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Abstract
We investigate the blow-up phenomena for a porous medium equation with
weighted nonlocal source and inner absorption terms subject to null Dirichlet
boundary condition. Based on a modified differential inequality technique, we
establish some sufficient conditions to guarantee the existence of non-global
solutions to the model and also derive the upper bounds for the blow-up time.
Moreover, the lower bounds for the blow-up time are obtained under some
appropriate measure in the whole-dimensional space (N ≥ 1).
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1 Introduction
We consider the porous medium equation with weighted nonlocal source and inner ab-
sorption terms

ut = �um + a(x)up
∫

�

uq dx – us, (x, t) ∈ � × (
0, t∗), (1)

subject to null Dirichlet boundary and initial conditions

u(x, t) = 0, (x, t) ∈ ∂� × (
0, t∗), (2)

u(x, 0) = u0(x) ≥ 0, x ∈ �, (3)

where � ⊂R
N (N ≥ 1) is a bounded region with smooth boundary ∂�, m, p, q > 0, s ≥ 1. t∗

is a possible blow-up time when blow-up occurs, otherwise t∗ = +∞. The weight function
a(x) ∈ C1(�) ∩ C0(�̄) satisfies

(a1) a(x) ≥ a > 0 for all x ∈ �̄, where a is a positive constant,
or

(a2) a(x) > 0, x ∈ �, and a(x) = 0, x ∈ ∂�.
Moreover, the initial data u0(x) is a positive C1-function which satisfies a compatibility
condition. Therefore, by the parabolic theory, it follows that the local weak solution to
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problem (1)–(3) exists uniquely, and is nonnegative. For convenience, we may assume that
the appropriate weak solution is smooth, and no longer consider approximation problem.

Equation (1) describes the diffusion of concentration of some Newtonian fluids through
porous medium or the density of some biological species in many physical phenomena
and biological species theories (cf. [1–6]). It has been known that the nonlocal source
term presents a more realistic model for population dynamics, see [1–3].

During the past decades, there have been many works to deal with the existence and
nonexistence of global solutions, blow-up of solutions, bounds for the blow-up time, blow-
up rates, blow-up sets, and asymptotic behavior of the solutions to the parabolic equations.
We refer the readers to the monographs [7–9] as well as the survey paper [10] and the ref-
erences therein. Roughly, the existence and nonexistence of global solutions and behavior
of the solutions to parabolic equations depend on space dimension, nonlinearity, initial
data, and nonlinear boundary flux. Specially, Quittner and Souplet [9, Chap. 5] introduced
the qualitative properties of the solution to nonlocal semilinear parabolic equation with
homogeneous Dirichlet boundary condition in detail. In a sense, the nonlocal models are
closer to the practical problems than the local ones, and now many local theories are no
longer holding, hence, nonlocal problems are more challenging and difficult. In this paper,
we would like to investigate the blow-up phenomena for the solution to a class of nonlocal
problems, and our main aim is to derive the bounds for blow-up time if blow-up occurs in
finite time. As far as we know, a variety of methods have been used to investigate the upper
bounds for the blow-up time to the above problems (cf. [11]), while the lower bounds for
the blow-up time may be harder to be determined and fewer methods can be chosen to
deal with them. Recently, the study on the lower bounds for blow-up time has made some
progress, while more attention was paid to the local model with constant coefficients. We
provide the readers with the literature [12–14] for a three-dimensional case and [15] for a
high-dimensional case.

For some research on the nonlocal reaction–diffusion equations with constant coeffi-
cients, Song [16] considered the semilinear parabolic equation with nonlocal source and
local absorption

ut = �u +
∫

�

uq dx – kus, (x, t) ∈ � × (
0, t∗),

under homogeneous Dirichlet or Neumann boundary condition, and obtained the bounds
for blow-up time of the solution to the initial boundary value problem in a three-
dimensional space. Later, Liu [17] considered the problem with nonlinear Neumann
boundary condition and derived the lower bounds for blow-up time of the blow-up so-
lution in a three-dimensional space. Recently, Tang et al. [18] generalized the results in
[16] to the case of a high-dimensional space. Liu et al. [19] studied the porous medium
equation with nonlocal source term

ut = �um +
∫

�

uq dx, (x, t) ∈ � × (
0, t∗),

under homogeneous Dirichlet or Neumann boundary condition. They obtained the lower
bounds for blow-up time of the blow-up solution to the initial boundary value problem in
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a three-dimensional space. Specially, Fang et al. [20] studied

ut = �um + up
∫

�

uq dx – us, (x, t) ∈ � × (
0, t∗),

under homogeneous Dirichlet or Neumann boundary condition and obtained the lower
bounds for blow-up time of the blow-up solution in a three-dimensional space. Bao and
Song [21] considered the initial boundary value problem of quasilinear parabolic equation
under homogeneous Dirichlet or Neumann boundary condition, and the slow diffusion
case with nonlocal source term was also included in their results. Besides, one can refer to
[22–27] for the results about scalar equation with time-dependent coefficients, nonlocal
reaction systems, and models of quasilinear equations.

