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Abstract
By means of a Laplace transform and its inverse transform, we obtain a correct
equivalent integral equation for some kind of nonlocal abstract differential equations
(fractional order) on the right half-axis. Based on it, the existence result is established
by Knaster’s theorem, and the uniqueness of the mild solution is obtained using the
Banach contraction principle.
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1 Introduction
Today, fractional order calculus has a great many of uses in engineering, science, econ-
omy, biology, physics and other scientific disciplines (see [1–3]). Numerous phenomena
and processes in the real world are described by differential equations of fractional order.
Given their wide applications, there are numerous scholars focusing on the study of the
differential equations of fractional order recently. To acquire more general knowledge of
fractional order calculus and equations with fractional derivatives, the reader may refer to
[4–28].

Now, nonlocal evolution equations of fractional order have become one of the hot re-
search topics in the field of differential equations with fractional derivatives, which play a
role in modeling physics phenomena. For the first time, the existence of mild solutions for
the nonlocal problems was discussed in [29]. In [30], Byszewski and Lakshmikantham in-
dicated that as regards describing physical phenomena nonlocal conditions could be more
applicable than standard conditions.

In [19], El-Borai obtained the existence results for fractional abstract equations of the
following kind:

⎧
⎨

⎩

dβ z
dβ s = B(s)z(t) + Az(s), s ∈ [0, a],

z(0) = z0,

where 0 < β ≤ 1, a > 0.
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In this paper, the equivalent integral equation in regard to the abstract equations is firstly
described by means of some probability densities using Laplace transform and its inverse
transform. Since then, many researchers have drawn on El-Borai’s results to investigate
fractional evolution equations, such as in [20–28].

To the best of our knowledge, fractional evolution equations have attracted more and
more attention recently [18–28]. For instance, in [20], Zhou investigated a class of nonlocal
evolution equations of fractional order

⎧
⎨

⎩

CDq
0+z(s) = f (s, z(s)) + Az(s), s ∈ (0, a],

z(0) + g(z) = z0,

Zhou and Jiao obtained many good conclusions about the existence and uniqueness of
mild solution for this equation.

Yet despite all that, a fair number of those papers investigating the mild solutions of
evolution equations with fractional derivatives are concerned with bounded intervals, and
conclusions on the right half-axis are still rare.

Motivated by [19, 20, 31], we discuss a class of nonlocal functional differential equations
of fractional order in a Banach space E

⎧
⎨

⎩

CDq
0+u(t) = f (t, u(m(t))) + Au(t), t ∈ (0, +∞),

k(u) + u(0) = u0,
(1.1)

where 0 < q < 1, CDq
0+ denotes the fractional derivative in the Caputo sense, u0 ∈ E,

{T(t)}t≥0 is a C0 semigroup on Banach E and A is the semigroup’s infinitesimal genera-
tor, m ∈ C[0,∞), m(t) ≥ 0 is an increasing function, f : [0, +∞) × E → E, and k : E → E
satisfy certain conditions.

Here, entirely different from those already obtained in the previous literature, we obtain
a correct equivalent integral equation for the main equation. Applying Knaster’s theorem,
the existence of positive mild solutions of the main problem (1.1) is given. Then, employing
the Banach contraction theorem, the uniqueness of the mild solution is given.

The layout of the rest of the article is listed now. In Sect. 2, fractional derivative, frac-
tional integral and several useful preliminaries are introduced. In Sect. 3, our main conclu-
sions are presented by using Knaster’s theorem and Banach contraction theorem, respec-
tively. In Sect. 4, one example is provided to show the application of our main conclusion.

2 Preliminaries
In the following, we assume that E is ordered Banach space. Let P ⊂ E be a cone, which
defines a partial order by y ≤ z if and only if z – y ∈ P on E. We refer the reader to [32, 33]
for more details as regards the cone.

Throughout the paper, we set a normal positive cone P = {z ∈ E | z ≥ θ} with N as its
normal constant. Let

BC(J , E) =
{

v(s) | v(s) is bounded and continuous on J
}

, J = [0, +∞).

