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1 Introduction
In this paper, we consider the following quasilinear elliptic problem:

⎧
⎨

⎩

–�pu – μ
|u|p–2u

|x|p = |u|p∗(a)–2u
|x|a + |u|p∗(b)–2u

|x–x0|b + λ
|u|q–2u

|x|s in Ω ,

u = 0 on ∂Ω ,
(1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain such that the different points 0, x0 ∈
Ω , –�pu = – div(|∇u|p–2∇u) is the p-Laplacian of u; 0 ≤ μ < μ := ( N–p

p )p, 1 < p < N and λ

is a positive parameter; 0 ≤ a ≤ b < p, 1 ≤ q < p, p∗(a) = p(N–a)
N–p , p∗(b) = p(N–b)

N–p . Note that
p∗(0) = p∗ = Np

N–p , p∗(p) = p.

Let W 1,p
0 (Ω) be the completion of C∞

0 (Ω) with respect to the norm (
∫

Ω
|∇u|p dx)

1
p . The

energy functional of problem (1) is defined on W 1,p
0 (Ω) by

J(u) =
1
p

∫

Ω

(

|∇u|p – μ
|u|p
|x|p

)

dx –
1

p∗(a)

∫

Ω

|u|p∗(a)

|x|a dx

–
1

p∗(b)

∫

Ω

|u|p∗(b)

|x – x0|b dx –
λ

q

∫

Ω

|u|q
|x|s dx.

Then J(u) ∈ C1(W 1,p
0 (Ω), R). Function u ∈ W 1,p

0 (Ω)\{0} is said to be a nontrivial solution
of (1) if 〈J ′(u), v〉 = 0 for all v ∈ W 1,p

0 (Ω) and a solution of (1) is a critical point of J(u). But
the appearance of multiple Sobolev–Hardy terms in (1) makes it difficult to investigate the
existence of positive solutions for problem (1).
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Recall that the functional J(u) satisfies the (PS)c condition if every (PS)c sequence for J(u)
has a convergent subsequence, and a sequence {un} ⊂ W 1,p

0 (Ω) is called a (PS)c sequence
for J(u) if J(un) → c and J ′(un) → 0.

Elliptic equations with critical growth terms have received wide attention in recent
years. In a pioneering work, Pohozaev [18] considered the following elliptic problem:

⎧
⎨

⎩

–�u = |u|2∗–2u in Ω ,

u = 0 on ∂Ω ,

where Ω is a star-shaped domain with respect to the origin, and obtained that there is no
nontrivial solution. However, lower order terms can reverse this situation. Indeed, Brezis
and Nirenberg [1] proved the existence of positive solutions for the nonlinear elliptic prob-
lem involving the critical Sobolev exponent

⎧
⎨

⎩

–�u = λu + |u|2∗–2u in Ω ,

u = 0 on ∂Ω .

Generalizations of this result can be found in [6], and for multiplicity results for elliptic
equations with critical exponents see [7].

As for the elliptic problems involving Hardy terms, Jannelli [13] proved the existence of
solutions. This problem was also discussed in [2, 3, 8, 9]. The following quasilinear elliptic
problems with a singular Hardy term and a critical Sobolev–Hardy term:

⎧
⎨

⎩

–�pu – μ
|u|p–2u

|x|p = K(x) |u|p∗(s)–2u
|x|s + g(x, u) in Ω ,

u = 0 on ∂Ω ,
(2)

have been investigated in recent years, where K(x) is a continuous nonnegative function
and g(x, u) is a subcritical perturbation. Kang [14] proved the existence of solutions for
problem (2) with K(x) = 1 and g(x, u) = |u|q–2u

|x|t where p ≤ t < p∗(s) by using variational
methods and the results crucially depend on the parameters p, q, t, λ, and μ. In [17],
Liang consider problem (2) with K(x) = 1 and derived the existence of infinitely many small
solutions by using the concentration compactness principle and a symmetric mountain
pass theorem.

Concerning problems with multiple nonlinearities, there has been little research up to
now. Here we mention Gao [5] who studied the elliptic problem with combined critical
Sobolev–Hardy terms on smooth bounded domain and obtained some existence results
by investigating the limit behavior of the PS sequence for the corresponding energy func-
tional. Li [15] has established the complete asymptotic description for any PS sequence
{un} of the associational energy functional and then proved the existence of nontrivial so-
lutions under different assumptions. As for problems involving multiple critical Sobolev–
Hardy terms, we refer to articles [12, 16].

This paper is devoted to the study of the multiplicity of positive solutions for problem
(1) when a, b, s, λ, μ satisfy suitable conditions by using variational methods and some
ideas from [11, 12].



Li Boundary Value Problems        (2019) 2019:136 Page 3 of 19

Problem (1) is related to Sobolev–Hardy inequality

(∫

RN

|u|p∗(t)

|x – a|t dx
) p

p∗(t) ≤ C
∫

RN
|∇u|p dx, ∀u ∈ C∞

0
(
RN)

, a ∈ RN .

When t = p, p∗(t) = p, the well-known Hardy inequality holds:

∫

RN

|u|p
|x – a|p dx ≤ 1

μ

∫

RN
|∇u|p dx, ∀u ∈ C∞

0
(
RN)

,

where μ = ( N–p
p )p is the best Hardy constant.

In the space W 1,p
0 (Ω), we employ the following norm if μ < μ:

‖u‖μ =
(∫

Ω

(

|∇u|p – μ
|u|p
|x|p

)

dx
) 1

p
.

Due to Hardy inequality, it is equivalent to the usual norm (
∫

Ω
|∇u|p dx)

1
p of the space

W 1,p
0 (Ω), and

(∫

Ω

(

|∇u|p – μ
|u|p

|x – x0|p
)

dx
) 1

p

is also equivalent to the usual norm (
∫

Ω
|∇u|p dx)

1
p of the space W 1,p

0 (Ω) with x0 ∈ Ω .
Hence we can deduce that

(∫

Ω

(

|∇u|p – μ
|u|p

|x – x0|p
)

dx
) 1

p
≤ β

(∫

Ω

(

|∇u|p – μ
|u|p
|x|p

)

dx
) 1

p
,

where β is a constant.
Set

Aμ,t(Ω) = inf
u∈W 1,p

0 (Ω)\{0}

∫

Ω
(|∇u|p – μ

|u|p
|x–a|p ) dx

(
∫

Ω

|u|p∗(t)

|x–a|t dx)
p

p∗(t)
, a ∈ Ω .