For some research on the nonlocal reaction–diffusion equations with weight functions,
Song and Lv [28, Sect. 5] studied the semilinear parabolic equation with weighted inner
source and absorption

ut = �u + a(x)
∫

�

uq dx – us, (x, t) ∈ � × (
0, t∗),

where the weight function a(x) ∈ C1(�) ∩ C0(�̄) satisfies (a1) or (a2). They considered the
problem under homogeneous Dirichlet or Neumann boundary condition and obtained
the estimate for the blow-up rate and bounds for the blow-up time of solution to the ini-
tial boundary value problem in a high-dimensional space (N ≥ 3). However, their results
did not include the influence of weight functions on the blow-up phenomenon. Besides,
one can refer to [29–31] for more results about reaction–diffusion models with space-
dependent coefficients.

In view of the works mentioned above, there are few results about bounds for the blow-
up time of blow-up solution to the initial boundary value problem (1)–(3). The main dif-
ficulties are to seek the competitive relationship among nonlinear diffusion term, source
term, and absorption, as well as to investigate the influence of space dimension and weight
functions on the blow-up solution. Motivated by these observations, using a modified
differential inequality technique, we can establish sufficient conditions for the blow-up
of solution to problem (1)–(3) under appropriate measure and obtain the upper bounds
for the blow-up time. Meanwhile, we can also derive the lower bounds for the blow-up
time of blow-up solution in the whole-dimensional space (N ≥ 1). Indeed, for the case
p + q ≤ max{m, s}, we can easily construct the global supersolution for the solution to
problem (1)–(3), so we only consider the case p + q > max{m, s} in our paper.

Our paper is organized as follows. In Sect. 2, we assume some conditions on the weight
function a(x) to guarantee that the solution to problem (1)–(3) blows up in finite time
under appropriate measure, and derive the upper bounds for blow-up time. In Sect. 3,
we obtain the lower bounds for blow-up time of the solution to problem (1)–(3) in the
whole-dimensional space.

2 Upper bounds for the blow-up time
In this section, we establish some sufficient conditions for the solution to problem (1)–(3)
to blow up in finite time under different measures, and then derive the upper bounds for
the blow-up time.
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We firstly give a sufficient condition for the solution to problem (1)–(3) to blow up in
L1-norm and establish an upper bound for the blow-up time.

Theorem 1 Suppose that m > 1, min{p, q} > s, and the weight function a(x) satisfies (a1). If
u is the nonnegative solution to problem (1)–(3), then u blows up in L1-norm, and an upper
bound for t∗ is

∫ ∞

J1(0)

dη

M1ηp+q – M2
,

where J1(0) =
∫
�

u0(x) dx, the initial data u0(x) is large enough and positive constants M1,
M2 will be given in the proof.

Proof Define

J1(t) =
∫

�

u dx.

Compute the derivative and use Green’s formula and Hölder’s inequality to derive

J ′
1(t) =

∫
�

ut dx

=
∫

�

�um dx +
∫

�

a(x)up dx
∫

�

uq dx –
∫

�

us dx

≥ a|�| 2s–(p+q)
s

(∫
�

us dx
) p+q

s
–

∫
�

us dx

=
∫

�

us dx
[

a|�| 2s–(p+q)
s

(∫
�

us dx
) p+q–s

s
– 1

]
. (4)

Obviously, since p + q > s, we can get that the function f (η) = η
p+q–s

s is monotone increas-
ing and if u0(x) satisfies

a|�| 2s–(p+q)
s

(∫
�

us
0 dx

) p+q–s
s

> 1, (5)

then we can know that the solution to problem (1)–(3) blows up in finite time.
On the other hand, by (4) and Young’s and Hölder’s inequalities, we can derive

