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1 Introduction
In 2018, Boudeliou [9] discussed the following inequalities.

Theorem 1.1 Supposea € C($2,R,) is nondecreasing with respect to (x,5) € Q2 =5 x1I,let
a(%) € C (I, 1) and B(3) € C'(Iy, I,) be nondecreasing functions with &(%) <% on I, B(3) <
3, and g, u, p, f € C(2,R.). Furthermore, suppose ¥, ¢ € C(R,,R,) are nondecreasing
Sfunctions with {1, @}(u) > 0 for u > 0, and lim,,_, .o ¥ (1) = +00. If u(%, ¥) satisfies

_ @@ G 5 L
J (o) < aig) + [0 /0 [, D6 (165, ) + pGs, D] di
a@ pAG) 3
5,F 5, 0)o(u(t, D)) dt ) dids,
+/0 i fG L‘)(fo 2(F, D)9 (u(z, 1) ‘L’) tds

for (%,7) € 2, then

a® rAG) 5
u(;c,y)SJ-I{G-l[G(q(x,y))+ /0 fo f(§,i)(1+ /0 g(f,i)df>d2d§“,

for0<x<%x;,0<y <y, where

a® O
q(%,y) = a(x,y) + [ / pG, 1) di ds,
0 0
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. r ds o oo ds
G(r):/ —0 r2r0>0, G(+OO):/ ——- = +0,
o @ oY) v
and (%1,%1) € $2 is chosen so that
5 a® BG) 5 .
(G(q(fc,jl)) + / fGs, t)(l + / g(z,0) df) dtd§> € Dom(G‘l).
0 0 0

Theorem 1.2 Assume that g, a,f, u, B, &, , v and @ be as in Theorem 1.1. If u(¥,y) satisfies

2

: a® AG) o
U (u(®)) < a®y) + ( / fG D (uG D) dtd§>
0 0
a® ARG §
500 (u, ¢ t,0¢(u(t,1))dt | di ds,
+/0 /0 f(s t)w(u(s t)) </0 g7 t)(p(u(r t)) 7,') tds

for (%,7) € 2, then

5 a® rBG) s 5
B, y) = f 6,9 ( / PLc)) df) di ds,
0 0 0
o r ds . oo ds
H(r):/ ——, r>r9>0, H(+oo):f —_— =+,
ro (@ oYy=1)2(3) o (@oyh)2(s)

and (X1,51) € Q is chosen so that

5 a® G \2 .
(H(a(a“c,jl)) +B(x,7) + (/0 /0 fG,0) dtd§> ) € Dom(H™).

In 1988, Hilger [33] presented time scale theory to unify continuous and discrete anal-
ysis. For some Gronwall-Bellman-type integral, dynamic inequalities and other type in-
equalities on time scales, see Refs. [1-8, 13, 14, 16—-32, 34—41]. For more details on time
scales calculus see [15].

A time scale T is an arbitrary nonempty closed subset of R. We suppose throughout
the article that T has the topology that it inherits from the standard topology on R. The
forward jump operator o : T — T is defined for any ¢ € T by

o(t):=inf{seT:s>t},

and the backward jump operator p : T — T is defined for any ¢ € T by
p(t):=sup{seT:s<t}.

In the previous two definitions, we set inf@ = sup T (i.e., if ¢ is the maximum of T, then

o(t) =t) and sup@ = infT (i.e., if ¢ is the minimum of T, then p(¢) = t), where @ is the
empty set.

Page 2 of 19
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A point ¢ € T with inf T < £ < sup T is said to be right-scattered if o (¢) > ¢, right-dense if
o (t) = t, left-scattered if p(¢) < t, and left-dense if p(f) = £. Points that are simultaneously
right-dense and left-dense are called dense points. Points that are simultaneously right-
scattered and left-scattered are called isolated points.

We define the forward graininess function p : T — [0, 00) forany ¢ € T by u(t) := o (£)—t¢.

Let f: T — R be a function. Then the function f° : T — R is defined by f°(¢) = f(o (¢)),
vVt € T, that is, f° = f o 0. In a similar manner, the function f” : T — R is defined by
fP(t) =f(p(2)), YVt € T, that is, f* = f o p.