Whenever Aμ,t is independent of Ω ⊂ RN , we will simple denote Aμ,t(Ω) = Aμ,t(RN ) = Aμ,t .
Therefore we conclude that

∫

Ω

|u|p∗(b)

|x – x0|b dx ≤ (
∫

Ω
(|∇u|p – μ

|u|p
|x–x0|p ) dx)

p∗(b)
p

A
p∗(b)

p
μ,b

≤ βp∗(b)‖u‖p∗(b)
μ

A
p∗(b)

p
μ,b

.

Let

Λ0 = min

{(
p – q

2βp∗(b)(p∗(b) – q)

) p–q
p∗(b)–p p – p∗(b)

q – p∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
–p∗(s)

A
q
p
μ,sA

(N–b)(p–q)
p(p–b)

μ,b ,

(
p – q

2(p∗(a) – q)

) p–q
p∗(a)–p p – p∗(b)

q – p∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
–p∗(s)

A
q
p
μ,sA

(N–a)(p–q)
p(p–a)

μ,a

}
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and

Λ1 = min

{
p – a

p(N – a)
A

N–a
p–a
μ,a ,

p – b
p(N – b)

A
N–b
p–b

0,b

}

.

Now we give our main result:

Theorem 1.1 If N ≥ 3, 0 ≤ μ < μ, 0 ≤ a ≤ b < p, 0 ≤ s < p, 1 ≤ q < p, then we have the
following results:

(i) If λ ∈ (0,Λ0), then (1) has at least one positive solution in W 1,p
0 (Ω).

(ii) If λ ∈ (0, q
pΛ0), then (1) has at least two positive solutions in W 1,p

0 (Ω).

This paper is organized as follows. In Sect. 2, we narrate some useful preliminary knowl-
edge and some properties of Nehari manifolds. In Sect. 3, the multiplicity of positive weak
solutions is verified.

Throughout this paper, various positive constants will be denoted by c, and dx in inte-
grals will be omitted for convenience.

2 Preliminary knowledge and main results
Since the functional J(u) is not bounded from below on W 1,p

0 (Ω), we will work on a Nehari
manifold. For λ > 0, we define

Nλ =
{

u ∈ W 1,p
0 (Ω)\{0} :

〈
J ′(u), u

〉
= 0

}
.

We recall that any nonzero solution of (1) belongs to Nλ. Moreover, by definition, we
have that u ∈ Nλ if and only if

‖u‖μ �= 0 and ‖u‖p
μ –

∫

Ω

|u|p∗(a)

|x|a –
∫

Ω

|u|p∗(b)

|x – x0|b – λ

∫

Ω

|u|q
|x|s = 0. (3)

Lemma 2.1 The functional J(u) is coercive and bounded from below on Nλ.

Proof For u ∈ Nλ, we have

J(u) =
1
p
‖u‖p

μ –
1

p∗(a)

∫

Ω

|u|p∗(a)

|x|a –
1

p∗(b)

∫

Ω

|u|p∗(b)

|x – x0|b –
λ

q

∫

Ω

|u|q
|x|s

≥ 1
p
‖u‖p

μ –
λ

q

∫

Ω

|u|q
|x|s –

1
p∗(b)

(∫

Ω

|u|p∗(a)

|x|a +
∫

Ω

|u|p∗(b)

|x – x0|b
)

=
(

1
p

–
1

p∗(b)

)

‖u‖p
μ – λ

(
1
q

–
1

p∗(b)

)∫

Ω

|u|q
|x|s

≥
(

1
p

–
1

p∗(b)

)

‖u‖p
μ – λ

(
1
q

–
1

p∗(b)

)(∫

Ω

|u|p∗(s)

|x|s
) q

p∗(s)
(∫

Ω

|x|–s
) p∗(s)–q

p∗(s)
. (4)

Set R0 be a positive constant such that Ω ⊂ B(0; R0), where B(0; R0) = {x ∈ RN : |x| < R0}.
Since

(∫

Ω

|x|–s
) p∗(s)–q

p∗(s) ≤
(

NωN

∫ R0

0
r–s+N–1 dr

) p∗(s)–q
p∗(s)

=
(

NωN RN–s
0

N – s

) p∗(s)–q
p∗(s)

,
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where ωN = 2π
N
2

NΓ ( N
2 )

is the volume of the unit ball in RN , we have

(∫

Ω

|u|p∗(s)

|x|s
) q

p∗(s) ≤ A
– q

p
μ,s ‖u‖q

μ.

Thus combining with (4), we get that

J(u) ≥ p – b
p(N – b)

‖u‖p
μ – λ

p∗(b) – q
qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s ‖u‖q

μ. (5)

Since 0 ≤ b, s < p and 1 ≤ q < p, J(u) is coercive and bounded below on Nλ. �

Define φλ : W 1,p
0 (Ω) → R by φλ(u) = 〈J ′(u), u〉, that is,

φλ(u) = ‖u‖p
μ –

∫

Ω

|u|p∗(a)

|x|a –
∫

Ω

|u|p∗(b)

|x – x0|b – λ

∫

Ω

|u|q
|x|s .

