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Abstract

This paper investigates the positive solutions for the singular coupled integral
boundary value problem of nonlinear higher-order fractional g-difference equations.
By applying a mixed monotone method and Guo-Krasnoselskii fixed point theorem,
sufficient conditions for the existence and uniqueness results of the problem are
established. An interesting example is presented to illustrate the main results.
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1 Introduction

Due to the intensive development of the theory of fractional calculus itself and its varied
applications in many fields of science and engineering, the fractional differential equation
has gained considerable popularity and importance for the last several decades. In fact,
we can find numerous applications in physics, chemistry, aerodynamics, fitting of exper-
imental data, control of dynamical systems, and signal and image processing, and so on.
Therefore, there have been some papers dealing with the existence and multiplicity of so-
lutions or positive solutions for boundary value problems involving nonlinear fractional
differential equations; see [1-6] and references cited therein.

At the same time, we notice that boundary value problems for a coupled system of non-
linear fractional differential equations have been addressed by several researchers. For
instance, for some results for the existence of solutions or positive solutions for a cou-
pled system of nonlinear fractional differential equations, we refer the readers to [7-14]
and references therein. Relying on the nonlinear alternative of Leray-Schauder type and
Krasnoselskii’s fixed point theorems, Yuan [15] studied the multiple positive solutions to
the (n—1, n)-type integral boundary value problems for systems of nonlinear semipositone
fractional differential equations. Under different conditions, Yuan et al. [16] and Jiang et al.
[17] considered the positive solutions to the four-point coupled boundary value problems
for systems of nonlinear semipositone fractional differential equations, respectively. Wang
et al. [18] investigated the existence and uniqueness of positive solution of a (n —1, n)-type
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fractional differential system with coupled integral boundary conditions. Henderson and
Luca [19] proved the existence of positive solutions for a system of nonlinear Riemann-
Liouville fractional differential equations with coupled integral boundary conditions and
a parameter.

Research on g-difference calculus or quantum calculus dates back to the beginning of
the 20th century, when Jackson [20, 21] introduced the first definition of the g-difference.
Then Al-Salam [22] and Agarwal [23] proposed the fractional g-difference calculus. Later,
the theory of fractional g-difference calculus itself and nonlinear fractional g-difference
equation boundary value problems have been extensively studied by many authors. For
some recent developments on fractional g-difference calculus and boundary value prob-
lems of fractional g-difference equations, see [24—30] and the references therein. For ex-
ample, by applying the generalized Banach contraction principle, the monotone iterative
method, and Krasnoselskii’s fixed point theorem Zhao et al. [31] showed some existence
results of positive solutions to nonlocal g-integral boundary value problem of nonlinear
fractional g-derivatives equation. Under different conditions, Graef and Kong [32, 33] in-
vestigated the existence of positive solutions for boundary value problems with fractional
q-derivatives in terms of different ranges of X, respectively. By applying some standard
fixed point theorems, Agarwal et al. [34] and Ahmad et al. [35] showed some existence re-
sults for sequential g-fractional integrodifferential equations with g-antiperiodic bound-
ary conditions and nonlocal four-point boundary conditions, respectively.

In [36], Ferreira considered the nonlinear fractional g-difference boundary value prob-
lem as follows:

(DSu)(®) +f (u(t)) =0, te[0,1],x€(2,3],

u(0) = (Dgu)(0) =0,  (Dgu)(1)=p=0,
where Dy is the g-derivative of Riemann-Liouville type of order «. By applying a fixed
point theorem in cones, sufficient conditions for the existence of positive solutions were
enunciated.

In [37], Zhao et al. dealt with following integral boundary value problem of nonlinear
fractional g-difference equation:

(Dyu) (@) +f(t,u(t)) =0, te(0,1],a€ (23],

1
u(0) = (D)(0) =0,  u(1)=p /0 w)dys, 0 < <[al,

By using the fixed point index theorem, sufficient conditions for the existence of at least
two and at least three positive solutions were obtained.

In [38], Ahmad et al. studied the following nonlocal boundary value problems of non-
linear fractional g-difference equations:

(“Dgu)(t) =f(t,ut)), tel0,1],ae(1,2],

a1u(0) = by(Dqu)(0) = cru(m),  axu(l) + ba(Dqu)(1) = c2u(n2),

where CDZ denotes the Caputo fractional g-derivative of order «, and a;, b;,¢;,n; € R (i =
1,2). The existence of solutions for the problem was shown by applying some well-known
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tools of fixed point theory such as Banach contraction principle, the Krasnoselskii fixed
point theorem, and the Leray-Schauder nonlinear alternative.
In [39], Zhou and Liu investigated the following fractional g-difference system:

(CD2u) @) =f(tv(0),  (DEv)(®) =f(Lu(®), te[0,1] B € (1,2],
a1u(0) — by (Dgu)(0) = cru(m), axu(l) + by(Dgu)(1) = cou(n2),

a3u(0) — b3(D,yu)(0) = c3u(n3), agu(l) + ba(Dyu)(1) = cau(ng),

where “D7 and “Dy denote the Caputo fractional g-derivative of order « and B, respec-
tively. The uniqueness and existence of a solution were obtained based on the nonlinear
alternative of Leray-Schauder type and Banach’s fixed point theorem.

In [40], the author considered the following coupled integral boundary value problem
for systems of nonlinear semipositone fractional g-difference equations:

(D‘;u)(t) + Af(t,u(t),v(t)) =0, (Df;v)(t) + )»g(t,u(t),v(t)) =0, te(0,1),A>0,
(D,u)(0) = (Djv)(0)=0, 0<j<n-2,

1

1
u(l) = [L/ v(s) dys, v(1) = v/ u(s) dys,
0 0

where A, u, v are three parameters with 0 < u < [B]; and 0 < v < [a],, @, B € (n — 1, 1]
are two real numbers and n > 3, Dg, Dg are the fractional g-derivative of the Riemann-
Liouville type, and f, g are sign-changing continuous functions. By applying the nonlin-
ear alternative of Leray-Schauder type and Krasnoselskii’s fixed point theorems, sufficient
conditions for the existence of one or a multiple of positive solutions were obtained.