J ′
1(t) ≥ a|�| 2s–(p+q)

s

(∫
�

us dx
) p+q

s
–

∫
�

us dx

= a|�| 2s–(p+q)
s

(∫
�

us dx
) p+q

s
–

(
δ1

(∫
�

us dx
) p+q

s
) s

p+q (
δ

– s
p+q–s

1
) p+q–s

p+q

≥
[

a|�| 2s–(p+q)
s –

sδ1

p + q

](∫
�

us dx
) p+q

s
–

p + q – s
p + q

δ
– s

p+q–s
1

≥
[

a|�| 2s–(p+q)
s –

sδ1

p + q

]
|�| (1–s)(p+q)

s

(∫
�

u dx
)p+q

–
p + q – s

p + q
δ

– s
p+q–s

1 . (6)
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Choosing δ1 satisfies 0 < δ1 < a(p+q)
s |�| 2s–(p+q)

s , then (6) can be rewritten as

J ′
1(t) ≥ M1Jp+q

1 – M2, (7)

where

M1 =
(

a|�| 2s–(p+q)
s –

sδ1

p + q

)
|�| (1–s)(p+q)

s > 0, M2 =
p + q – s

p + q
δ

– s
p+q–s

1 > 0.

Hence, if u0(x) is large enough satisfying J1(0) =
∫
�

u0(x) dx > ( M2
M1

)
1

p+q and (5), by virtue
of (7), we can derive that the blow-up time t∗ satisfies

t∗ ≤
∫ ∞

J1(0)

dη

M1ηp+q – M2
. �

Next we will use Kaplan’s method to investigate the upper bound for blow-up time of
blow-up solution to problem (1)–(3).

Denote by λ1 and φ1 the first eigenvalue and the corresponding eigenfunction of the
following fixed membrane problem:

�φ1 + λ1φ1 = 0, x ∈ �, (8)

φ1(x) = 0, x ∈ ∂�. (9)

It is well known that φ1 may be normalized as sup� |φ1| = 1.

Theorem 2 Suppose that 1 ≤ m < s < min{p, q}, and the weight function a(x) satisfies (a1).
Define an auxiliary function

J2(t) =
∫

�

uφ1 dx.

If u is the nonnegative solution to problem (1)–(3), then u blows up in the measure of J2,
and an upper bound for t∗ is

∫ ∞

J2(0)

dη

M3ηp+q – M4
,

where J2(0) =
∫
�

u0(x)φ1(x) dx, the initial data u0(x) is large enough and positive constants
M3, M4 will be given in the proof.

Proof We compute the derivative and use Green’s formula to obtain

J ′
2(t) =

∫
�

utφ1 dx

=
∫

�

�umφ1 dx +
∫

�

a(x)upφ1 dx
∫

�

uq dx –
∫

�

usφ1 dx

≥ –λ1

∫
�

umφ1 dx + a
∫

�

upφ1 dx
∫

�

uqφ1 dx –
∫

�

usφ1 dx. (10)
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Notice that m < s < min{p, q}, by Hölder’s inequality to estimate the first and second terms
on the right-hand side of (10), we have

∫
�

umφ1 dx ≤
(∫

�

usφ1 dx
) m

s
(∫

�

φ1 dx
) s–m

s
≤

(∫
�

usφ1 dx
) m

s
|�| s–m

s ,

∫
�

upφ1 dx
∫

�

uqφ1 dx ≥
(∫

�

usφ1 dx
) p+q

s
(∫

�

φ1 dx
) 2s–(p+q)

s

≥
(∫

�

usφ1 dx
) p+q

s
|�| 2s–(p+q)

s . (11)

Substituting (11) into (10) and using Young’s inequality, we obtain

J ′
2(t) ≥ a|�| 2s–(p+q)

s

(∫
�

usφ1 dx
) p+q

s
– λ1|�| s–m

s

(∫
�

usφ1 dx
) m

s

–
∫

�

usφ1 dx

≥ a|�| 2s–(p+q)
s

(∫
�

usφ1 dx
) p+q

s
–

(
m
s

λ
s
m
1 + 1

)∫
�

usφ1 dx –
s – m

s
|�|. (12)

By the property of quadratic function and a > 0, if u0(x) is large enough, we can derive that
the solution to problem (1)–(3) blows up in finite time.