Note that φλ is of class C1 with

〈
φ′

λ(u), u
〉

= p‖u‖p
μ – p∗(a)

∫

Ω

|u|p∗(a)

|x|a – p∗(b)
∫

Ω

|u|p∗(b)

|x – x0|b – λq
∫

Ω

|u|q
|x|s . (6)

Furthermore, if u ∈ Nλ, then from (3) and (6), we have

〈
φ′

λ(u), u
〉

= p‖u‖p
μ – p∗(a)

∫

Ω

|u|p∗(a)

|x|a – p∗(b)
∫

Ω

|u|p∗(b)

|x – x0|b

– q
(

‖u‖p
μ –

∫

Ω

|u|p∗(a)

|x|a –
∫

Ω

|u|p∗(b)

|x – x0|b
)

= (p – q)‖u‖p
μ –

(
p∗(a) – q

)
∫

Ω

|u|p∗(a)

|x|a (7)

–
(
p∗(b) – q

)
∫

Ω

|u|p∗(b)

|x – x0|b (8)

and

〈
φ′

λ(u), u
〉

= p‖u‖p
μ – p∗(a)

∫

Ω

|u|p∗(a)

|x|a – λq
∫

Ω

|u|q
|x|s

– p∗(b)
(

‖u‖p
μ –

∫

Ω

|u|p∗(a)

|x|a – λ

∫

Ω

|u|q
|x|s

)

=
(
p – p∗(b)

)‖u‖p
μ –

(
p∗(a) – p∗(b)

)
∫

Ω

|u|p∗(a)

|x|a (9)

– λ
(
q – p∗(b)

)
∫

Ω

|u|q
|x|s . (10)
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Now we split Nλ into three sets:

N+
λ =

{
u ∈ Nλ :

〈
φ′

λ(u), u
〉

> 0
}

,

N0
λ =

{
u ∈ Nλ :

〈
φ′

λ(u), u
〉

= 0
}

,

N–
λ =

{
u ∈ Nλ :

〈
φ′

λ(u), u
〉

< 0
}

.

The following result shows that minimizers on Nλ are the usual critical points for J(u).

Lemma 2.2 Suppose that u0 is a local minimizer of J(u) on Nλ and u0 /∈ N0
λ , then J ′(u0) = 0

in (W 1,p
0 (Ω))–1.

Proof It is easy to see that there exists a neighborhood U of u0 in W 1,p
0 (Ω) such that

J(u0) = min
u∈U∩Nλ

J(u) = min
u∈U\{0},φλ(u)=0

J(u).

Furthermore, by the Lagrange Multipliers Theorem, there exists ρ ∈ R such that J ′(u0) =
ρφλ(u0). Then, since u0 ∈ Nλ, we get

0 =
〈
J ′(u0), u0

〉
= ρ

〈
φ′

λ(u0), u0
〉
.

Now u0 /∈ N0
λ , thus ρ = 0, and consequently J ′(u0) = 0 in (W 1,p

0 (Ω))–1. �

Motivated by the above result, we will get conditions for N0
λ = ∅.

Lemma 2.3 If λ ∈ (0,Λ0), then N0
λ = ∅, where Λ0 is given in the introduction.

Proof We argue by contradiction. Suppose that there exists a λ ∈ (0,Λ0) such that N0
λ �= ∅,

then from (9),

0 ≤ ‖u‖p
μ

=
p∗(a) – p∗(b)

p – p∗(b)

∫

Ω

|u|p∗(a)

|x|a + λ
q – p∗(b)
p – p∗(b)

∫

Ω

|u|q
|x|s

≤ λ
q – p∗(b)
p – p∗(b)

∫

Ω

|u|q
|x|s

≤ λ
q – p∗(b)
p – p∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s ‖u‖q

μ,

which implies

‖u‖μ ≤
(

λ
q – p∗(b)
p – p∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

) 1
p–q

. (11)

Again by using (7), Hölder and Sobolev–Hardy inequalities, we have

0 ≤ ‖u‖p
μ

=
p∗(a) – q

p – q

∫

Ω

|u|p∗(a)

|x|a +
p∗(b) – q

p – q

∫

Ω

|u|p∗(b)

|x – x0|b
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≤ p∗(a) – q
p – q

‖u‖p∗(a)
μ

A
p∗(a)

p
μ,a

+
p∗(b) – q

p – q
βp∗(b)‖u‖p∗(b)

μ

A
p∗(b)

p
μ,b

≤ 2 max

{
p∗(a) – q

p – q
‖u‖p∗(a)

μ

A
p∗(a)

p
μ,a

,
p∗(b) – q

p – q
βp∗(b)‖u‖p∗(b)

μ

A
p∗(b)

p
μ,b

}

.

Now we distinguish two cases:

Case 1. p∗(a)–q
p–q

‖u‖p∗(a)
μ

A
p∗(a)

p
μ,a

≤ p∗(b)–q
p–q

βp∗(b)‖u‖p∗(b)
μ

A
p∗(b)

p
μ,b

.

It is easy to calculate that

‖u‖μ ≥
(

p – q
2βp∗(b)(p∗(b) – q)

A
p∗(b)

p
μ,b

) 1
p∗(b)–p

.

Combining with (11), we conclude that

λ ≥
(

p – q
2βp∗(b)(p∗(b) – q)

) p–q
p∗(b)–p p – p∗(b)

q – p∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
–p∗(s)

A
q
p
μ,sA

(N–b)(p–q)
p(p–b)

μ,b .

Case 2. p∗(a)–q
p–q

‖u‖p∗(a)
μ

A
p∗(a)

p
μ,a

> p∗(b)–q
p–q

βp∗(b)‖u‖p∗(b)
μ

A
p∗(b)

p
μ,b

.

As in Case 1, one obtains that

λ >
(

p – q
2(p∗(a) – q)

) p–q
p∗(a)–p p – p∗(b)

q – p∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
–p∗(s)

A
q
p
μ,sA

(N–a)(p–q)
p(p–a)

μ,a .

Hence λ ≥ Λ0, which contradicts λ ∈ (0,Λ0). Thus N0
λ = ∅. �

Lemma 2.4 If λ ∈ (0,Λ0), then for each u ∈ W 1,p
0 (Ω)\{0}, the set {τu : τ > 0} intersects Nλ

exactly twice. More specifically, there exist a unique τ– = τ–(u) > 0 such that τ–u ∈ N–
λ and

a unique τ+ = τ+(u) > 0 such that τ+u ∈ N+
λ . Moreover, τ+ < τmax < τ– and

J
(
τ+u

)
= inf

0≤τ≤τmax
J(τu), J

(
τ–u

)
= sup

τ≥τmax

J(τu).