To the best of our knowledge, there are few papers which deal with the positive solutions
for systems of nonlinear fractional ¢g-difference equations. Motivated by the wide applica-
tions of coupled boundary value problems and the results mentioned above, we consider
the existence and uniqueness of positive solutions for the following singular fractional g-
difference systems:

(Dg1 u)(t) + (&, u(®), v(t)) = 0, (D‘;2 v)(©) +fo (6 u(®),v(8)) =0, t€(0,1), (L1
with the coupled integral boundary value conditions

(D} u)(0) = (DFv)(0)=0, 0<ji<m-2,

1 1 (1.2)
u(l) = 1 [ aloveds v = o / @()uls) dys,

0 0

where u; > 0, o; € (n; — 1,m;] with 3 < n; € N, D% is the Riemann-Liouville type frac-
tional g-derivative of fractional order «;, i =1,2; f; : (0,1) x [0,00) x (0,00) — [0, 00) and
f2:(0,1) x (0,00) x [0,00) — [0, 00) are two continuous functions, and f; (¢, x,y) may be
singular at £ = 0,1 and y = 0, where f5(¢, %, y) may be singular at £ = 0,1 and x = 0.

The organization of the rest is as follows. In Section 2, we present some preliminaries
and lemmas that will be used to prove our main results. We obtain the corresponding
Green’s function and some of its properties. In Section 3, by applying a mixed mono-
tone method and the Guo-Krasnoselskii fixed point theorem, we obtain the existence and



Zhao and Yang Advances in Difference Equations (2015) 2015:290 Page 4 of 22

uniqueness results of the singular coupled boundary value problem (1.1) and (1.2). Fur-

thermore, an example is given to illustrate our main results in Section 4.

2 Preliminaries
For the convenience of the reader, we present some necessary definitions and lemmas
of fractional g-calculus theory to facilitate analysis of the semipositone boundary value
problem (1.1). These details can be found in the recent literature; see [41] and references
therein.

Let g € (0,1) and define

The g-analog of the power (a — b)” with n € Ny ={0,1,2,...} is

n-1
(a-b)9 =1, (a—b)(”)zl_[(a—bqk), neNy,a,beR.
k=0

More generally, if ¢ € R, then

n

@ _ T a-bq
((l—b) =a QW.

Note that, if b = 0 then a® = a*. Here we point out that the following equality holds:
(@a-b) = (a—bg"")(a-b).
The g-gamma function is defined by
) =1-q)*D1-g)'* xeR\{0,-1,-2,...}

and satisfies I'y(x + 1) = [x],T;(x).
The g-derivative of a function f is here defined by

0N =TT D,)0) - im0

and g-derivatives of higher order by

(DYf)x)=f(x) and (Dif)(x) = Dy(DYf)(x), neN.

The g-integral of a function f defined in the interval [0, 4] is given by

1))~ [ S0 dyt=500-0) Y floa )", 5 <10,
n=0

If a € [0,b] and f is defined in the interval [0, b], its integral from a to b is defined by

/ﬂ 0 dyt - fo 0 dyt- /0 "y,
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Similarly to derivatives, an operator I; can be defined, namely,

(Igf)(x) =f(x) and (I;’f)(x):lq(lg_lf)(x), neN.

The fundamental theorem of calculus applies to these operators I, and D, i.e.,

(Dglyf ) %) = f (%),

and if f is continuous at x = 0, then

(I;Dqf )(x) = f (x) — £(0).

Basic properties of the two operators can be found in [41]. We now point out five formulas
that will be used later (;D, denotes the derivative with respect to variable i):

b b
/ F($)(Dgg)(s) dgs = [f(s)g (S)]:Z - / (Dgf)(s)g(gs)dys  (g-integration by parts),
[ﬂ(t - S)](Ul) =a“(t - s)(a), th(t — S)(a) _ [Ot]q(t _ S)(a_l),
sDy(t _S)(ot) = —[a],(t - qs)(oz—l)’

(xDq / fxt) dqt) () = / Dof (5, ) dyt + f (g, x).
0 0

Note thatif e >0 and a < b <t¢, then (¢ —a)® > (¢t - b)@ [42].

Definition 2.1 ([23]) Let « > 0 and f be function defined on [0,1]. The fractional g-
integral of the Riemann-Liouville type is If;f (%) = f(x) and

1
Fq(a)

(1) () = f “— gV dyt, a0, € [0,1].
0

Definition 2.2 ([29]) The fractional g-derivative of the Riemann-Liouville type of order
@ > 0 is defined by DJf (x) = f (x) and

(DSf) ) = (DL ~*f) (%), >0,
where m is the smallest integer greater than or equal to o.

Definition 2.3 ([29]) The fractional g-derivative of the Caputo type of order o > 0 is
defined by

(“Def) (%) = (I Dyf) (%), @ >0,
where m is the smallest integer greater than or equal to «.

Lemma 2.1 ([23]) Let o, 8 > 0 and f be a function defined on [0,1]. Then the following
formulas hold:

(1) UFI2f)) =15 PF (),

(2) (D)) = ).
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Lemma 2.2 ([42]) Let « > 0 and p be a positive integer. Then the following equality holds:

) ) p-1 xa—p+k
(Ig Dbf ) (@) = (DAIf) (x) - ; T a+k—p+D) (D];f)(o)'

Now we derive the corresponding Green’s function for boundary value problem (1.1),
and obtain some properties of the Green’s function. For the sake of simplicity, we always
assume that the following condition (H) holds.

