = –

m∑

k=

∫ tk+

tk

u′′(t)ϕ(t) dt

=
m∑

k=

Ik
(
u(tk)

)
ϕ(tk) +

∫ T


u′(t)ϕ′(t) dt (.)

and

–
∫ T


v′′(t)ψ(t) dt = –

m∑

k=

∫ tk+

tk

v′′(t)ψ(t) dt

=
m∑

k=

Jk
(
v(tk)

)
ψ(tk) +

∫ T


v′(t)ψ ′(t) dt. (.)

In connection with (.), (.), (.) and (.), we have
∫ T


u′(t)ϕ′(t) dt +

∫ T


v′(t)ψ ′(t) dt +

∫ T


g(t)u(t)ϕ(t) dt

+
∫ T


h(t)v(t)ψ(t) dt +

m∑

k=

Ik
(
u(tk)

)
ϕ(tk) +

m∑

k=

Jk
(
v(tk)

)
ψ(tk)

=
∫ T


fu(u, v)ϕ(t) dt +

∫ T


fv(u, v)ψ(t) dt. (.)

Based on equality (.), we introduce the concept of weak solution for problem (.). We
say that a pair of functions (u, v) ∈ X is a weak solution for problem (.) if identity (.)
holds for any (ϕ,ψ) ∈ X. The corresponding energy functional � to problem (.) is de-
fined by

�(u, v) =



∫ T



(∣
∣u′(t)

∣
∣ + g(t)u(t)

)
dt +




∫ T



(∣
∣v′(t)

∣
∣ + h(t)v(t)

)
dt

+
m∑

k=

∫ u(tk )


Ik(t) dt +

m∑

k=

∫ v(tk )


Jk(t) dt –

∫ T


f (u, v) dt

=


∥
∥(u, v)

∥
∥

X +
m∑

k=

∫ u(tk )


Ik(t) dt +

m∑

k=

∫ v(tk )


Jk(t) dt –

∫ T


f (u, v) dt. (.)
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Combining the continuity of fu, fv, Ik and Jk , k = , , . . . , m, by standard arguments [],
we can show that the functional � ∈ C(X,R). Furthermore, we have

�′(u, v)(ϕ,ψ) =
∫ T


u′(t)ϕ′(t) dt +

∫ T


g(t)u(t)ϕ(t) dt

+
∫ T


v′(t)ψ ′(t) dt +

∫ T


h(t)v(t)ψ(t) dt +

m∑

k=

Ik
(
u(tk)

)
ψ(tk)

+
m∑

k=

Jk
(
v(tk)

)
ψ(tk) –

∫ T


fu(u, v)ϕ(t) dt –

∫ T


fv(u, v)ψ(t) dt. (.)

Indeed, we reduce the problem of finding weak solutions of (.) to the one of seeking
the critical points of the corresponding functional �. To this end, we recall some known
results from variational method. We say that a minimizing sequence for a functional F :
X →R is a sequence {(ui, vi)} such that

F(ui, vi) → inf F whenever i → ∞.

Lemma . [] Let X be a reflexive Banach space and F : X →R be continuously Fréchet-
differentiable. If F is weakly lower semi-continuous and has a bounded minimizing se-
quence, then F has a minimum on X.

3 Main result
Lemma . Assume that conditions (H)-(H) are satisfied. Then the functional � defined
by (.) is continuously Fréchet-differentiable and weakly lower semi-continuous.

Proof First, using the continuity of fu, fv, Ik and Jk , k = , , . . . , m, we easily obtain the con-
tinuity and differentiability of � and �′ : X = H

(, T) × H
(, T) → R defined by (.).

In the following, we prove that � is weakly lower semi-continuous. If {(ui, vi)} ⊂ X with
(ui, vi) ⇀ (u, v), then, by Lemma ., we get that {ui} and {vi} converge uniformly to u and
v on [, T] respectively. In connection with the fact that lim infi→∞ ‖(ui, vi)‖X ≥ ‖(u, v)‖X ,
one has

lim inf
i→∞ �(ui, vi) = lim inf

i→∞

{


∥
∥(ui, vi)

∥
∥

X +
m∑

k=

∫ ui(tk )


Ik(t) dt

+
m∑

k=

∫ vi(tk )


Jk(t) dt –

∫ T


f (ui, vi) dt

}

≥ 

∥
∥(u, v)

∥
∥

X +
m∑

k=

∫ u(tk )


Ik(t) dt

+
m∑

k=

∫ v(tk )


Jk(t) dt –

∫ T


f (u, v) dt

= �(u, v).

This implies that the functional � is weakly lower semi-continuous. �



Wu and Liu Advances in Difference Equations  (2015) 2015:303 Page 8 of 10

Proof of Theorem . For any (u, v) ∈ X, using assumptions (H), (H) and Lemma ., we
have

�(u, v) =


∥
∥(u, v)

∥
∥

X +
m∑

k=

∫ u(tk )


Ik(t) dt +

m∑

k=

∫ v(tk )


Jk(t) dt –

∫ T


f (u, v) dt

≥ 

∥
∥(u, v)

∥
∥

X –
m∑

k=

∫ u(tk )



(
ak + bk|t|βk

)
dt –

m∑

k=

∫ v(tk )



(
ak + bk|t|βk

)
dt

–
∫ T



(
a|u| + a|v| + b|u|γ+ + b|v|γ+)dt

≥ 

∥
∥(u, v)

∥
∥

X – mA‖u‖∞ – B
m∑

k=

‖u‖βk +
∞ – mA‖v‖∞

– B
m∑

k=

‖v‖βk +
∞ – aT

(‖u‖∞ + ‖v‖∞
)

– bT
(‖u‖γ+

∞ + ‖v‖γ+
∞

)

≥ 

∥
∥(u, v)

∥
∥

X – mAc
∥
∥(u, v)

∥
∥

X – B
m∑

k=

cβk +


∥
∥(u, v)

∥
∥βk +

X

– aT
∥
∥(u, v)

∥
∥

X – bTcγ+


∥
∥(u, v)

∥
∥γ+

X – bTcγ+


∥
∥(u, v)

∥
∥γ+

X ,

where A = max{a, a, . . . , ak}, B = max{b, b, . . . , bk}.
In connection with γ,γ,βk ∈ [, ), k = , , . . . , m, it follows that the functional � is

coercive on X. Furthermore, by Lemma . and Lemma ., we have that � has a minimum
point on X. Hence, problem (.) has at least one nontrivial solution. �

Corollary . Assume that fu, fv, Ik and Jk , k = , , . . . , m, are bounded. Then problem (.)
has at least one solution.

4 Example
Let T = π , t = . We consider the following problem with impulses:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–u′′(t) + ( + t)u(t) = t +
√

u(t),
–v′′(t) + (t + t)v(t) = t + √v(t),
u() = u(π ) = v() = v(π ) = ,
�u′(t) = u′(t+

 ) – u′(t–
 ) =  + √u(t),

�v′(t) = v′(t+
 ) – v′(t–

 ) = t + √v(t).

(.)

First we can see that g(t) =  + t, h(t) = t + t, and α =  > – π

T , then (H) holds. Next,
taking a = π, b = , γ = 

 , and γ = 
 , (H) holds. Finally, taking a = , b = , and β = 

 ,
(H) holds. Then, by Theorem ., the impulsive problem (.) has at least one nontrivial
solution.
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