Proof The proof is similar to that of Lemma 2.7 in [11], and we omit it here. �

From Lemma 2.3 we obtain that Nλ = N+
λ ∪ N–

λ for all λ ∈ (0,Λ0). Furthermore, by
Lemma 2.4 it follows that N+

λ and N–
λ are nonempty and, by Lemma 2.1, we may define

αλ = inf
u∈Nλ

J(u), α+
λ = inf

u∈N+
λ

J(u), α–
λ = inf

u∈N–
λ

J(u).

Lemma 2.5
(i) If λ ∈ (0,Λ0), then we have αλ ≤ α+

λ < 0.
(ii) If λ ∈ (0, q

pΛ0), then there exists some positive constant d0 such that α–
λ > d0.

In particular, for each λ ∈ (0, q
pΛ0), we have that α+

λ < 0 < α–
λ .
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Proof (i) It is enough to prove that there exists c > 0 such that α+
λ < –c < 0. Let u ∈ N+

λ .
Then from (7), we have

‖u‖p
μ >

p∗(a) – q
p – q

∫

Ω

|u|p∗(a)

|x|a +
p∗(b) – q

p – q

∫

Ω

|u|p∗(b)

|x – x0|b .

Therefore for u ∈ N+
λ , we get

J(u) =
(

1
p

–
1
q

)

‖u‖p
μ –

(
1

p∗(a)
–

1
q

)∫

Ω

|u|p∗(a)

|x|a –
(

1
p∗(b)

–
1
q

)∫

Ω

|u|p∗(b)

|x – x0|b

<
{(

1
p

–
1
q

)
p∗(a) – q

p – q
–

(
1

p∗(a)
–

1
q

)}∫

Ω

|u|p∗(a)

|x|a

+
{(

1
p

–
1
q

)
p∗(b) – q

p – q
–

(
1

p∗(b)
–

1
q

)}∫

Ω

|u|p∗(b)

|x – x0|b

=
(p∗(a) – q)(p – p∗(a))

pqp∗(a)

∫

Ω

|u|p∗(a)

|x|a +
(p∗(b) – q)(p – p∗(b))

pqp∗(b)

∫

Ω

|u|p∗(b)

|x – x0|b
< 0,

where q < p < p∗(b) ≤ p∗(a). Therefore, from the definition of αλ and α+
λ , we can deduce

that αλ ≤ α+
λ < 0.

(ii) Let u ∈ N–
λ . By (7),

‖u‖p
μ <

p∗(a) – q
p – q

∫

Ω

|u|p∗(a)

|x|a +
p∗(b) – q

p – q

∫

Ω

|u|p∗(b)

|x – x0|b .

Thus from the Sobolev–Hardy inequality, we get

‖u‖p
μ <

p∗(a) – q
p – q

A
– p∗(a)

p
μ,a ‖u‖p∗(a)

μ +
p∗(b) – q

p – q
A

– p∗(b)
p

μ,b βp∗(b)‖u‖p∗(b)
μ

≤ 2 max

{
p∗(a) – q

p – q
A

– p∗(a)
p

μ,a ‖u‖p∗(a)
μ ,

p∗(b) – q
p – q

A
– p∗(b)

p
μ,b βp∗(b)‖u‖p∗(b)

μ

}

.

Case 1. p∗(a)–q
p–q A

– p∗(a)
p

μ,a ‖u‖p∗(a)
μ ≤ p∗(b)–q

p–q A
– p∗(b)

p
μ,b βp∗(b)‖u‖p∗(b)

μ .
It is easy to calculate that for all u ∈ N–

λ ,

‖u‖μ ≥
(

p – q
2βp∗(b)(p∗(b) – q)

A
p∗(b)

p
μ,b

) 1
p∗(b)–p

. (12)

From (5) and (12), we obtain

J(u) ≥ p – b
p(N – b)

‖u‖p
μ – λ

p∗(b) – q
qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s ‖u‖q

μ

≥
(

p – q
2βp∗(b)(p∗(b) – q)

A
p∗(b)

p
μ,b

) q
p∗(b)–p

×
{

p – b
p(N – b)

(
p – q

2βp∗(b)(p∗(b) – q)
A

p∗(b)
p

μ,b

) p–q
p∗(b)–p
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– λ
p∗(b) – q

qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

}

=
(

p – q
2βp∗(b)(p∗(b) – q)

A
p∗(b)

p
μ,b

) q
p∗(b)–p p∗(b) – q

qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

×
{

p – b
p(N – b)

(
p – q

2βp∗(b)(p∗(b) – q)
A

p∗(b)
p

μ,b

) p–q
p∗(b)–p qp∗(b)

p∗(b) – q

×
(

NωN RN–s
0

N – s

)– p∗(s)–q
p∗(s)

A
q
p
μ,s – λ

}

≥
(

q
p
Λ0 – λ

)(
p – q

2βp∗(b)(p∗(b) – q)
A

p∗(b)
p

μ,b

) q
p∗(b)–p p∗(b) – q

qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

> 0.

Case 2. p∗(a)–q
p–q A

– p∗(a)
p

μ,a ‖u‖p∗(a)
μ > p∗(b)–q

p–q A
– p∗(b)

p
μ,b ‖u‖p∗(b)

μ .
It is easy to calculate that for all u ∈ N–

λ

‖u‖μ ≥
(

p – q
2(p∗(a) – q)

A
p∗(a)

p
μ,a

) 1
p∗(a)–p

.

With (5), we deduce that

J(u) ≥
(

p – q
2(p∗(a) – q)

A
p∗(a)

p
μ,a

) q
p∗(a)–p

×
{

p – b
p(N – b)

(
p – q

2(p∗(a) – q)
A

p∗(a)
p

μ,a

) p–q
p∗(a)–p

– λ
p∗(b) – q

qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

}

=
(

p – q
2(p∗(b) – q)

A
p∗(a)

p
μ,a

) q
p∗(a)–p p∗(b) – q

qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

×
{

p – b
p(N – b)

(
p – q

2(p∗(a) – q)
A

p∗(a)
p

μ,a

) p–q
p∗(a)–p

× qp∗(b)
p∗(b) – q

(
NωN RN–s

0
N – s

)– p∗(s)–q
p∗(s)

A
q
p
μ,s – λ

}

≥
(

q
p
Λ0 – λ

)(
p – q

2(p∗(b) – q)
A

p∗(a)
p

μ,a

) q
p∗(a)–p p∗(b) – q

qp∗(b)

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s

> 0.