(H) @1, :10,1] — [0, 00) are two continuous functions and satisfy

1 1
V= / 57272 g1(s) dys, Vg = / sM171gy (s) dgs,  1—ppavivse > 0.
0 0
Lemma 2.3 Assume that (H) holds. Then, for x,y € C[0,1], the boundary value problem

(D‘;‘lu)(t) +x(t) =0, (Dgzv)(t) +9() =0, te€(0,1),
(DLu)(0) = (Djv)(0)=0, 0<j<n-2,

(2.1)
1 1
u= s [ @OWOds =i [ @Ou)dys
0 0
has an integral representation
1 1
u(t) = [y Ki(t, qs)x(s) dgs + [, Hy(t,qs)y(s) dgs, 2.2)
We) = [y Ko(t, qs)y(s) dys + [, Ho(t, qs)x(s) dys,
where
papatat
Ki(t,s) = Gi(t,8) + ——————— [ &(7)Gi(7,5)dyT,
1— pypaviva Jo
(2.3)
Mltal_l 1
69 - 2 a6 dye,
1—ppaviva Jo
ta271 1
Kalt9) = Galts) + 12222 [ (0)Galr, ) dy,
1— pypavivy Jo
(2.4)
MZtaz_l 1
69 = 2 [ a6 d,r,
1-ppaviva Jo
1 i—1 1- (i=1) _ (¢ _ (ai—l), <g<t< 1,
Gi(t,8) = —— ta, 1-s) , =) D=ssts i=1,2. (2.5)
Cyla) |71 =)D, 0<t<s<l,
Proof In view of Definition 2.1 and Lemma 2.1, we see that
(D;’l u)(t) = () < (IngZI;“"l u)(t) = —(Ig‘lx)(t), 26)

(D2u)(6) = —y(t) = (L2DyI“2u)(t) = —(I;2y) ().

From (2.6) and Lemma 2.2, we can reduce (2.1) to the following equivalent integral equa-
tions:
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f(t—gs)V

u(t) = et + et bt gt - x(s) dys,
0 I‘q(al)
(2.7)
. ) “(t - gs)*>V
V() = cnt™ ™ + et 4k ot = | = ———y(s) ds.
0 Fq(aZ)
Erom Dju(0) = Dyv(0) = 0,0 < < n =2, we have ¢js = Cigp-p) = -+ = €2 = 0 (i = 1,2). Thus,
(2.7) reduces to
tL(t—as (e1-1)
M(t) = Cutal_l — Lx(s) qu7
0 Fq(al)
(2.8)

Lt — gs)e2-1)
v(t) = ! — /0 %y(s) dys.

Using the boundary conditions #(1) = u, fol gi(s)v(s)dys and v(1) = o fol &2(s)u(s) dys, from
(2.8), we obtain

1 1 a1—1
(I_qs)(l )
=M S)VS dS+/ 7965015,
11 l/gl( ()q o F(l) ()q

(2.9)
1 4 1 (1 _ qs)(oq—l) 4
a1 = U2 /0 L(s)uls)dys + ; Wy(s) 4.
Combining (2.8) and (2.9), we have
1 1
)=t [ a9 ds s [ Gitanodys
’ ’ (2.10)

1 1
W) = ot /0 S)uls) dys + fo Galt, 49)9(5) .

Multiplying both sides of the first and second equations of (2.10) by g»(¢) and g1 (¢), respec-
tively, and integrating the resulting equations obtained with respect to ¢ from 0 to 1, we
obtain

1
/Ogg(t)u(t)dqt
1 1 1 1
:MI/O t"’l’lgz(t)dqt/o gl(s)v(s)dqs+/0 gz(t)/o Gi(t, gs)x(s) dys dgt,
1
[ awroa

1 1 1 1
:u2/0 t“z‘lgl(t)dqtfo gz(s)u(s)dqs+/0 gl(t)/o Ga(t, qs)y(s) dysdgt.

Solving for fol &(s)v(s)dys and fol (s)u(s) dys, we have

1 1 1 1
fo g1(S)V(S)qu=m< /0 @) /0 Gt q5)y(s) dys dyt

1 1
+ [V / () / G1(£ g8)x(s) dqsdqt>
0 0
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1

T 1- pipavivy

1 1
+,u2v1/ x(s)/ £(1)Gi(t,g8)dyT dqs>’
0 0

1 1 1 1
/0 S (s)u(s)dys = m(/o gg(t)/0 Gy(t,qs)x(s) dysdyt

1 1
+ [U1Vy /0 a() /O Ga(t,gs)y(s) dqsdqt)

1 1
(/ y(S)f 81(v)Ga(,qs) dyT dys
0 0

1

C1- pipavivy

1 1
+,u1vz‘/0 y(s)/o gl(T)Gz(T,qS)ququ).

1 1
</ x(s)/ 2(1)Gi(t,qs)dyT dys
0 0

Combining (2.10) and (2.11), we get

! papava ™t 1 !
)= [ Giltads)dys+ {2 [t [ en)Gilra9 dyrdys
0 1-ppaviva Jo 0

mh 4 -1

1 1
[0 [ a6 drdys
— M1M2ViV2 Jo 0

1 1
- [ K ds s [ o) dos
0 0

1 U1t Vs to[2—l 1 1
v(t) = / Ga(t,qs)y(s) dys + 17/ y(s)/ &(1)Ga(T,gs8)dyv dys
0 — M1fu2V1Vy Jo 0

MZtaZ_l

1 1
WA x(s)/o gz(T)Gl(T,qS)ququ

1 1
= / Ky (t,qs)y(s)dgs + / Hy (2, gs)x(s) dgs.
0 0
This completes the proof of the lemma.