Evidently, it is a Banach space equipped with the norm ‖v‖b = supt∈J ‖v(t)‖. Set

PBC =
{

v | v(t) ≥ θ , t ∈ J , v ∈ BC(J , E)
}

.
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Obviously, PBC is a normal cone in BC(J , E) with the normal constant N , the same nor-
mal to the cone P. Meanwhile, an ordered Banach space BC(J , E) is induced by PBC (for
convenience, we also denote the partial order by “≤” both on BC(J , E) and on E without
confusion).

Let S ⊂ E be a subset such that

S = {z ∈ E : y ≤ z,∀y ∈ S}.

The point z∗ ∈ E is called the infimum of S if z∗ ∈ S and for each z ∈ S , z∗ ≤ z.
Similarly, we can define the supremum of S by reversing the inequality in the above

definition.
Next, we present the theorem established by Knaster [34].

Theorem 2.1 ([34]) Let E be a Banach space ordered by partially ordering “�”. Assume
that S ⊂ E is a subset of E, which has properties as follows: (1) Each nonempty subset of
S has a supremum belonging to S ; (2) The infimum of S is in S . Assume that the map
T : S → S is increasing, i.e., y � z implies that Ty � Tz (y, z ∈ S). Then T has a fixed point
in S .

Next, we list two definitions of fractional integral and fractional derivative and one
lemma, which will be used.

Definition 2.1 ([1–3]) The fractional integral of order α > 0 in the sense of Riemann–
Liouville for a function g : (0,∞) →R is defined by

Iα
0+g(t) = D–α

0+ g(t) =
1

Γ (α)

∫ t

0
(t – s)α–1g(s) ds, (2.1)

provided that the integral above is pointwise defined on (0,∞).

Definition 2.2 ([1–3]) The fractional derivative of order α > 0 in the sense of Caputo for
a function g : (0,∞) →R is defined by

CDα
0+g(t) =

1
Γ (n – α)

∫ t

0
(t – s)n–α–1g(n)(s) ds, (2.2)

where n = [α] + 1, provided that the integral above is pointwise defined on (0,∞).

Lemma 2.1 ([1, 3]) Let CDα
0+g(t) ∈ L1(0, +∞), α > 0. Then one has

Iα
0+

CDα
0+g(t) = g(t) + C1 + C2t + · · · + CMtM–1, t > 0, (2.3)

for some constants Ci, i = 1, 2, 3, . . . , M , where M = min{m | m ≥ α, m is a integer}.

Remark 2.1 If the function g appearing in the above lemma and two definitions takes val-
ues in the Banach space E, then the integrals here are all to be taken in the sense of Bochner.
In addition, if the abstract function g is measurable and its norm is integrable in the sense
of Lebesgue, it is Bochner integrable.
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Next, we set out to present a series of concepts and results about the semigroups of
linear operators. The reader can find more details in [35, 36].

Given a strongly continuous semigroup {T(t)}t≥0 (i.e. C0-semigroup), we can define the
infinitesimal generator of {T(t)}t≥0 as

Az = lim
s→0+

T(s)z – z
s

, z ∈ E.

The domain of A is given by

D(A) =
{

z : lim
s→0+

T(s)z – z
s

exists, z ∈ E
}

.

Lemma 2.2 ([35, 36]) Assume that {T(t)}t≥0 is a strongly continuous semigroup, then
‖T(t)‖ ≤ Ceωt , where ω and C ≥ 1 are two constants.

Lemma 2.3 ([35, 36]) Given a strongly continuous semigroup of contractions {T(t)}t≥0

and a linear operator A, we have the following results: A is the infinitesimal generator of
{T(t)}t≥0 if and only if

(1) D(A) = E and A is closed.
(2) (0, +∞) ⊂ ρ(A), and ∀μ > 0, one has

∥
∥R(μ, A)

∥
∥ ≤ 1

μ
,

where ρ(A) is the resolvent set of A, and

R(μ, A)z := (μI – A)–1z =
∫ +∞

0
e–μtT(t)z dt, z ∈ E.