So if λ ∈ (0, q
pΛ0), then J(u) > d0 for all u ∈ N–

λ for some positive constant d0. �
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Remark 1 If λ ∈ (0, q
pΛ0), then by Lemmas 2.4 and 2.5, for each u ∈ W 1,p

0 (Ω)\{0}, we can
easily deduce that

τ–u ∈ N–
λ and J

(
τ–u

)
= sup

τ≥0
J(τu) ≥ α–

λ > 0.

3 Proof of the main result
Lemma 3.1

(i) If λ ∈ (0,Λ0), then J(u) has a (PS)αλ
sequence {un} ⊂ Nλ.

(ii) If λ ∈ (0, q
pΛ0), then J(u) has a (PS)α–

λ
sequence {un} ⊂ N–

λ .

Proof The proof is similar to that of Proposition 3.3 in [11], and we omit it here. �

Now we use the Ekeland’s variational principle [4] to get the following results.

Theorem 3.2 If λ ∈ (0,Λ0), then there exists uλ ∈ N+
λ such that

(i) J(uλ) = αλ = α+
λ ;

(ii) uλ is a positive solution for problem (1);
(iii) ‖uλ‖μ → 0 as λ → 0+.

Proof By Lemma 3.1(i), there exists a minimizing sequence {un} ⊂ Nλ such that

J(un) = αλ + o(1) and J ′(un) = o(1) in
(
W 1,p

0 (Ω)
)–1. (13)

Since J(u) is coercive on Nλ, we obtain that {un} is bounded in W 1,p
0 (Ω). Thus, passing to

a subsequence if necessary, there exists uλ ∈ W 1,p
0 (Ω) such that as n → ∞,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un ⇀ uλ weakly in W 1,p
0 (Ω),

un ⇀ uλ weakly in Lp∗(t)(Ω , |x|–t) for 0 ≤ t < p,

un → uλ strongly in Lq(Ω , |x|–s) for 1 ≤ q < p∗(s),

un → uλ a.e. in Ω .

(14)

From (13) and (14), it is easy to see that uλ is a solution of (1). Furthermore, from un ∈ Nλ

and (4), we deduce that

λ

∫

Ω

|un|q
|x|s ≥

(
1
p

–
1

p∗(b)

)
qp∗(b)

p∗(b) – q
‖un‖p

μ –
qp∗(b)

p∗(b) – q
J(un)

=
q(p∗(b) – p)
p(p∗(b) – q)

‖un‖p
μ –

qp∗(b)
p∗(b) – q

J(un)

≥ –
qp∗(b)

p∗(b) – q
J(un). (15)

Let n → ∞ in (15). Then from (13)–(14) and since αλ < 0 by Lemma 2.5(i), we get

λ

∫

Ω

|uλ|q
|x|s ≥ –

qp∗(b)
p∗(b) – q

αλ > 0.

Thus uλ �= 0. Since J ′(uλ) = 0, it follows that uλ ∈ Nλ and, in particular, J(uλ) ≥ αλ.
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Next, we will show, up to a subsequence, that un → uλ strongly in W 1,p
0 (Ω) and

J(uλ) = αλ. From the fact un, uλ ∈ Nλ, (4) and Fatou’s Lemma, it follows that

αλ ≤ J(uλ)

=
1
p
‖uλ‖p

μ –
1

p∗(a)

∫

Ω

|uλ|p∗(a)

|x|a –
1

p∗(b)

∫

Ω

|uλ|p∗(b)

|x – x0|b –
λ

q

∫

Ω

|uλ|q
|x|s

=
1
p

(∫

Ω

|uλ|p∗(a)

|x|a +
∫

Ω

|uλ|p∗(b)

|x – x0|b +
∫

Ω

|uλ|q
|x|s

)

–
1

p∗(a)

∫

Ω

|uλ|p∗(a)

|x|a

–
1

p∗(b)

∫

Ω

|uλ|p∗(b)

|x – x0|b –
λ

q

∫

Ω

|uλ|q
|x|s

=
(

1
p

–
1

p∗(a)

)∫

Ω

|uλ|p∗(a)

|x|a +
(

1
p

–
1

p∗(b)

)∫

Ω

|uλ|p∗(b)

|x – x0|b

+ λ

(
1
p

–
1
q

)∫

Ω

|uλ|q
|x|s

≤ lim inf
n→∞

{(
1
p

–
1

p∗(a)

)∫

Ω

|un|p∗(a)

|x|a +
(

1
p

–
1

p∗(b)

)∫

Ω

|un|p∗(b)

|x – x0|b

+ λ

(
1
p

–
1
q

)∫

Ω

|un|q
|x|s

}

= lim inf
n→∞ J(un)

= αλ,

which implies that J(uλ) = αλ and limn→∞ ‖un‖p
μ = ‖uλ‖p

μ. Standard argument shows that
un → uλ strongly in W 1,p

0 (Ω). Moreover, uλ ∈ N+
λ . Otherwise, if uλ ∈ N–

λ , from Lemma 2.4
there exist unique τ+

λ and τ–
λ such that τ+

λ uλ ∈ N+
λ , τ–

λ uλ ∈ N–
λ and τ+

λ < τ–
λ = 1. Since

d
dτ

J
(
τ+
λ uλ

)
= 0 and

d2

dτ 2 J
(
τ+
λ uλ

)
> 0,

there exists τ ∈ (τ+
λ , τ–

λ ) such that J(τ+
λ uλ) < J(τ–

λ uλ). By Lemma 2.4, we get that

J
(
τ+
λ uλ

)
< J(τuλ) ≤ J

(
τ–
λ uλ

)
= J(uλ),

which is a contradiction. Since J(uλ) = J(|uλ|) and |uλ| ∈ N+
λ , by Lemma 2.2, we may assume

that uλ is a nontrivial nonnegative solution of (1). From the strong maximum principle
[19], it follows that uλ > 0 in Ω . Finally, by (9), Hölder and Sobolev–Hardy inequalities,
we obtain