Lemma 2.4 The function G,(t,s) defined by (2.5) has the following properties:
(1) Gi(t,s) is continuous function on (t,s) € [0,1] x [0,1] and G;(¢, gs) > O, for
t,s € (0,1);
D) g“Y:(t)ei(gs) < Ty()Gilt,s) < [o; — 1,49:(gs), for t,s € [0,1];
() q2y(O)pi(gs) < Tgl@)Gilt,s) < [ — 11g0i(6), for t,5 € [0,1],
where ;(t) = t% (1 - t) and ¢;(s) = 1 — 5)@ Vs,

Proof The continuity of G; is easily checked. For 0 < gs < ¢t <1, we have
Cg(@)Gi(t,gs) = £7(1 - g5) ) — (¢~ go) "V
t(1-gs)
= [ - 1], / Dyxi™) dyx
t

—qs

< [0 = 1,721 - g8)“ =2 [ (¢~ tgs) — (t - g5)]

= [ = 1,721 = g5)“ 2 (1 - O)gs < [o; — 1,1 - g5)* P (1 - gs)gs

Page 8 of 22

(2.11)
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<[~ 11,0 - g5)“ 2 (1 - g*s)gs
= [o; — 11,1 — g5)*“Vgs = [o; - 1]40i(gs)
and
Tg(ei)Gilt, gs)
= (5711 g5) D — (¢ — o)

= (¢ — tqs) 7 (¢ — tq*"s) — (¢ — q5)“ P (£ — g7 Vs)

> %72(1 — gs) 2 [(t - tq“"_ls) - (t - q"‘i_ls)] = g% %21 - £)A - gs) @ Vs

> g (1= )1 - g5) " (1- 477 s)gs = 40D pilgs).

For 0 < ¢ < gs <1, one verifies that
T, (0)Gi(t, qs) = t*7H (1 — gs) @™ = £472(1 — gs)™ 't

<[ = 1],(1 - g5)" " gs = [; — 1] ,01(g5)

and

Ty(@)Gilt,gs) = 711 - gs) ™) = g7 (1 = £)(1 - g5) Vs = ¢ i) i(gs)-

Next, we prove the right side of (III). For 0 < gs < t < 1, we can state that

T, (@)Gi(t,gs) < [ — 1]t 2(1 - gs) 2 (1 - t)gs
< oy = 10,272 (1= )t = [0y — L9 (2).

Page 9 of 22

For o € (n,n +1] with 1 < n € N, we have (@ — b)® < (a — b)™. In fact, according to the

definitions of (a — b)® and (a — b)", we get

(1-9® = ﬁ 1osg
= gtk
koo 1754

Q-9 -sq)---A-sg")--- (1-s¢" A - sq")(1 - s¢") - --
B (1—sg%)(1 —5g**1) -+ (1 = sg**k-1)(1 = sg*+K) - .-
1-s)1-sqg)- 1-5g")-(1-sqg" )1 -sq")(1-sq")-
(1-35g")(1—5g") - - (L= sq"k-1)(1 = sq"k) - -
n-1
=(1-s)1-sq)--(1-sg")-- (1-sq" 1_[ -5q°) = (1-9)".
k=0

For 0 <t < gs <1, from the above inequality and «; € (n; — 1, n;], we have

ni-3

[, (e)Gilt, qs) = 4711 = gs) @Y < g1 - g) i) = g 1_[ (1 - sqk”)
k=0

< %71~ 5q) < o~ 1],2%71(1 ~ 5q)
<o =1yt M1 - 8) = [0 — L, ¥(0).

This completes the proof of the lemma.
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Lemma 2.5 The functions K;(t,s) and H(t,s) (i = 1,2) defined by (2.3) and (2.4) satisfy the
following conditions:
(a) Ki(t,s) and H;(t,s) are continuous functions on (¢,s) € [0,1] x [0,1] and K;(t,qs) > 0
and H;(t,qs) > 0 for (¢,s) € [0,1] x [0,1],i=1,2;
(b) ot*g;(gs) < Ki(t,qs) < pei(gs), Ki(t,qs) < pt*i~,
ot s (gs) < Hi(t, gs) < p@a(gs), 0t*> " 1(gs) < Ha(t,qs) < per(gs), and
Hi(t,qs) < pt%~! for (t,s) € [0,1] x [0,1], i = 1,2, where @1, @, are defined as
Lemma 2.4, 0 = min{o1, 02, 03, 04}, p = max{p1, p2, p3, pa}, and

4" i fl
i (D)¥n(r) dyr,
01 Tglo)( — pipeavivae) Jo £(1)h .
qaz—Zul 1
02 T, (o) (1 — prapaviv) Jo a()n(r)d,
7 v, /1
Q3 Fq(aZ)(l_/’LlMZVlvz) 0 gl( )Wz( ) q
1-2 1
o - S@)Yi(r)d,T,

 Tylen)d = papavive) Jo

[y — 1], ( M1t V1 /1
pL= 1+ (r)d,T ),
' ['y(01) 1 - pipavive Jo & !
o —1], !

P = (v)d,t,
2 [y(aa)(L = uipaviva) Jo §iit)

[o —1], ( YD) /1 )
= 1+ (v)d,t |,
P [y(a) 1 - papaviva Jo & !
Malay — 1]q /1
= (r)d,z.
P T ()@= pupiaviva) Jo 27 %

Proof The continuity of K; and H; (i = 1,2) is easily checked. According to the property
(II) of Lemma 2.4 and (2.3), we have

ppo v 17t

Ki(t,qs) = Gi(t,qs) +
1 - ppovivy

1
/@m&mw@r
0

> v !
1 - p1pavivy

- papovi ! /1 2(1)61“172%@)(/?1(45)
T 1= ppoviva Jo Iy(an)

1
/g@@h@@r
0
d,t

1-2 1
_ 4" apan @OV () T o1 (gs) = 1 (gs),
[g(on)(1 = pypaviva) Jo

v tal—l 1
Gi(t gs) + %/ £(0)Gi(t,qs8)d,T
1-pipaviva Jo

Ki(t,gs)