Definition 2.3 ([37]) For a given strongly continuous semigroup {T(t)}t≥0, it is positive
on E, if θ ≤ T(t)z, t ≥ 0, z ∈ E.

Definition 2.4 ([35, 36]) For a given strongly continuous semigroup {T(t)}t≥0, it is uni-
formly exponentially stable under the condition that ω0 < 0, where ω0 denotes the growth
bound of the semigroup, and it is given by

ω0 = inf
{
ω | ∥∥T(t)

∥
∥ ≤ Ceωt , t ≥ 0, C ≥ 1

}
.

By Definition 2.4 and Lemma 2.2, for a uniformly exponentially stable C0-semigroup
{T(t)}t≥0, ‖T(t)‖ ≤ Ceωt , t ≥ 0, C ≥ 1 and ω ∈ (0, |ω0|] (ω0 is the growth bound of the
above semigroup). Next, define a norm on E as follows:

‖z‖ω = sup
s≥0

∥
∥eωsT(s)z

∥
∥.

Obviously, one has ‖z‖ ≤ ‖z‖ω ≤ C‖z‖, which implies that ‖ · ‖ and ‖ · ‖ω are equivalent
norms. Denote by ‖T(t)‖ω the norm of T(t) which is induced by ‖ ·‖ω , then, for each t ≥ 0,
we obtain

∥
∥T(t)

∥
∥

ω
≤ e–ωt . (2.4)
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Meanwhile, it is easy to verify that the norm

‖v‖bω = sup
s∈J

∥
∥v(s)

∥
∥

ω
, v ∈ BC(J , E),

is an equivalent one on BC(J , E). Evidently, if v(t) ≡ v0, t ∈ J , v0 ∈ E, then we have

‖v‖bω = ‖v0‖bω = ‖v‖ω.

Given the stable probability density of one-sided [20, 21, 38]

ψq(θ ) =
1
π

∞∑

k=1

sin(kπq)
Γ (kq + 1)

k!
θ–qk–1, θ ∈ (0, +∞),

where 0 < q < 1. Noting Remark 2.8 in [21], if β ∈ [0, 1], we have

∫ +∞

0
ψq(θ )θ–qβ dθ =

Γ (1 + β)
Γ (1 + qβ)

. (2.5)

From [20, 21, 38], the Laplace transform of ψq(θ ) is

L
[
ψq(θ )

]
=

∫ ∞

0
e–λθψq(θ ) dθ = e–λq

, 0 < q < 1. (2.6)

In the remaining part, we show that the semigroup {T(t)}t≥0 is strongly continuous of
contractions and is uniformly exponentially stable with the growth bound ω0, and ω ∈
(0, |ω0|].

Lemma 2.4 Define an operator

(J h)(t) :=
q

Γ (1 – q)

∫ 1

0

∫ ∞

0
τ–q(1 – τ )q–1 ψq(θ )

θq T
(

tq(1 – τ )q

θq

)

h(s) dθ dτ ,

h ∈ BC(J , E). (2.7)

Thus, J maps BC(J , E) into BC(J , E) and

‖J h‖bω ≤ ‖h‖bω.

In particular, if h(t) ≡ x, t ∈ J , x ∈ E, then

‖J x‖bω ≤ ‖x‖ω .

Proof Since

∥
∥(J h)(t)

∥
∥

ω

≤ q
Γ (1 – q)

∫ 1

0

∫ ∞

0
(1 – τ )q–1τ–q ψq(θ )

θq

∥
∥
∥
∥T

(
tq(1 – τ )q

θq

)

h(s)
∥
∥
∥
∥

ω

dθ dτ
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≤ q
Γ (1 – q)

∫ 1

0

∫ ∞

0
(1 – τ )q–1τ–q ψq(θ )

θq

∥
∥
∥
∥T

(
tq(1 – τ )q

θq

)∥
∥
∥
∥

ω

∥
∥h(s)

∥
∥

ω
dθ dτ

≤ q
Γ (1 – q)