We introduce the set T* as follows: If T has a left-scattered maximum i, then T¥ =
T — {m}, otherwise T* = T.

The interval [, b] in T is defined by

la,blr={teT:a<t<b}.

Open intervals and half-closed interval are defined similarly.
Suppose f : T — R is a function and ¢ € T“. Then we say that f2(¢) € R is the delta
derivative of f at ¢ if for any ¢ > 0 there exists a neighborhood U of ¢ such that, for all

s € U, we have

f(e®) —fO]-f2O[o®) ~s]| < e|o() -

Furthermore, f is said to be delta differentiable on T* if it is delta differentiable at each
teT".

Iff, g: T — R are delta differentiable functions at £ € T*, then

Lo (f+g)™(6)=f2(t) + g (®);

2. ()20 =f0g() +flo(0)g™(6) = f (g™ (B) +f*(O)g(o (1));

3. (D)2 = CUOSICO provided g(e)glo (1)) #0.

A functlon g: T — Ris called right-dense continuous (rd-continuous) if g is continuous
at the right-dense points in T and its left-sided limits exist at all left-dense points in T.

A function F: T — R is said to be a delta antiderivative of f : T — R if F2(¢) = f(¢) for

all £ € T*. In this case, the definite delta integral of f is defined by
b
f f()An=F(b)-F(a) foralla,beT.
a

If g € Cia(T) and ¢, £ € T, then the definite integral G(¢) := ft s)As exists, and G2 (¢) =
g(t) holds.
Assume thata, b, ce T, « € R, and f, g be continuous functions on [a, b]1. Then
Jy PIF©) + g1 An= [ fmAn+ [ gnAn;
f af (A =a [, f(n)An;
[ Fman = [fman+ [ fo)An;
SLfamAan = - [ fa)An;
[ifmAan=0;
if f(¢) > g(¢) on [a, b, then [ f(n)An = [’ g(m)An.
We will need the following important relations between calculus on time scales T and

S T

either continuous calculus on R or discrete calculus on Z. Note that:
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1. IfT=R,then

b b
o=t w®=0, [O-£@ f F)An = / Fde.

2. UT=2Z,then

b b-1
o)=t+1, u@®=1,  fAO=fE+1)-f@), / fAn=Y_f).

In the following, we present the basic theorems that will be needed in the proofs of our

main results.

Theorem 1.3 Iff is A-integrable on [a, b], then so is [f|, and

| hf(zmz' <[ 17| AL

Theorem 1.4 (Chain rule on time scales [15]) Assume g : R — R is continuous, g : TR
is A-differentiable on T¢, and f : R — R is continuously differentiable. Then there exists
ce[i,o@)] with

(Fod) () =1 (2(0)8* () (1.1)

Theorem 1.5 (Chain rule on time scales [15]) Letf : R — R be continuously differentiable
and suppose g : T—Ris A-differentiable. Then f o g : T — R is A-differentiable and the

formula

A Ao 1 A N v v
Fo)d® - { / [ (hg () + (1 - ()] dh}gAm 12)
holds.

This paper gives us the time scale versions of the results provided in [9]. These inequal-
ities, proved here, extend some known results in the literature, and they are also unify the
continuous and the discrete case.

2 Main results
In what follows, R denotes the set of real numbers, R, = [0, +00), 'JT‘I, Tz are two time
scales and we put £2 = T, x T, = {£3):te T.,5 € ’ﬁ‘z} which is a complete metric space

with the metric p defined by

p(E3),E9) =/ -2+ (=52 V(E5),E$ e x Tn.