- [on —1gp1(gs)  papoviz™ /1 )[Oll ~14¢1(gs)
0

d;t
[y(a) 1 - pipav1ve I'y(e) 7

[0 —1], gyttt
d
['y(e) 1—M1M2V1V2/o £ dT Joilgs)

[ar —1] v 1
<7y Hftah /gz(t)dqf ¢1(gs) = pro1(gs),
I'g(0) 1—papaviva Jo
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Mltvq—l 1
Htas) = 12 [ a6 a9 dye
1-ppaviva Jo
et ! g 2P (1) @2 (gs)
> — (1) ——————"d,t
1- M12V1V2 Jo Fq(aZ)
qa272/141 ! -1 -1
= (T)Ya(T) dygTt™ ™ a(qs) = 026" a(gqs),
T (L= papauvy) Jo S0V 0 GatE s 99 = @b g
and
W th—l 1
) = 0 e dye
1-ppaviva Jo
toll—l 1 -1
S / r)[Otz 1492(gs) dye
1-ppaviva Jo ['y(az)

o — 1] 2217 /1
= (t)dyT9a(gs)
[ g(o)( = pipaviva) Jo A

o —1],

1
T)d,T s) = s).
= @)= ) Jo &(t) dyt2(gs) = p242(gs)

Similarly, from the property (II) of Lemma 2.4 and (2.4), we get

q*2 72 [l o Vo
Tglo)( — pypavrvy

1
Ky(t, q5) = ) /O g () Va(r) dytt™ " 9a(gs) = 03t ' 92(gs),

[ay — 1] Vv 1
Ky(t,gs) < 2 1+ Hiftav2 / &(t)dyt |a2(gs) = p3p2(gs),
Tg(o) 1-ppav1va Jo

1-2
Hy(t, qs) > VA
Lg(on)(I = pypaavrvy

1
) /O SOV dyet or(qs) = 04t p1(qs),

-1
Hz(t,qs)f malay ]q
Tg(on)(1 = pypaavrvy

1
) /O @) d,ti(as) = paonlas).

On the other hand, according to the property (III) of Lemma 2.4 and (2.3), we obtain

VA

1
Ki(t,qs) = Gi(t,gs) + 1 f 2(1)Gi(t,qs)dyT
0

— H1M2V1V2
[y =17 (1 - 8)  pappvign™ 1 [ —1],27H(1 - 8)
< + () d,t
[y(a) 1 - pipaviva Jo ['y(e)
- lon =1t pyppva? /1 ( )[011 -1], At
2
I'g(0) 1-mipaviva Jo Tyer) 7
[on —1], ( M1V /1 1 1
= 1+ 2(T)dyT |t = prt™”
[gerr) 1-prpaviva Jo & 1
and
Mltoq—l 1
Hi(t,gs) = ————— | @1(7)Galt,g5)dyt
1-ppaviva Jo
tOll—l 1 -1 taz—l 1-¢
< M1 / 2 [y 1], (1-1) d,e
1-ppaviva Jo Tg(a)
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n [(X _1] toq—l 1
= Lt 1 gi(r)d,r
T glo)(1 = pypaviva) Jo
B ploa —1lg
T glo)( = pypaavr vy

1
)/ gl(r)afqu.‘o‘l’1 = ppt®17L,
0

Similarly, from the property (III) of Lemma 2.4 and (2.4), we get

[z —1],4 H12 Vs ! 1 1
I(Z(t) S) =< 1+ / 1(f)d T )t = pgtaz ,
G [ 4(er) 1 - pipavivy Jo ¢ 7

-1
Ho(t,gs) < — 2121 =1
Tg(on)(1 — papaviva

1
)/ g2(1:)dq,n“”2’1 = pat®27h,
0

This completes the proof of the lemma. d

Remark 2.1 From Lemmas 2.5, for ¢, 7,s € [0,1], we have

Ki(t,gs) > ot Hy(t,q5),  Ka(t,qs) > ot Hy(z,gs),
Hl(tr qs) = wtalilKZ(T’ 015)’ HZ(tr qs) = wta2711<1(7) qs)’

Ki(t,qs) = ot 'Ki(t,qs),  Hilt,qs) > wt*"Hy(z,qs), i=1,2,
where w = 0/p, 0, p are defined as Lemma 2.5, 0 < w < 1.

In order to obtain the main results in this paper, we will use the following cone com-
pression and expansion fixed point theorem.

Lemma 2.6 ([43]) Let X be a Banach space, and let P C X be a cone in X. Assume 1, 2
are open subsets of X with 0 € Q) C Q1 C Qu, and let S : P — P be a completely continuous
operator such that either

@) ISwll < lwll, we PNy, |Sw]l = [lwll, w e PN 02, or

(b) lISwll = [wll, we PNy, ISw]l < llwll, w e PN 9.
Then S has a fixed point in PN (Qy\21).

3 Mainresults
In this section, let X = C[0,1] x C[0,1], then X is a Banach space with the norm

[ )] = maxful v}, el = max (@], v = max ).
Denote
P= {(u, V) € X u(t) > wt®! || (w, )|, v(t) > wt*> ||(u, v, te [0,1]},

where w is defined as Remark 2.1. It is easy to see that P is a positive cone in X. It can easily
be seen that P is a cone in X. For any real constants r and R with 0 < r < R, define

P, = {(u,v) ep: ||(u,v)|| < r}, Py = {(u,v) eP:r< ||(u,v)|| §R}.

In what follows, we first list the following assumptions for convenience.
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(A1) £1:(0,1) x [0,00) x (0,00) — [0, 00) is continuous, fi (£, 4, v) is nondecreasing in u
and nonincreasing in v, and there exist two constants 6;,%; € [0,1) such that

KO (8, u,v) < fi(t, kcu,v),
(3.1)

filt,u,kv) < K_Z?]fl(t, u,v), Vu,v>0,k€(0,1);

f2:(0,1) x (0,00) x [0,00) — [0,00) is continuous, f>(¢, #, v) is nonincreasing in u

and nondecreasing in v, and there exist two constants 6;, 9, € [0,1) such that

K2f(t, u,v) < folt, u,kv),

falt,ku,v) < K’ﬁzfz(t, u,v), Yu,v>0,«€(0,1).