∫ 1

0

∫ ∞

0
(1 – τ )q–1τ–q ψq(θ )

θq e–ω( tq(1–τ )q
θq )‖h‖bω dθ dτ

≤ q
Γ (1 – q)

‖h‖bω

∫ 1

0
(1 – τ )q–1τ–q

(∫ ∞

0

ψq(θ )
θq dθ

)

dτ

≤ ‖h‖bω,

the proof is finished. �

Lemma 2.5 Set

(Kh)(t) =
∫ t

0

∫ ∞

0
q
ψq(θ )

θq (t – s)q–1T
(

(t – s)q

θq

)

h(s) dθ ds, h ∈ BC(J , E).

Thus, K maps BC(J , E) into BC(J , E) and

∥
∥(Kh)(t)

∥
∥

ω
≤ 1

Γ (q + 1)
1
ω

‖h‖bω;
∥
∥(Kh)

∥
∥

bω
≤ 1

Γ (q + 1)
1
ω

‖h‖bω.

Proof Since

(Kh)(t) =
∫ t

0

∫ ∞

0
q
ψq(θ )

θq (t – s)q–1T
(

(t – s)q

θq

)

h(s) dθ ds

=
∫ 1

0

∫ ∞

0
q
ψq(θ )

θq (1 – τ )q–1tqT
(

(1 – τ )qtq

θq

)

h(tτ ) dθ dτ ,

we have

∥
∥(Kh)(t)

∥
∥

ω
≤

∫ 1

0

∫ ∞

0
q
ψq(θ )

θq (1 – τ )q–1tq
∥
∥
∥
∥T

(
(1 – τ )qtq

θq

)∥
∥
∥
∥

ω

∥
∥h(tτ )

∥
∥

ω
dθ dτ

≤
∫ 1

0

∫ ∞

0
q
ψq(θ )

θq tq(1 – τ )q–1e–ω
tq(1–τ )q

θq
∥
∥h(tτ )

∥
∥

ω
dθ dτ

≤ 1
ω

‖h‖bω

∫ ∞

0

[(∫ 1

0
e–ω( tq(1–τ )q

θq ) d
(

–ω
tq(1 – τ )q

θq

))
ψq(θ )

θq

]

dθ

=
1
ω

‖h‖bω

∫ ∞

0

(
1 – e–ω tq

θq
)ψq(θ )

θq dθ

≤ 1
ω

1
Γ (q + 1)

‖h‖bω.

Therefore,

∥
∥(Kh)

∥
∥

bω
≤ 1

ω

1
Γ (q + 1)

‖h‖bω. �

Lemma 2.6 The evolution equation of fractional order

⎧
⎨

⎩

CDq
0+u(t) = h(t) + Au(t), t ∈ (0, +∞),

u(0) = u0,
(2.8)
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where h ∈ BC(J , E) and u0 ∈ D(A), has a unique solution in BC(J , E)

u(t) = (J u0)(t) + (Kh)(t)

=
∫ 1

0

∫ ∞

0

q
Γ (1 – q)

ψq(θ )
θq (1 – τ )q–1τ–qT

(
(1 – τ )qtq

θq

)

u0 dθ dτ

+
∫ t

0

∫ ∞

0
q
ψq(θ )

θq (t – s)q–1T
(

(t – s)q

θq

)

h(s) dθ ds. (2.9)

Proof By Lemma 2.1, Definition 2.1, and Definition 2.2, (2.8) is equivalent with the fol-
lowing integral equation:

u(t) = u0 +
∫ t

0

1
Γ (q)

(t – s)q–1[Au(s) + h(s)
]

ds. (2.10)

By a similar method used in [18, 19], after Laplace transformation of the above equation,
we can get

U(λ) =
1
λ

u0 +
1
λq AU(λ) +

1
λq H(λ), λ > 0, (2.11)

where H(λ) and U(λ) are the Laplace transform of h(t) and u(t), respectively.
Then one has

(
λqI – A

)
U(λ) = λq–1u0 + H(λ).