0 <
〈
φ′

λ(uλ), uλ

〉

=
(
p – p∗(b)

)‖uλ‖p
μ –

(
p∗(a) – p∗(b)

)
∫

Ω

|uλ|p∗(a)

|x|a – λ
(
q – p∗(b)

)
∫

Ω

|uλ|q
|x|s

≤ (
p – p∗(b)

)‖uλ‖p
μ – λ

(
q – p∗(b)

)
∫

Ω

|uλ|q
|x|s .
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Thus

‖uλ‖p–q
μ < λ

p∗(b) – q
p∗(b) – p

∫

Ω

|uλ|q
|x|s < λ

p∗(b) – q
p∗(b) – p

(
NωN RN–s

0
N – s

) p∗(s)–q
p∗(s)

A
– q

p
μ,s ,

which implies that ‖uλ‖μ → 0 as λ → 0+. �

Next we will establish the existence of the second positive solution of (1) by proving that
J(u) satisfies the (PS)αλ

condition.

Lemma 3.3 Let {un} be a bounded sequence in W 1,p
0 (Ω). If {un} is a (PS)c sequence for J(u)

with c ∈ (0,Λ1) where Λ1 is defined in the introduction. Then there exists a subsequence of
{un} converging weakly to a nonzero solution solution of (1).

Proof The proof is similar to that of Corollary 4.3 in [15], and the details are omitted. �

Lemma 3.4 ([14]) Assume 1 < p < N , 0 ≤ a < p and 0 ≤ μ < μ. Then the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu – μ
|u|p–2u

|x|p = |u|p∗(a)–2u
|x|a in RN\{0},

u > 0 in RN\{0},
u ∈ D1,p(RN )

(16)

has radially symmetric ground states

V ε(x) = ε
– N–p

p Up,μ

(
x
ε

)

= ε
– N–p

p Up,μ

( |x|
ε

)

, ∀ε > 0,

satisfying

∫

RN

(
∣
∣∇V ε(x)

∣
∣p – μ

|V ε(x)|p
|x|p

)

=
∫

RN

|V ε(x)|p∗(a)

|x|a = (Aμ,a)
N–a
p–a ,

where Up,μ(x) = Up,μ(|x|) is the unique radial solution for problem (16) satisfying

Up,μ(1) =
(

(N – a)(μ – μ)
N – p

) 1
p∗(a)–p

and D1,p(RN ) = {u ∈ Lp∗ (RN ) : ∇u ∈ Lp(RN )}. Moreover, Up,μ(x) also has the following prop-
erties:

lim
r→0

ra(μ)Up,μ(r) = c1 > 0,

lim
r→+∞ rb(μ)Up,μ(r) = c2 > 0,

lim
r→0

ra(μ)+1U ′
p,μ(r) = c1a(μ) ≥ 0,

lim
r→+∞ rb(μ)+1U ′

p,μ(r) = c2b(μ) > 0,
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where c1 and c2 are positive constants depending on p and N , a(μ) and b(μ) are the zeros
of the function

f (τ ) = (p – 1)τ p – (N – p)τ p–1 + μ, τ ≥ 0, 0 ≤ μ < μ,

satisfying

0 ≤ a(μ) <
N – p

p
< b(μ) ≤ N – p

p – 1
.

Remark 2 By direct calculation, we deduce that τmin = N–p
p is the only minimum point of

f (τ ). Furthermore, f ′(τ ) < 0 for 0 < τ < τmin and f ′(τ ) > 0 for τ > τmin. Thus, we infer that

τmin <
N
p

≤ b(μ) ⇐⇒ f
(

N
p

)

≤ f
(
b(μ)

)
= 0

⇐⇒ 0 < μ ≤ Np–1(N – p2)
pp . (17)

Furthermore, by (17) we know that b(μ) > N
p implies N > p2.

Lemma 3.5 ([7]) Suppose 1 < p < N , 0 ≤ b < p. Then the following holds:
(i) A0,b is independent of Ω ;

(ii) A0,b is attained when Ω = RN by the functions

yε(x) =
(

ε(N – b)
(

N – p
p – 1

)p–1) N–p
p(p–b) (

ε + |x – x0|
p–b
p–1

) p–N
p–b

for some ε > 0. Moreover, the functions yε(x) solve the equation

–�pu =
|u|p∗(b)–2u
|x – x0|b in RN\{x0}

and satisfy

∫

RN
|∇yε|p =

∫

RN

|yε|p∗(b)

|x – x0|b = (A0,b)
N–b
p–b .

Lemma 3.6 If 0 ≤ μ < μ, 0 ≤ a, b < p and 1 ≤ q < p, then for any λ > 0, there exists vλ ∈
W 1,p

0 (Ω) such that

sup
τ≥0

J(τvλ) < Λ1. (18)

In particular, α–
λ < Λ1 for all λ ∈ (0,Λ0), where λ1 is defined in the introduction.

Proof Now we distinguish two cases, that is, p–a
p(N–a) A

N–a
p–a
μ,a ≤ p–b

p(N–b) A
N–b
p–b

0,b and p–a
p(N–a) A

N–a
p–a
μ,a >

p–b
p(N–b) A

N–b
p–b

0,b .

Case 1. p–a
p(N–a) A

N–a
p–a
μ,a ≤ p–b

p(N–b) A
N–b
p–b

0,b .
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Assume ρ > 0 is small enough such that B(0,ρ) ⊂ Ω , ϕ(x) ∈ C∞
0 (Ω), 0 ≤ ϕ(x) ≤ 1,

ϕ(x) = 1 for |x| ≤ ρ

2 , ϕ(x) = 0 for |x| ≥ ρ . Let

uε(x) = ϕ(x)V ε(x), ε > 0.