(3.2)

(A2) The following inequalities hold:

1 1
0< / o1(g)fi (s, 1,5“2_1) dys < +00, 0< / ©2(gs)fa (S,so‘l_l, 1) dys < +00,
0 0

where ¢ and ¢, are defined as Lemma 2.4.

Remark 3.1 From assumption (Al), we have

fils 5“2_1,1) <f (s, 1, s"‘z_l), fz(s, 1, s"‘l_l) <hl(s s"‘l_l,l).

This together with (A2) yields

1

1
0< / o1(gs)fi (s, 87, 1) dys < / P1(gs)fi (s, 1,s*27) dys < +oo,
0 0
1 1
0< / 02 (gs)fa (s, l,s"‘l_l) dys < / ©2(gs)fa (s, S"‘l_l,l) dys < +00.
0 0
Remark 3.2 The inequalities (3.1) and (3.2) imply that

filtku,v) < kit u,v), filt,u,v) < KO fi(t u,kv),  Yu,v> 0,k € (0,1); (3.3)

folt, u,kv) < k%f(t,u,v), folt,u,v) <k2fo(t,ku,v), VYu,v>0,k €(0,1), (3.4)
respectively. Conversely, we have (3.3) and (3.4) and (3.1) and (3.2), respectively.

From the above assumptions (Al) and (A2), for any (u,v) € P\ {(0,0)}, we define an
integral operator T : P\ {(0,0)} — P by

T(u,v)(0) = (T1(w,v)(2), To(w,v)(®), tel0,1],

where 71, T5 : P\ {(0,0)} — Q = {x(¢) € C[0,1] : x(t) > 0,t € [0,1]} are defined by

1

1
T1(u, v)(2) :/0 Ky (¢, qs)fi (s, u(s), v(s)) dgs + /0 Hy(8,g8)fa(s, uls), v(s)) dgs, £ €[0,1],
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1 1
To(u,v)(¢) = /0 Ky (8, gs)f (s, u(s),v(s)) dgs + /0 H,(t, qs)ﬁ(s, u(s),v(s)) dgs, tel0,1].

Obviously, (#,v) is a positive solutions of the coupled boundary value problem (1.1) and
(1.2) if and only if (,v) is a fixed point of T in P \ {(0,0)}.

Lemma 3.1 Assume that (H), (A1) and (A2) hold. For any 0 <r; <ry < +00, T : Py, s — P
is a completely continuous operator.

Proof For any (u,v) € P\ {(0,0)}, we can see that

ot ()| <u@ < @), 0| @) <) < || @)

, tel0,1]. (3.5)
Let « be a positive number such that ||(, v)||/k <1, k > 1. From (A1) and (3.5), we have

A6u@®),v(®)) <fi(t 0t | (wv)]) <A (t, 1, Mt"“)

-

= o] ) (),

v
,K) < K92f2 (t, th—l, 1)

=% ) ) (o £771).

(3.6)

Htu®),v(0) <fot 0t (. v)

Hence, for any ¢ € [0,1], by Lemma 2.5 and (3.6), we get

1

1
Tl(u,v)(t)zfo Kl(t,qs)fl(s,u(s),V(S))qu+/0 H (8, g5)f (s, uls), v(s)) dys
— 1
=o(w @) [ @)
o 1
e Gl [Tl ) 2/0 2(as)fa (s, 57, 1) qu) <HO0,
1 1
Tz(u,v)(t)zf0 I(z(t,qs)ﬁ(s,u(s),v(s))dqs+/0 Hy(t,gs)fi (s, uls), v(s)) dys
_ 1
<o @l ) [ a1 ds

1
e o) [ eatalos 1) dis) < o0

Together with the continuity of K;(¢,s) and H;(¢,s) (i = 1,2), it is easy to see that T; € C[0, 1].
Therefore, T: P\ {(0,0)} — P is well defined.
For any (u,v) € Py, and t, T € [0,1], by Remark 2.1, we obtain

1 1
T1(u, v)(t) = / Ky (¢, g)f (s, u(s), v(s)) dgs + / Hi(, gs)f (s, u(s), v(s)) dygs
0 0
1
> / ot K (1, gs) l(s, u(s),v(s)) dgs
0

1
+ / ot Hy (T, 5)f> (s, u(s), v(s)) dgs
0
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1 1
=wt“11( f Ki(z,qs)fi (s, u(s), v(s)) dgs + / Hl(r,qs)fz(s,ms),v(s))dqs)
0 0

= ot T (1, v) (1),

1 1

T1(u, v)(t) = /(; Ky (¢, g)f (s, u(s), v(s)) dgs + /0 H, (6, gs)f (s, u(s), v(s)) dygs

1

> / ot Hy(7,gs) l(s, u(s),v(s)) dgs
0
1
+ / ot K (T, g8)f (s, u(s), v(s)) dgs
0

1 1

= 1! (f Ky(7,g8)fa (s, u(s), v(s)) dgs + / Hy(7,gs)fi (s, u(s), v(s)) dqs>
0 0

=t Ty (u, v) (7).