Cid(£2,R,) denotes the set of all right-dense continuous functions from £ into R, and
Crld('ﬁ‘i,'ﬁ‘i) denotes the set of all right-dense continuously delta-differentiable functions
from T; into T}, i = 1,2. The two-variables time scales calculus and multiple integration
on time scales were introduced in [10, 11] (see also [12]).
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Theorem 2.1 Suppose that a € C,q($2,R,) is nondecreasing with respect to (x,y) € §2, and
g u, p, f € Cu(82,R,). Furthermore, suppose that ¥, @ € CR,,R,) are nondecreasing
functions with {,@}(u) > 0 for u > 0, and lim,,_, . ¥ (1) = +00. If u(%,y) satisfies

v (u(®,)) < al®y) + /0 fo [FG D@ (usD) +pG, H]AEAS

x ey y R S
+ fo /0 f(s,t)( /0 g(r,t)go(u(r,t))Ar>AtAs,

for (x,y) € §2, then

u(ic,&)sv'f‘l{é [é(q(x,y) / / f(s,t)<1+ / g(# DA% )A A]} (2.1)

for0 <x <x;,0<y<j,where

atwi) =atei)+ [ [ ps,pAEAs 22)
o Jo
G(r) = /r As r>rp>0, G(+00) = /+00 4 = +00, (2.3)
ro <ﬂ01// 1(5) ro (ﬁow_l(s)

and (X1,y1) € 82 is chosen so that

(G(q(a“c,&)) + /0 ' /0 yf(§,i)(1+ fo Sg(f,Z)Af>AZA§) € Dom(G™).

Proof Assume that a(x,y) > 0. Since g > 0 and it is nondecreasing, fixing an arbitrary point
(£,7) € 2 and defining z(%, y) by

~

2(%,) = q(5,¢) + / / G H@(uG, D) ALAS

which is a positive and nondecreasing function for 0 < X < 5 <x,0<x< 5 <y, we have
2(0,7) = 2(%,0) = q(£,¢) and

u(%,y) < ¥ (2(%,)). (2.4)
Differentiating z(%, ¥), with respect to ¥ and using (2.4), we get

~

Akre vy _ y ool = ey *
2%y = | f&D|@(u D) + g(r Hp(u(E, 0)At | A
0

y . B . X y 5
< / f(a”c,t)[gbow‘l(z(fc,t))+ / o505 0 7 (a2, ) A ] :
0 0
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7,—1

since @ o ¥~! is nondecreasing with respect to (¥,7) € R, x R,, we have

< @0 (25 7) Oy F( Z)[1 + fo ’ g(f,Z)Af} A, (2.5)
and from (2.5) we get

2%, 5)

y . 0 A
m < f(x,t)<1+/0 g(T,t)AT)At. (2.6)

From (2.6) we get

G(z(%,3) < G(q(,0)) / f f(s,t)<1+ / g, t)Af)AZAg

Since (£,Z) € 2 is chosen arbitrarily,

2(%,5) < G |:é(q(5c, 7)) + /0 ’ /0 ’ G, Z)(1+ /0 s g(f,Mf) AZA;}. (2.7)

So from (2.7) and (2.4) we get the desired inequality in (2.1). For a(x, y) = 0, we carry out the
above procedure with € > 0 instead of a(X, ) and subsequently let ¢ — 0. This completes
the proof. g

Corollary 2.2 If we take T = R in Theorem 2.1, then the inequality
- .. oy oo e
(0 5) < atei)+ [ [ 600G D) + D] i

f | f(s,t)( / 0 (u(z.H) df> di s,

for (x,y) € §2, implies

E
4(53) = () + / / PG D) dids,
0 0
r S +00 -
é(V) :/ _?—SV, r=rg> 0, G(+OO) :/ _('_iisv = +00, (28)
o O 1ﬂ_l(s) n @O W‘l(s)

and (%1,y1) € §2 is chosen so that

(c”;(q(x,y)) + /0 ' /0 ’ 6.5 (1 + /0 S g% df) dzd§> € Dom(G™).
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Corollary 2.3 The discrete form can be obtained by letting T = Z in Theorem 2.1:

%-1 y-1

V() <a@y)+ Y Y [f6,D@(u6 D)+ p6,D)]

§=0 {=0

%-1 y-1

+Y D f6D (Z ¢, D¢(u(t, 1)) )
§=0 =0
for (%,5) € §2, which implies

x-1 y-1 5-1
u(ic,&)s&l{e [ (a3) +ZZf(§,Z>(1+Zg<f,i>)”
=0

5=0 =0

%-1 y-1
q(x,y) = a(x,y) + p30),
5=0 {=0
r—1 1 +00 1
Gr = ————, r>r>0, G(+o0) =Y ——— = to0, (2.9)
XE oY1) 23 @ oY)

and (X1,)1) € §2 is chosen so that

( (a(5) xiyif(s £) (1 +Zg(r t))) € Dom(G™).