The following estimates are from [10] and [14]:

‖uε‖p
μ = (Aμ,a)

N–a
p–a + O

(
εb(μ)p+p–N)

, (19)
∫

Ω

|uε|p∗(a)

|x|a = (Aμ,a)
N–a
p–a + O

(
εb(μ)p∗(a)+a–N)

, (20)

∫

Ω

|uε|q
|x|s ≥

⎧
⎪⎪⎨

⎪⎪⎩

cεN–s+(1– N
p )q, q > N–s

b(μ) ,

cεN–s+(1– N
p )q| ln ε|, q = N–s

b(μ) ,

cεq(b(μ)+1– N
p ), q < N–s

b(μ) .

(21)

Now we consider the following functions:

g(τ ) = J(τuε)

=
τ p

p
‖uε‖p

μ –
τ p∗(a)

p∗(a)

∫

Ω

|uε|p∗(a)

|x|a –
τ p∗(b)

p∗(b)

∫

Ω

|uε|p∗(b)

|x – x0|b – λ
τ q

q

∫

Ω

|uε|q
|x|s ,

and

g(τ ) =
τ p

p
‖uε‖p

μ –
τ p∗(a)

p∗(a)

∫

Ω

|uε|p∗(a)

|x|a .

Using the definitions of g and uε , we get

g(τ ) = J(τuε) ≤ τ p

p
‖uε‖p

μ, for all τ ≥ 0 and λ > 0.

Combining this with (19) and letting ε ∈ (0, 1), there exists τ0 ∈ (0, 1) independent of ε

such that

sup
0≤τ≤τ0

g(τ ) <
p – a

p(N – a)
A

N–a
p–a
μ,a , for all λ > 0 and all ε ∈ (0, 1). (22)

On the other hand, by the fact that

max
τ≥0

(
τ p

p
B1 –

τ p∗(a)

p∗(a)
B2

)

=
p – a

p(N – a)
B1

N–a
p–a B2

– N–p
p–a , B1 > 0, B2 > 0, (23)

and from (19) and (20), we obtain that

max
τ≥0

g(τ ) =
p – a

p(N – a)
‖∇uε‖

p(N–a)
p–a

μ

(∫

Ω

|uε|p∗(a)

|x|a
)– N–p

p–a

=
p – a

p(N – a)
(
(Aμ,a)

N–a
p–a + O

(
εb(μ)p+p–N)) N–a

p–a
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× (
(Aμ,a)

N–a
p–a + O

(
εb(μ)p∗(a)+a–N))– N–p

p–a

=
p – a

p(N – a)
A

N–a
p–a
μ,a + O

(
εb(μ)p+p–N)

. (24)

Hence as λ > 0, 1 ≤ q < p, by (24) we have that

sup
τ≥τ0

g(τ ) ≤ sup
τ≥τ0

(

g(τ ) – λ
τ q

q

∫

Ω

|uε|q
|x|s

)

≤ p – a
p(N – a)

A
N–a
p–a
μ,a + O

(
εb(μ)p+p–N)

– λ
τ

q
0
q

∫

Ω

|uε|q
|x|s . (25)

(i) If 1 ≤ q < N–s
b(μ) , then by (21), we obtain that

∫

Ω

|uε|q
|x|s ≥ Cε

q(b(μ)+1– N
p )

and since b(μ) > N–p
p , q < p, we obtain

b(μ)p + p – N > q
(

b(μ) + 1 –
N
p

)

.

Combining this with (22) and (25), for any λ > 0, we can choose ελ small enough such that

sup
τ≥0

g(τ ) = sup
τ≥0

J(τuελ
) <

p – a
p(N – a)

A
N–a
p–a
μ,a . (26)

(ii) If N–s
b(μ) ≤ q < p, then by (21) and b(μ) > N–p

p , we obtain

∫

Ω

|uε|q
|x|s ≥

⎧
⎨

⎩

cεN–s+(1– N
p )q, q > N–s

b(μ) ,

cεN–s+(1– N
p )q| ln ε|, q = N–s

b(μ) ,

and b(μ)p + p – N > N – s + (1 – N
p )q. Combining this with (22) and (25), for any λ > 0, we

can choose ελ small enough such that

sup
τ≥0

J(τuελ
) <

p – a
p(N – a)

A
N–a
p–a
μ,a . (27)

From (26) and (27), we obtain the result in Case 1 by taking vλ = uελ
.

Case 2. p–a
p(N–a) A

N–a
p–a
μ,a > p–b

p(N–b) A
N–b
p–b

0,b .
Let

Cε =
(

ε(N – b)
(

N – p
p – 1

)p–1) N–p
p(p–b)

,

Uε(x) =
yε(x)
Cε

.



Li Boundary Value Problems        (2019) 2019:136 Page 16 of 19

Consider ϕ(x) ∈ C∞
0 (Ω), 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 for |x – x0| ≤ R

2 , ϕ(x) = 0 for |x – x0| ≥ R,
where B(x0, R) ⊂ Ω . Denote

vε(x) = ϕ(x)Uε(x), for all ε > 0,

wε(x) =
vε(x)

(
∫

Ω

|vε |p∗(b)

|x–x0|b )
1

p∗(b)
,

such that

∫

Ω

|wε|p∗(b)

|x – x0|b = 1. (28)

Then we can obtain the following results by the methods used in [7]:

∫

Ω

|∇wε|p = A0,b + O
(
ε

N–p
p–b

)
,

∫

Ω

|wε|q ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cε
q(N–p)
p(p–b) , q < N(p–1)

N–p ,

cε
q(N–p)
p(p–b) | ln ε|, q = N(p–1)

N–p ,

cε
(p–1)(pN–q(N–p))

p(p–b) , q > N(p–1)
N–p .

(29)

Observing that wε concentrates on x = x0 when ε > 0 is small enough, we can easily esti-
mate

∫

Ω

|wε|q
|x|s ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cε
q(N–p)
p(p–b) , q < N(p–1)

N–p ,

cε
q(N–p)
p(p–b) | ln ε|, q = N(p–1)

N–p ,

cε
(p–1)(pN–q(N–p))

p(p–b) , q > N(p–1)
N–p .