Then we have

Ty (u,v)(8) = 0t | T (w, V)|,

Ty (1, v)(£) > wt™17! H T5(u,v)

’

ie, Ti(w,v)(t) = 0t 7| (Ta(w,v), Ta(u,v)) |
In the same way, we can prove that

’

Ty (u, v)(£) > wt*?™ || T5(u,v)

, o To(wv)(#) = wt* | Ti(u, v)

ie., To(u,v)(t) = 0t | (T1(w, v), Ta(,)) |-
Therefore, we have T'(P},,,]) S T(P). According to the Ascoli-Arzela theorem, we eas-
ily see that T : Py, ,,) — P is completely continuous. This completes the proof of the

lemma. O

Theorem 3.1 Assume that (H), (Al) and (A2) hold. Then the coupled boundary value
problem (1.1) and (1.2) has at least one positive solution (u*,v*), and there exists a real
number 0 < [ < 1 satisfying

1t < y*(g) < P el <v* () <2, tel0,1].
Proof First, we show that the coupled boundary value problem (1.1) and (1.2) has at least

one positive solution.
Choose r and R such that

! = 1
O<r=< min{ (Qc"‘l‘la)el / owi(gs)h (s,s‘”_l,l) dqs) ' ) }, ce <0, 5),
0

1
R> max{ <p/ e1(gs)fi (S’ 1, Saz_l) dys
0

! . AT 1
+p/ #2(g)fo (5,57 1) s =2y
0
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For any (u,v) € 9K,, we have
rot 7t < u@t) <r, rot? <v(@t)<r, tel0,1].

By Lemma 2.5, Remark 3.1, and (Al), for any («,v) € 9P,, we get

1

1
T1(u,v)(t) = / Ki(t,gs9)fi (s, u(s), v(s)) dgs + / Hi(t,gs)f> (s, u(s), V(s)) dys
0 0
1 1

> / Ki(t,gs)fi (S, u(s), v(s)) dys > ottt / o1(g9)fi (s, ros™l, r) dys

0 0

1
> ot*17! / @1(g9)fi (s, ros™ ™, 1) diygs
0
1
> ot (ra)™ / o1(gs)fi (5,5 7,1) dis
0

1
> Qc‘)‘rlwel / v(gs)h (s, s"‘l’l,l) ol'qsr@1 >r= ||(u, v, telgl-c].
0

This guarantees that

” T(u,v) ” > || (u,v)|, V(u,v)edP,. (3.7)

On the other hand, for any (&, v) € 9Pg, we have
Rot“ ™ <u(t) <R, Rot?> <v(t) <R, te]0,1].
By Lemma 2.5, (A1), and (A2), for any (1, v) € dPg, we get
1 1
T1(u,v)(t) = / Ki(t,gs)fi (s, u(s), v(s)) dgs + / Hi(t,gs)f> (s, u(s), v(s)) dys
0 0
1 1
<p / o(gs)fi (s, R, Rws“z’l) dgs+p / P2(gs)fa(s, Ra)s"‘l’l,R) dys
0 0
1 1
<p / 1@ (s, R, s> ) dys + p / 02(gs)fa (5,7, R) dys
0 0
1 1
< ,oR@1 / o(g)fi (s, 1,3“2’1) dgs + pR92 / ©2(gs)fa (s, sl 1) dgs
0 0

1 1
< pRMX(0L02} ( / o1(gs)h (s, 1,3“2_1) dgs + / 02(q9)f> (s, sl 1) dqs>
0 0
<= Wy
In the same way, we have T5(u, v)(t) < R = ||(»,v)||, for all (4, v) € dPg. So we have

|| T(u,v) || < || (n,v)||, ¥(u,v)e€ dPz. (3.8)

By the complete continuity of 7, (3.7) and (3.8), and Lemma 2.6, we find that T has a fixed
point (#*,v*) € P,,z. Consequently, the coupled boundary value problem (1.1) and (1.2)
has a positive solution (u*, v*) € P,z
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Next, we show there exists a real number 0 </ <1 satisfying
At <ur(e) <7, 2t <y <2, telo,1].
From Lemma 3.1, we know (u*,v*) € P\ {(0,1)}. So, we have

o ()] <0 < (),

ot () | v @) < [ ()

, te]0,1].

Choose «, such that || (u*, v*)||/k <1, k > 1/w. By Lemma 2.5 and (A1), for ¢ € [0,1], we have

1 1
u*(t) = / Ky (8, g9)fi (s, u™(s), v (s)) dgs + / Hi(t, qs)fs (s, u™(s), v (s)) digs
0 0

1 1
< / Pt i (s, 00, 08" 7| (u*,v¥) ) dgs + / Pt o (s, 05| (¥, v¥) | k) dygs
0 0

1 k%
< ptotrl/ fl(SxK: Msazl> dqs
0 K
1 sk
0 K
1
<t (o ol ) [ o157 s
0
1
ool @) ) [ oo 1))
1
< pat (Kel“h(wR)_z’l/ gol(qs)ﬁ(s,l,s"‘z_l) dgs
0

1

+ k202 (R) 2 / 2(gs)f (s, s 1) dqs).
0

In the same way, for ¢ € [0,1], we also have
1
Vi) < pte2t <K91+01 (a)R)_'h/ e1(gs)h (S: l’saz_l) dys
0
1
+ k22 (R) 2 / ©2(gs) 2(3, sl 1) dqs>.
0
Choose
1
l= min{wr, (,0/(91“’1 (wR)™ / ow(gs)h (s, 1,5‘12_1) dgs
0
1 -1 1
+ p?* 72 (wR) ™2 / @2(gs)fa(s,571,1) dqs) '3 },
0
then we have

ot <o) <, e <y <, telo].

This completes the proof of Theorem 3.1. d
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Theorem 3.2 Assume that (H), (A1) and (A2) hold. Furthermore, assume 6; + % <1 and
0y + U < 1. Then the coupled boundary value problem (1.1) and (1.2) has a unique positive
solution on [0,1].