5=0 =0

Theorem 2.4 Assume that h, b € Cq($2,R,). Let g, f, p, a, u, W and § be as in Theorem
2.1, if u(x,y) satisfies

1/}(u(5c, ) < a(x,y / / u(s, t)) +p(s, )]AZAE

+ /0 /0 b(s, t) [h(s, t)@(u(s, t)) + /0 g(r,t)gﬁ(u(r,t))Ar] AtAS

for (x,y) € §2, then
_ . T L A
ux,y <vy! {G-l [G(q(;c, ) + A ) + / / G, t)AtAi] } (2.10)
o Jo
for0<x<x;,0<y<j, whereq, G are defined by (2.2) and (2.3), respectively, and

// G, ¢ [ s,t)+/0g(f,i)ﬁf}ﬁiﬁﬁ (2.11)

and (%1,%1) € §2 is chosen so that

(G(q(ic,jl))+A(5c,5/)+ /0 /0 f(E,Z)AZAE) € Dom(G™).

Page 7 of 19
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Proof Assume that a(%,7) > 0. Fixing an arbitrary (£,7) € £2, we define positive and non-

decreasing function z(%, y) by
o05) = gD [ [ £6bo(uH)AtAS
0 0
+ f ' f yb(§,i)|:h(§,i)¢(u(§,i))+ / Sg(f,i)gz)(u(f,Z))Af]Azﬁg
0 0 0

<1, then 2(0,y) = z(X,0) = q(é, Z) and

o
IA
<L
IA
Va'¥e

forOficfé < X1,
u(;C,j/) < 1/_/_1(2(5‘:’5’));

then we have

y y
A ° T 1 v v N v v
< /0 f&E D@ oy (2(x, t))At+/0 b(x,1)
x (h(a?, Hp o (2(3, 1) + / ' g hHpo 1/?‘1(2(%,2))&%)&2
0 ! (206 ) [ / FGEDA
/ b(x, (h(&,2)+/xg(f,Z)Af)]Az
0

=¢o

then

ww(iz”zy))_[/ f(x’f)AHf (xi>(h(5c,2)+foxg(f,z)Af)}Az.

Integrating (2.12) and using (2.3) and (2.11), we get
oo MRV .. L N
G(eti) = Gla.0) + A6 + [ [ 76 A

o Jo

Since (§,¢) € 2 is chosen arbitrarily,

2(56,5/)§G"1|:G(q(5c,51))+A(5c,5/)+ /0 /0 f(E,Z)AZAE].

(2.12)

(2.13)

From (2.13) and u(%, ¥) < ¥~ (z(%, 7)), we get the required inequality in (2.10). For a(¥, ) =

0, we carry out the above procedure with € > 0 instead of a(,y) and subsequently let

€ — 0. This completes the proof.

O
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Corollary 2.5 If we take T = R in Theorem 2.4, then the inequality
. L. L e e
¥ (u(x,)) < a(®y) + / f [F& D@ (u D) +p(s,1)] di ds

o Jo
iy 3
o[ [ e [h(§, Do(us,0) + [ oz, i(utz, ) df] di ds,
o Jo 0
for (x,y) € £2, implies
u(®,y) <y~ {G [é(q(x,y)) + A,y / / fG,E dtds]}
for0<x<%x;,0=<y<7%,where Gis defined by (2.8) and
. oy 5 § § 5
A®,y) = f / b(s,t) [h(E, £) +/ g(7,¢) df:| dtds
o Jo 0
and (%1,71) € §2 is chosen so that
g . oy g
(G(q(ic,ji)) +A(5c,5/)+/ /f(i, t)dtdE) € Dom(G™).
0o Jo

Corollary 2.6 The discrete form can be obtained by letting T = Z in Theorem 2.4:

%-1 y-1
¥ (u(x,5)) < a(®y) + ZZ [/, D)@(u(, D) + ps,1)]
§=0 £=0
-1 y-1 5-1
+ b(s [ P(uE D)+ g(f,i)@(u(f,f)):|,
§=0 =0 =0

for (%,7) € §2, implies

X-1 y-1
u®y) < 9" {G-l [G(qac,&)) FAGH) + YD G, Z)} }

§=0 {=0

for 0 <% <%;,0 <y <9, where G is defined by (2.9) and

NS
B
=

I

MQ‘

X 5-1
b(s, ) |:h(s, H+) glf ]
5=0 {=0 7=0

and (X1,51) € §2 is chosen so that

x-1 y-1
< (aG9) +A(x,y)+zzf(s,t)> e Dom(G™).

s=0 {=0
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Theorem 2.7 Assume that g, a, u, f, p, ¥ and ¢ are as in Theorem 2.1. If u(%, ) satisfies
o L oy Ceanonl
v (u(®)) < al®y) + / / @(u(3,1)) [f(s, D(u(s,1) +p(s, t)]AtAs
o Jo

By A W
+/0 /(;f(s,t)w(u(s,t))(/o g(r,t)w(u(t,t))Ar)AtAs,

for (x,7) € §2, then
i) = 076 (| Flai)

+/j/jf(§,i)<1+/ 2@ hA >A2A§D}, (2.14)

for0<x<%x;,0=<y<7%, where Gis defined in (2.3) and

71(%,5) = G(a(,y) / / PG, HALAS, (2.15)
F(r) = V ~ - , r>rg>0,

o (o )o(f D) 2.16)
o +00 A§
Fooo= | o e T

and (%1,%1) € §2 is chosen so that

( ny //fs, <1+/ (r,Z)Af)AzAg)eDom(P-l).

Proof Suppose that a(€,7) > 0. Fixing an arbitrary (£,7) € 2, we define a positive and

nondecreasing function z(, y) by
o . &y . . . e Avn
2(%,9) = a(€,7) + / / ¢(uG D)) [fG Do (u, ) + pG, )] ALAS
o Jo
% oy 5 N n
+ fo /0 f(é,i)é(u(ﬁ,i))( /O g(f,2)¢(u(f,2))Af)Am§,

for0<X% <& <%,0<y < <%, thenz(0,)) = z(%,0) = a(§,) and

then we have
. ¥y . . . s
22 (%,9) = /0 @(u(fc, t)) [f(ic, t)@(u(ic, t)) + p(x, t)]At

y . . x . A ..
o [ 5 p(utin) ( / g(f,t)@(u(f,t))Af)At
0 0
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< fo 5o u (20 H)[f & D@ o v (2%, 0)) + p& D] A

~

+/f(a?,f)¢01/f"1(z(5c,t))</ g(f,t)aow-l(z(f,t))Af>At
0 0
<@o P (z(%7)) /0 [f& D@ oy (2(%,1)) + p(x, D] At
_ ¥y . * . _ o\ o
+¢01//"1(z(a?,51))/0f(5c,t)(/0 g(f,t)gf)ow‘l(z(f,t))Af>At,
or

wl(if(y)y)) = / [f@& D@ o ¥ (2(%,D) + p&, [)| Al
/f (/ (T, t)wc&‘l(z(%,i))ﬁf)ﬁi. (2.17)

Integrating (2.17) and using (2.3), we get
y R L . NP
G(e,5)) < G(a, ) + /0 /O [£6, 95 0 7 (6, D) + p(G D] ATAS

+/(; /Of(s»t)(/o gT,)poy (z(t,t))Ar AELAS.

(§ , ;:) € §2 is chosen arbitrarily, then from (2.15) we have
(5651 <q1(%y) + //fst ))AZAE

fffst</ rt)wowl(z(%,i))A5>AZA§.