From Lemma 2.3 and (2.6), we obtain

U(λ) =
(
λqI – A

)–1
λq–1u0 +

(
λqI – A

)–1H(λ)

= λq–1
∫ ∞

0
e–λqsT(s)u0 ds +

∫ ∞

0
e–λqsT(s)H(λ) ds

= λq–1
∫ ∞

0

∫ ∞

0
e–λs1/qθψq(θ )T(s)u0 dθ ds

+
∫ ∞

0

∫ ∞

0
e–λs1/qθψq(θ )T(s)H(λ) dθ ds

= λq–1
∫ ∞

0

[∫ ∞

0
q

tq–1

θq ψq(θ )T
(

tq

θq

)

u0 dθ

]

e–λt dt

+
∫ ∞

0

[∫ t

0

∫ ∞

0
ψq(θ )

(t – s)q–1

θq T
(

(t – s)q

θq

)

h(s) dθds
]

qe–λt dt.

Taking the inverse Laplace transforms on the above equations, according to the convo-
lution theorem and Lemma 2.5, we have

u(t) = L–1[λq–1] ∗L–1
[∫ ∞

0

[∫ ∞

0
qψq(θ )

tq–1

θq T
(

tq

θq

)

u0 dθ

]

e–λt dt
]

+ L–1
[∫ ∞

0
e–λt

(∫ t

0

∫ ∞

0
q

(t – s)q–1

θq ψq(θ )T
(

(t – s)q

θq

)

h(s) dθ ds
)

dt
]

=
t–q

Γ (1 – q)
∗

[∫ ∞

0
q

tq–1

θq ψq(θ )T
(

tq

θq

)

u0 dθ

]
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+
∫ t

0

∫ ∞

0
qψq(θ )

(t – s)q–1

θq T
(

(t – s)q

θq

)

h(s) dθ ds

=
q

Γ (1 – q)

∫ t

0

∫ ∞

0
s–qψq(θ )

(t – s)q–1

θq T
(

(t – s)q

θq

)

u0 dθ ds + (Kh)(t)

= (J u0)(t) + (Kh)(t).

Since

∥
∥(Kh)(t) + (J u0)(t)

∥
∥

ω
≤ ∥

∥(Kh)(t)
∥
∥

ω
+

∥
∥(J u0)(t)

∥
∥

ω
≤ ‖u0‖ω +

1
ω

1
Γ (q + 1)

‖h‖bω,

we have

‖J u0 + Kh‖bω ≤ ‖u0‖ω +
1
ω

1
Γ (q + 1)

‖h‖bω.

Hence, u ∈ BC(J , E). �

In consequence, it leads to the conclusion.

Lemma 2.7 The main equation (1.1) can be written in the equivalent form

u(t) = Tu(t) :=
[
J

(
u0 – k(u)

)]
(t) + (Kf )(t). (2.12)

It is obvious that problem (1.1) has a mild solution if T has a fixed point.

3 Main results
In the part, we give the main conclusions about the existence of mild solutions for the
main equation on the right half-axis.

First, we give the result about the existence of positive mild solutions for problem (1.1).

Theorem 3.1 Assume that the normal cone P is positive in the Banach space E with the
normal constant N . We assume that semigroup {T(t)}t≥0 is strongly continuous and is uni-
formly exponentially stable with the growth bound ω0(ω0 < 0), and the infinitesimal genera-
tor of {T(t)}t≥0 is the operator A. Let m ∈ C[0,∞) and m(t) is increasing and non-negative.
Provided that u0 ∈ P, u0 = θ , f (t, u) : J × E −→ E, f0(t) := f (t, θ ) ≥ θ is bounded on J , k(u)
maps E into E, both f (t, u) and k(u) are continuous. If k(u) and f (t, u) satisfy:

(F1) for any t ∈ J ,

f (t, z) ≥ f (t, y), ∀θ ≤ y ≤ z.