Proof Assume that the coupled boundary value problem (1.1) and (1.2) has two different
positive solutions (u1,v1) and (u3, v2). By Theorem 3.1, there exist 0 < /; <land 0 </ <1

such that

Lt <y (8) < I Lt <wi(e) < 7'e27, teo,1],

Lt <uy(t) <7, LT <) <2, te[o,1]. &)
Thus, from (3.9), we have

Lbyuy(t) <uy(t) < (hly) M uy(2), Ly (t) <wi(t) < (hly)Mwa(t), te[0,1].
Obviously, one has /;/, #1. Put

L= sup{l s () < wy (8) < Iluy(8), vy (8) < vi(8) < I7lwy ().t € [0,1]}.
It is easy to see that 0 < /1, <L <1, and

Luy(£) < wy () < L7'un(8), Lvy(8) <wvi(t) <L 7'wa(t), te[0,1]. (3.10)
By (A1) and (3.10), we get

A w(0),v1(8) = fi(t, Lua(®), Lo (2)) = LA (2, un (2), va(2))

> L7 fi(t, ua(2), (1)),
(3.11)

F(t,m(0,v1(0)) = fo(t, Lua(£), L va(8)) = L2723 (8, ua (£), va(2))

> LG,fZ (t, MZ(t)r Vz(t)),

where o = max{6; + t1,60, + 9>} such that o < 1. Similarly, by (A1) and (3.10), we have

Fi(tsua(8),v2 () = it Lua (6), L vi (1)) = Ly (2, ua (£),v1(0))
> L7fi(t, m(2), n1(0)),
Fo(t, uz(6),va(0)) = fo (& L (£), L w1 (2)) = L2725 (8, (2), v1.(2))

> L7 fo (8, ur (£), v (2)).

(3.12)

From (3.11), for ¢ € [0, 1], we have

1

1
ur(t) = Ta(u, v1)(t) = / Ki(t,g9)fi (S, Ml(S),Vl(S)) dys + / H(, gs)f (S, M1(S),V1(S)) dgs
0 0

1 1
> /0 Ki(t,qs)L°f; (s, uy(s), va (s)) dgs + /0 Hi(t,qs)L° f> (s, Uy (s), va (s)) dgs

= L7 T (12, v2)(t) = us(t), (3.13)
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vi(t) = To(u1, 1)(2)
1 1
=/O K (¢, gs) z(s, ul(s),vl(s)) dqs+/0 Hy(t, qs)ﬁ(t, ul(s),vl(s)) dys

1 1
> / Ko (t,98)L° fo (5, 2 (5), vo () dgs + / Hy(t,g8)L% fi (s, 2(5), v2(s)) diygs
0 0

= L7 Ty (ua, v2)(£) = m2(2).
Similarly, from (3.12), for ¢ € [0,1], we have

us(t) = T1(uz, v2)(¢)
1 1
= /0 Ki(6,g)fi (s, ua(s), va(s)) dgs + /(; H,y (6, gs)f (s, ua(s), va(s)) dys

1 1
?/K@wﬂ%@m@%@ﬂﬁi/M%wﬂ%@m@m@ﬂﬁ
0 0

= L7 T1(u1, v1)(2) = w1 (2), (3.14)

vo(t) = To(ua, v2)(£)

1 1

= /0 Ky (L, gs)f (s, u>(s), vy (S)) dgs + /(; H,(t, gs)fi (t, us(s), vy (s)) dgs
1 1

> / Ky(t,qs)L f> (s, uy(s), 1 (s)) dgs + / Hy(t,qs)L° fi (s, uy(s), 1 (s)) dgs
0 0

= L7 To(uy, vi)(8) = vi(8).

Combining (3.13) and (3.14), we can obtain

L@ <wm(@®) < (L) wat),  Lwm() <n@) < (1°) '), tel0,1]

Noticing that 0 < L,o < 1, we get to a contradiction with the maximality of L. Thus, the
coupled boundary value problem (1.1) and (1.2) has a unique positive solution (&*, v*). This

completes the proof of Theorem 3.2. d

4 An example

In this section, we give an example to illustrate the usefulness of our main results.

Example 4.1 Consider the singular fractional g-difference system with coupled boundary

integral conditions

Vi Jv

2.5 _ 25 _
(Dg2u) (o) + —m =0, (Dg2v)(0) + NeTTR 0, te(0,1),
(1)10151'{)(0) = (U()ZSV) (0) = O! ji = O! 1! (41)

1 1
u(l) = %/(; sv(s) dys, v(1) = g/o su(s) dgs.
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Obviously, we have g = 0.5, a; = ay = 2.5, j; = 2/3, i1 = 4/5, g1 (¢) = t, and g (t) = 1/4/t. By
simple computation, we have

1 1
V= / 527 g1 (s) dgs = / §25 dgs ~ 0.548479,
0 0
1 1
Vg = / 5171y (s) dys = / sdys~0.666667, 1— uiuavivy A~ 0.804985 > 0.
0 0

So, the condition (H) holds. We have

__ u W
At = Ve -ov N =

It is easy to see that f; : (0,1) x [0,00) x (0,00) — [0, 00) is continuous, f;(¢, #,v) is nonde-

creasing in u and nonincreasing in v, f; : (0,1) x (0,00) x [0,00) — [0, 00) is continuous,

f2(t,u,v) is nonincreasing in # and nondecreasing in v. Take
bh=—, th=_, 0=, Uy =—.

Then we know that the condition (Al) holds. As

L (1 = gs)19gs05
¥s2(1—s)

1
/ P1(g9)fi (51,527 ) dys = /
0 0

dys

1
1

< ———d, s~ 3.05253 < +00,

N q/o Y2(1—s)

L (1 = gs)19) 5025

1
s 1) dos = d
/0 @2(gs)fa(s,571,1) dys NCEORG

1
1
56]/ ———d,;s~1.69963 < +00,
0o ~/s(1—5s) 1
the condition (A2) is also satisfied. Therefore, by Theorem 3.1, we see that the coupled
boundary value problem (4.1) has at least one positive solution (u*, v*). Furthermore,

pap 2 19 o
+h=—+-=—<], + 0y =
TTPIT 9075 20 2Tz

4
+-=—-<Ll
5

Ul w
| =

By Theorem 3.2, we see that (¥, v*) is the unique positive solution of the coupled bound-
ary value problem (4.1).
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