Since ¢;(%,7) > 0 is a nondecreasing function, fixing an arbitrary point (£,7) € £ and
defining v(¥,7) > O to be a nondecreasing function by

Vo) = 16, 0) + / / 5,105 0 (265, 1) AFAS
< F ~ 37 70 -1 YN A~YYAYAY
; /0 / f(m)( /O a6, 0 7 et7 D)A¢ ) A7
for0<X%<&<%;,0<j<{<y,wehaver(0,j) = v(¥0) = ¢:(¢,{) and

2(%,5) < G (v(%,))); (2.18)

then we have
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5’ 2 - v Ao
< [ 160509767 (D)) Al
0
+ / f ( / gz bpo &'l(G‘l(vﬁ,a))Af)Af

_ y Vo ene T o [T e r N ae
5(@01//_1)0G_1(V(5€,5/))|: /0 fG DAL+ /0 f(;c,t)< /0 g(f,t)Af)At},

or

LGS [ ( : )]
Gov D) oG W&y /fx’t)A”/f("’t) / g HAE )AL (219

Integrating (2.19) and using (2.16), we get

//fs, [1+/ (f,Z)Af}AZAE.

Since we can choose (§,7) € 2 arbitrarily, we have

UYY(
V‘r(

IE‘(V(EC’ 5/)) f

v(x,y) < F! |:F(q1(5c,5/)) + /0 ’ /0 yf(ﬁ,i)[u /0 S g(f,i)&f]ﬁf&i} (2.20)

From (2.20), (2.18) and u(%,7) < ¥~'(z(%,7)) we get the desired inequality in (2.14). For
a(%,y) = 0, we carry out the above procedure with € > 0 instead of a(¥, y) and subsequently

let € — 0. This completes the proof. O

Corollary 2.8 Ifwe take T =R in Theorem 2.7, then the inequality

w(u( < a(x,y / / f(s, t)go(u(s, t)) +p(s, )] di ds

+ /0 /O f(§,2)¢(u(§,7:))( /0 g(f,;“:)(,s(u(f,Z))Af)dZdE,

for (x,y) € §2, implies

u(ic,&)g&l{é*l(P [ (2(%,9)) //f(s t)(1+/g(r t)df)dtdsD}

for0<x<%x;,0<y<jy, where G isas defined in (2.8) and

05) = G(a ) / / PGP di ds,

0=, ((q)ovf—l)oG-lxs) Tt
o +00 d§
Fooo= [ s ea
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and (X1,51) € §2 is chosen so that

< (42(%,9)) //f(s, (1+/g(1’ t)dr)dtds)eDom(F Y.

Corollary 2.9 The discrete form of Theorem 2.7 can be obtained by letting T=2:

%-1 y-1
w(u(x,y) < a(®,y) + ZZ u(s, t) [f(s, t)go(u(s, t)) +p(s, t)]
5=0 {=0
%-1 y-1 s-1
+ 33 F6, D9 (u6, D) (Zg(f, D (u(z, i))),
3=0 {=0 =0

for (x,y) € £2, implies

X-1 y-1
u(®,y) < W{G-l(ff [ ([@@3)+Y_ Y f6 t)<1+Zg(r t))D}

5=0 =0

for0<x<x;,0<y<7%, where Gisas defined in (2.9) and

72(%,y) = G(a(x,y)) + xf: f:p(s )

_ - 1 o

0= L Gogneng 2070

CESTE S S
LGy 1)oG 1)

and (X1,y1) € §2 is chosen so that

-1 j-1 3-1
( (72(%9) + Z Zf 3, t)(l + Zg(f,i))) € Dom(F1).

for (x,y) € §2, then

u(%,jf)fl/_/‘l{f{_ [ ( (x,y) +B(x,y)+ (/ /f(s,f)ﬁv ) ]}, (2.21)
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for0 <x <x;,0<y<j, where

y L Y A L WA
B(%,) = / / f(§,t)< f g(f,t)Af)Amg,
0 0 0

H(r) = ri r>ry>0
T @Gov 2@ T
. +00 A;
H(+OO)=/ o = +t00,
o ((,0 o W‘l)z(s)

and (X1,51) € §2 is chosen so that

% ¥ 2
(ﬁ(a(x, ) +B(%,5) + < /0 /0 fG, Z)AZAE) ) € Dom(H™).