(F2) For a given ω1 ∈ (0, |ω0|], there exists a positive number R such that

‖u0‖b +
1
ω1

1
Γ (q + 1)

Rf ≤ R,

where

Rf = sup
s∈J ,0≤‖z‖b≤R

∥
∥f (s, z)

∥
∥

b < +∞.
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(F3)

θ ≤ k(y) ≤ k(x) ≤ u0, ∀θ ≤ x ≤ y.

Thus, there exists a positive mild solution for Eq. (1.1) in BC(J , E).

Proof Define a nonempty subset of BC(J , E)

D :=
{

u ∈ PBC : ‖u‖bω ≤ R
}

.

By (F1), ∀u ∈D, one has

θ ≤ Tu(t) (3.1)

= (Kf )(t) +
[
J

(
u0 – k(u)

)]
(t)

≤ (Kf )(t) +
[
J (u0)

]
(t)

= q
∫ t

0

∫ ∞

0

ψq(θ )
θq (t – s)q–1T

(
(t – s)q

θq

)

f (s, u
(
m(s)

)
dθ ds

+
∫ 1

0

∫ ∞

0

q
Γ (1 – q)

ψq(θ )
θq (1 – τ )q–1τ–qT

(
(1 – τ )qtq

θq

)

u0 dθ dτ . (3.2)

Then, combined with Lemma 2.4 and Lemma 2.5, one has

∥
∥Tu(t)

∥
∥

b ≤ 1
ω

1
Γ (q + 1)

Rf + ‖u0‖b.

Thus,

‖Tu‖bω ≤ ‖u0‖b +
1
ω

1
Γ (q + 1)

Rf .

From condition (F2), one can get

‖Tu‖bω ≤ ‖u0‖b +
1
ω1

1
Γ (q + 1)

Rf ≤ R,

which shows that T(D) ⊆D.
From condition (F1) and (F3), it is obvious that T maps D into D and it is also an in-

creasing mapping. Then, applying Theorem 2.1, the map T possesses a fixed point in the
nonempty set D. Thus, Eq. (1.1) has a positive mild solution in BC(J , E). �

Corollary 3.1 Assume that the normal cone P is positive in the Banach space E with the
normal constant N . Provided that semigroup {T(t)}t≥0 is strongly continuous and is uni-
formly exponentially stable with the growth bound ω0 (ω0 < 0), and the infinitesimal gen-
erator of {T(t)}t≥0 is the operator A. Let m ∈ C[0,∞) and m(t) be increasing and non-
negative. Provided that u0 ∈ P, u0 = θ , f (t, u) : J × E −→ E is continuous and bounded,
f0(t) := f (t, θ ) ≥ θ , and k(u) : E −→ E is continuous. If f (t, u) and k(u) satisfy the conditions
(F1) and (F3), respectively, there exists a positive mild solution for Eq. (1.1) in BC(J , E).
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Proof Since f (t, u) is bounded and continuous on J × E, condition (F2) is fulfilled, then
Theorem 3.1 implies that there is a positive mild solution of Eq. (1.1) in BC(J , E). �

Theorem 3.2 Provided that {T(t)}t≥0 (the semigroup of operators on Banach space E) is
strongly continuous and is uniformly exponentially stable with the growth bound ω0 (ω0 <
0), and the infinitesimal generator of {T(t)}t≥0 is the operator A. Assume that m(t) ≥ 0 and
m ∈ C[0,∞). If f (t, u) and k(u) satisfy:

(H1) For a given ω∗ ∈ (0, |ω0|], we have two positive numbers Cf and Ck satisfying
M < ω∗/χ such that

Cf ‖z1 – z2‖ω∗ ≥ ∥
∥f (t, z1) – f (t, z2)

∥
∥

ω∗ , ∀z1, z2 ∈ E,

and

Ck‖z1 – z2‖ω∗ ≥ ∥
∥k(z1) – k(z2)

∥
∥

ω∗ , ∀z1, z2 ∈ E.

(H2)

Lkf := Ck +
1
ω∗

Cf

Γ (q + 1)
< 1.

Thus, one has a unique mild solution for Eq. (1.1) in BC(J , E).