(30)

Especially, when q = p, we have

∫

Ω

|wε|p
|x|p ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cε
N–p
p–b , p2 > N ,

cε
N–p
p–b | ln ε|, p2 = N ,

cε
p(p–1)

p–b , p2 < N .

(31)

Now we consider the following function:

h(τ ) = J(τwε)

=
τ p

p

∫

Ω

(

|∇wε|p – μ
|wε|p
|x|p

)

–
τ p∗(a)

p∗(a)

∫

Ω

|wε|p∗(a)

|x|a

–
τ p∗(b)

p∗(b)

∫

Ω

|wε|p∗(b)

|x – x0|b – λ
τ q

q

∫

Ω

|wε|q
|x|s .

Since limτ→+∞ h(τ ) = –∞ and limτ→0+ h(τ ) < 0, combining this with Remark 1, we get
that supτ≥0 h(τ ) is attained for some 0 < τ0 < +∞. Together with (23) and (28)–(31), we
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calculate that

h(τ ) ≤ h(τ0)

≤ τ
p
0
p

∫

Ω

(

|∇wε|p – μ
|wε|p
|x|p

)

–
τ

p∗(b)
0

p∗(b)
– λ

τ
q
0
q

∫

Ω

|wε|q
|x|s

≤ p – b
p(N – b)

(
A0,b + O

(
ε

N–p
p–b

)) N–b
p–b –

τ
p
0
p

∫

Ω

μ
|wε|p
|x|p – λ

τ
q
0
q

∫

Ω

|wε|q
|x|s

≤ p – b
p(N – b)

A
N–b
p–b

0,b + O
(
ε

N–p
p–b

)
–

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cε
N–p
p–b , p2 > N ,

cε
N–p
p–b | ln ε|, p2 = N ,

cε
p(p–1)

p–b , p2 < N ,

–

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cε
q(N–p)
p(p–b) , q < N(p–1)

N–p ,

cε
q(N–p)
p(p–b) | ln ε|, q = N(p–1)

N–p ,

cε
(p–1)(pN–q(N–p))

p(p–b) , q > N(p–1)
N–p .

(32)

(i) If p2 ≥ N , then we have that N–p
p–b > q(N–b)

p(p–b) . By (32), for any λ > 0, we can choose ελ small
enough such that

h(τ0) = sup
τ≥0

J(τwελ
) <

p – b
p(N – b)

A
N–b
p–b

0,b – cε
q(N–p)
p(p–b) <

p – b
p(N – b)

A
N–b
p–b

0,b .

(ii) If p2 < N , then we have that N–p
p–b > p(p–1)

p–b . By (32), for any λ > 0, we can choose ελ

small enough such that

h(τ0) = sup
τ≥0

J(τwελ
) <

p – b
p(N – b)

A
N–b
p–b

0,b – cε
p(p–1)

p–b <
p – b

p(N – b)
A

N–b
p–b

0,b .

From (i) and (ii), we obtain the result in Case 2 by taking vλ = wελ
.

From Lemma 2.4, the definition of α–
λ and (18), for any λ ∈ (0,Λ0), we obtain that there

exists τ–
λ > 0 such that τ–

λ vλ ∈ N–
λ and

α–
λ ≤ J

(
τ–
λ vλ

) ≤ sup
τ≥0

J(τvλ) < Λ1.

The proof is thus complete. �

Now we establish the existence of a local minimum of J(u) on N–
λ .

Theorem 3.7 Assume that N ≥ 3, 0 ≤ μ < μ, 0 ≤ a, b < p and 1 ≤ q < p. If λ ∈ (0, q
pΛ0),

then there exists Uλ ∈ N–
λ such that

(i) J(Uλ) = α–
λ ;

(ii) Uλ is a positive solution of (1).

Proof If λ ∈ (0, q
pΛ0), then by Lemmas 2.5(ii), 3.1(ii), and 3.6, there exists a (PS)α–

λ
sequence

{un} ⊂ N–
λ in W 1,p

0 (Ω) for J(u) with α–
λ ∈ (0,Λ1). Since J(u) is coercive on Nλ, we get that
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{un} is bounded in W 1,p
0 (Ω). From Lemma 3.3, there exists a subsequence still denoted by

{un} and a nontrivial solution Uλ ∈ W 1,p
0 (Ω) of (1) such that un ⇀ Uλ weakly in W 1,p

0 (Ω).
First we prove that Uλ ∈ N–

λ . Arguing by contradiction, we assume Uλ ∈ N+
λ . Since N–

λ is
closed in W 1,p

0 (Ω), we have ‖uλ‖μ < lim infn→∞ ‖un‖μ. Thus by Lemma 2.4, there exists a
unique τ–

λ such that τ–
λ Uλ ∈ N–

λ . From Remark 1, un ∈ N–
λ , ‖Uλ‖μ < lim infn→∞ ‖un‖μ, and

(4), we can deduce that

α–
λ ≤ J

(
τ–Uλ

)
< lim

n→∞ J
(
τ–
λ un

) ≤ lim
n→∞ J(un) = α–

λ .

This is a contradiction. Thus Uλ ∈ N–
λ .

Next, by the same argument as that in Theorem 3.2, we get that un → Uλ strongly in
W 1,p

0 (Ω) and J(Uλ) = α–
λ > 0 for all λ ∈ (0, q

pΛ0). Since J(Uλ) = J(|Uλ|) and |Uλ| ∈ N–
λ , by

Lemma 2.2 we may assume that Uλ is a nontrivial nonnegative solution of (1). Finally, by
the maximum principle, we obtain that Uλ is a positive solution of (1). �

The proof of Theorem 1.1 Now we complete the proof of Theorem 1.1. Part (i) of Theo-
rem 1.1 immediately follows from Theorem 3.2. When 0 < λ < q

pΛ0 < Λ0, by Theorems 3.2
and 3.7, we obtain that (1) has at least two positive solutions uλ and Uλ such that uλ ∈ N+

λ ,
Uλ ∈ N–

λ . Since N+
λ ∩ N–

λ = ∅, this implies that uλ and Uλ are distinct. This completes the
proof of Theorem 1.1. �
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