(2.22)

(2.23)

Proof Assume that a(%,7) > 0. Taking (£,Z) € £ as a fixed arbitrary point, we define

z(%,y) > 0 to be a nondecreasing function by

. X py . A 2
Z(fc,&)=a(s,c)+( / / f(§,t)¢3(u(§,t))AtA§>
/ f 6 D@ (u D) ( / g Hp(ult, t))Af)AZ&g

for0<x <& <%0 <y <¢ < j1, hence z(0,%) = z(X,0) = a(€,¢) and

From (2.24), and applying the chain rule on time scales, Theorem 1.4, we get

. c ry ¥
A(5) = 2 590 (uG, 1 AFAZ D) (ulh § Af
z5%(%, ) </0 /0 f(s t)w(u(s t)) t S)/o fx t)(p(u(x t)) t
y . 5

¢ ry N R va> y N RV
2(/ /f(s,t)go ) (z(s,t))AtAs /Of(x,t)go ) (z(x,t))At

f f&Hgow (z(ic,f))( /xg( Dgov™ l(z(f,Z))Af)Az

<2(go ¥ (z(%,5))) (/ /f(s, AtA)/f(x,t)At
oo () | f(x,t>< / (DA f)AZ

thus, we have

ZA:?(%J/) ( c ry VUAVAU) oo
Geimergy =2 [ reniis) i

(2.24)
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[( / / f(s,t)AtAs) ]A
+ /0 yf(k,i)( /0 xg(f,Z)Af)AZ. (2.25)

Integrating (2.25) and using (2.23), we get

y . Vo \?
H(z(%,5)) < H(a(&,2)) + ( /0 fo f(§,t)AtA§>

x pry . s S

+/0 /Of(s,t)</0 g(r,t)At)AtAs.

Since (§,¢) € £ is chosen arbitrarily,
. T y ¥y a0\
z(%, ) §H"1[H(a(5c, ) +B(x,7) + < / / fG, Z)AZAE) ] (2.26)
o Jo
From (2.26) and u(%,7) < ¥ 1(z(%,7)), we get the desired inequality (2.21). For a(%,) = 0,
we carry out the above procedure with € > 0 instead of a(¥, ) and subsequently let € — 0.

This completes the proof. O

Corollary 2.11 If we take T =R in Theorem 2.10, then the inequality

2
v (u(x,)) < a(®,y (/ /fst dtds)
x y S
5,00 (u3, t,0)¢(u(,1)) dt | dt ds,
+/0 /(;f(s t)<p(u(s t))(/o g7 t)w(u(t t)) r) tds

for (x,y) € £2, implies

u(&,y)glﬁ-l{ﬁl[ﬁ( (%)) + B, ) (/ ffs, dtds) ”

for0<x<x,

. x pry s .
B%5) = /0 0 f(E,t)( fo g% L‘)d‘r) di ds,

I:I(V)=/rfi4§, r>ro>0, ﬁ(+m)=f+mfi—§=+w’
0 (@ oY1) no (@oPPE)

o
IA
L2¢

<1, where

and (%1,%1) € §2 is chosen so that

% ¥ 2
(H(a(;c, ) +B(%,5) + < /0 /0 fG,9) dzazz) ) € Dom(H™).



El-Deeb and Khan Boundary Value Problems (2020) 2020:31 Page 16 of 19

Corollary 2.12 The discrete form can be obtained by letting T = 7Z in Theorem 2.10:

x-1 y-1 2
B 5 5) < s (zzfs 5(u0))
5=0 {=0
31 y-1 5-1
+ 2.0 G D D) (Zgﬁ,i)@(u(f,z»),
$=0 {=0 =0
for (x,y) € £2, implies
_ . x-1 y—
ux,y) <y~ { [H( a(%,5)) + B, y) + <Z Zf(s, t)) ]}
§=0 £=0
Jor 0 <% <x;,0 <y <3, where
=1y 3-1
B(&5) - Zyuﬁ(ikuw>
5=0 #=0 7=0
H('ﬂ)_i : , rz10>0, H(+OO)—§ ! = +00,
o (@oyTPE) S (@o Y

and (X1,51) € 2 is chosen so that

x-1 y-1
< (a(x,7)) + B(x,7) + (ZZf(s,t)) >eD0m( ).