Proof By condition (H1), Lemma 2.4, Lemma 2.5, and Lemma 2.7, ∀v, u ∈ BC(J , E), one
has

∥
∥Tv(t) – Tu(t)

∥
∥

ω∗

=
∥
∥
[
J

(
u0 – k(v)

)]
(t) + Kf

(
t, v

(
m(t)

))
–

[
J

(
u0 – k(u)

)]
(t) – Kf

(
t, u

(
m(t)

))∥
∥

ω∗

=
∥
∥K

[
f
(
t, v

(
m(t)

))
– f

(
t, u

(
m(t)

))]∥
∥

ω∗ +
(
J

[
k(u) – k(v)

])
(t)

≤ ∥
∥K

[
f
(
t, v

(
m(t)

))
– f

(
t, u

(
m(t)

))]∥
∥

ω∗ +
∥
∥
(
J

[
k(u) – k(v)

])
(t)

∥
∥

ω∗

≤ 1
Γ (q + 1)

1
ω∗

∥
∥f

(
t, v

(
m(t)

))
– f

(
t, u

(
m(t)

))∥
∥

ω∗ +
∥
∥k

(
u(t)

)
– k

(
v(t)

)∥
∥

ω∗

≤ Cf

Γ (q + 1)
1
ω∗

∥
∥v

(
m(t)

)
– u

(
m(t)

)∥
∥

ω∗ + Ck
∥
∥u(t) – v(t)

∥
∥

ω∗

≤
(

Ck +
1
ω∗

Cf

Γ (q + 1)

)

‖v – u‖bω∗ .

Therefore,

Lkf ‖v – u‖bω∗ ≥ ‖Tv – Tu‖bω∗ .

Then, according to condition (H2), Eq. (1.1) has a unique mild solution. �

4 Examples
In order to certify the effectiveness of the main conclusion, an example is given in the
following. Consider the following partial differential equation of fractional order.
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Example 4.1

⎧
⎪⎪⎨

⎪⎪⎩

∂
q
t z(t, x) = F(t, m(z(t, x))) + ∂2

x z(t, x), t ∈ [0, +∞),

z(0, x) + k(z(t, x)) = z0, x ∈ [0,π ],

z(t, 0) = z(t,π ) = 0, t ∈ [0, +∞),

(4.1)

where ∂
q
t (q ∈ (0, 1)) is fractional partial derivative of fractional order in the Caputo sense.

Set E = L2([0,π ],R) and Az = ∂2
x z, in view of [39], we can conclude that A is a linear

operator mapping D(A) into E, and the domain D(A) = {v | v(0) = v(π ) = 0, v′ ∈ E, v ∈ E}.
In addition, the operator A generates a semigroup {T(t)}t≥0, which is strongly continuous
and uniformly exponentially stable. Denote ω0 as the growth bound of {T(t)}t≥0, then we
can get ω0 ≤ –1.

Set v(t) = z(t, ·), v0 = z0, g(t, m(v(t))) = F(t, z(t, ·)). At this point, the above problem can
be written as

⎧
⎨

⎩

CDq
0+v(t) = f (t, m(v(t))) + Av(t), t ∈ (0, +∞),

v(0) + k(v) = v0.
(4.2)

Consider the function

g(t, v) =
2 + t2

1 + t2

(

2 –
1

1 + v2

)

and

k(v) = 1 +
1

4 + arctan v
.

Take q = 1/2, v0 = 3 and m(v) = v2.
Then the conditions of Theorem 3.1 are all fulfilled. Therefore, there one has a positive

mild solution for Eq. (4.1).

5 Conclusion
Here, using Laplace transform and its inverse transform, we obtain a correct equivalent
integral equation for some kind of nonlocal abstract differential equations (fractional or-
der) on the right half-axis, which is different from those given in the existing literature.
According to this equivalent integral equation as obtained above, we investigate a kind
of abstract fractional order differential equations. By using Knaster’s theorem, we get the
existence of positive mild solution for the main equation, and the uniqueness of a mild
solution by the Banach contraction theorem.
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