3 Applications
The present section illustrates how Theorems 2.7 and 2.1 can be used to study the bound-
edness of the solutions of some initial boundary value problem for partial dynamic equa-
tions in two independent variables.

Let us consider the problem

b3 3) = F(xyu(x ), / : k(3,5 uls, @)AE), (3.1)
0
WG0) =@ (@), wO0)=al),  @(0)=a0)=0, (32

for any (¥,7) € £2, where ke Cra(2 x R,R), F€ Cu(2 x R x R,R), a; € Crd(’TI’l,R) and
a € Crd(Ter)

Theorem 3.1 Suppose that the functions k, F,az,ay in (3.1) and (3.2) satisfy the conditions

\EG,5,u(@,5,v)| < 6 (|u 7)) [fG)é(|u@E5)|) +pE )]
+f &% 3)@ (|ux3)])v, (3.3)
k(%5 u®, )| < g6 9)@(|u@ ), (3.4)

a1 (%) + a2(9)| < a(x,9), (3.5)
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where the functions p, g, a, f, and ¢ are defined as in Theorem 2.7 with a(x,y) > 0, for all
(%,7) € 82, then

u(fc,y)|sé-1([f-[ (%, f ffs, [1+/ g(#, DAt ]AZASD (3.6)

for0<x<%x;,0<y <y, whereF, q; and G are defined as in Theorem 2.7.

Proof If the problem (3.1) and (3.2) has a solution u(¥, y), it can be written as
oo LS. N\ on
u(®,y) = a1 (%) + ax(7) + f / F(E, £, u(s, t),/ k(%,E, u(f,t))Af) AEAS, (3.7)
0o Jo 0
for any (%,%) € £2. Using the conditions (3.3), (3.4) and (3.5) in (3.7), we get
o o oy . e . e AL
UG 7)| < ati,5) + / | (s D) 5B (fus 1) + 6, D] 243

/ f(s, o(|uls, t |)(/0 g(f,2)¢(|u(f,i)|)Af>AiA;, (3.8)

for any (%, y) € £2. Now, an application of Theorem 2.7 to (3.8) yields the required inequal-
ity in (3.6) where ¥ () = u. O

Let us consider the initial boundary value problem of the form
(Zq) A;CAJV/(;Q‘;’) = A (55; 5/; Z(&:’ 5/), / h(§15’1 Z(E, 5’)) Ag) (39)
0
Z(.;C, 0) = ul(%)r 2(0’5)) = aZG})’ al(o) = ﬂQ(O) =0, (3'10)
for any (%,y) € 2.

Theorem 3.2 Assume that the functions h, A, a, a1 in (3.9) and (3.10) satisfy the condi-

tions
AG, 3,265, 5,v)| <fGe )27 @) +£ G 7w, (3.11)
|1(%,5,2(%,9)) | < g(&5)|2 5], (3.12)
|41 (%) + ax(9)| < a(®,7), (3.13)

wherer > q > 0, then

2655) < (i) ¥ + L / / f(s,t>(1+ / e i )aiss]”, )

for0<x<x;,0<y<y.

Proof If the problem (3.9) and (3.10), has a solution z(¥, ) it can be written as

o/ L. o Nom
Z1(%, ) = a1(x) + ax(y) + / / F<§,st, u(s, t),/ k(f, t,u(t, t))Af) ALAS, (3.15)
o Jo 0
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for any (%,%) € £2. Using the conditions (3.11), (3.12) and (3.13) in (3.15), we get
X pry . . n
#65)] <ati)+ [ [ £6.0]76.0/AtAs
o Jo
x pry . H . A A
+/ / 1, t)</ g(f,t)‘z’(f,t)!Af)AtAE, (3.16)
o Jo 0
from (3.16), we get

AtA3

x py
265 <at [ [ r6DlGY

+ /0 ' /0 ’ fG.5) < /0 S g(f,Z)\z’(f,Z)|Af>AZA§, (3.17)

for any (¥, 7) € £2. A suitable application of Theorem 2.1 to (3.17) with v () = u9, @(u) = u”
and p(%,7) = 0 gives the required inequality in (3.14). O
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