Now, applying the same argument in the proof of Theorem 2 to (12), we obtain

J ′
2(t) ≥

(
a|�| 2s–(p+q)

s –
mδ2 + sδ3

p + q

)(∫
�

usφ1 dx
) p+q

s
– M4. (13)

Choosing δ2, δ3 satisfies 0 < δ2 < (p+q)a|�| 2s–(p+q)
s

2m and 0 < δ3 < (p+q)a|�| 2s–(p+q)
s

2s , using Hölder’s
inequality, (13) can be rewritten as

J ′
2(t) ≥ M3Jp+q

2 – M4, (14)

where

M3 =
(

a|�| 2s–(p+q)
s –

mδ2 + sδ3

p + q

)
|�| (1–s)(p+q)

s > 0,

M4 =
p + q – m

p + q
δ

– m
p+q–m

2 λ
p+q

p+q–m
1 |�| (s–m)(p+q)

s(p+q–m) +
p + q – s

p + q
δ

– s
p+q–s

3 > 0.

Hence, if u0(x) is large enough and satisfies J2(0) =
∫
�

u0(x)φ1(x) dx > ( M4
M3

)
1

p+q and the
above requirement, by (14), we obtain

t∗ ≤
∫ ∞

J2(0)

dη

M3ηp+q – M4
. �

Afterwards, we will seek a sufficient condition for the solution to problem (1)–(3) to
blow up in L2m-norm, and then obtain an upper bound for the blow-up time.
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Theorem 3 Suppose that m > 1, p ≥ s > 1, and the weight function a(x) satisfies (a1) or
(a2). Define auxiliary functions

F
(
um)

=
∫ um

0
ξ 1+ p–1

m

(∫
�

ξ
q
m dx

)
dξ ,

G
(
um)

=
∫ um

0
ξ 1+ s–1

m dξ =
m

2m + s – 1
u2m+s–1.

Assume that there exist I1 ≥ I2 > 2 such that

u2m+p–1
∫

�

uq dx ≥ I1F
(
um)

, u2m+s–1 ≤ I2G
(
um)

. (15)

If u is the nonnegative solution to problem (1)–(3) and the initial data u0(x) satisfies

–
1
2

∫
�

∇u2m–1
0 ∇um

0 dx +
∫

�

a(x)F
(
um

0
)

dx –
∫

�

G
(
um

0
)

dx > 0,

then u blows up in L2m-norm, and an upper bound for t∗ is

2ξ (0)
I2(I2 – 2)η(0)

,

where functions ξ ,η will be given in the proof.

Remark 1 Since p ≥ s > 1, we can choose I1 = 2m+p–1
m , I2 = 2m+s–1

m , which satisfy condition
(15).

Proof Applying the transformation v = um in (1), we have

(
v

1
m
)

t = �v + a(x)v
p
m

∫
�

v
q
m dx – v

s
m . (16)

Then (16) is equivalent to

vt = mv1– 1
m

(
�v + a(x)v

p
m

∫
�

v
q
m dx – v

s
m

)
. (17)

Define

ξ (t) =
∫

�

u2m dx =
∫

�

v2 dx. (18)

Differentiating ξ (t) and using (15), (17) and Green’s formula, we obtain

ξ ′(t) = 2
∫

�

vvt dx

= –2m
∫

�

∇v2– 1
m · ∇v dx + 2m

∫
�

a(x)v2+ p–1
m dx

∫
�

v
q
m dx

– 2m
∫

�

v2+ s–1
m dx
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≥ –I2m
∫

�

∇v2– 1
m · ∇v dx + 2I1m

∫
�

a(x)F(v) dx – 2I2m
∫

�

G(v) dx

≥ 2I2η(t), (19)

where η(t) := – m
2

∫
�

∇v2– 1
m · ∇v dx + m

∫
�

a(x)F(v) dx – m
∫
�

G(v) dx.
Next, differentiating η(t) and using Green’s formula and m > 1, we have

η′(t) = –
m
2

∫
�

∇(
v2– 1

m
)

t · ∇v dx –
m
2

∫
�

∇v2– 1
m · ∇vt dx

+ m
∫

�

a(x)v1+ p–1
m

(∫
�

v
q
m dx

)
vt dx – m

∫
�

v1+ s–1
m vt dx

= m
(

2 –
1
m

)∫
�

v1– 1
m vt�v dx

+
m
2

(
2 –

1
m

)(
1 –

1
m

)∫
�

v– 1
m |∇v|2vt dx

+ m
∫

�

a(x)v1+ p–1
m

(∫
�

v
q
m dx

)
vt dx – m

∫
�

v1+ s–1
m vt dx

≥ m
∫

�

v1– 1
m �v · vt dx + m

∫
�

a(x)v1+ p–1
m

(∫
�

v
q
m dx

)
vt dx

– m
∫

�

v1+ s–1
m vt dx

=
∫

�

(vt)2 dx ≥ 0. (20)

By the hypotheses in Theorem 3, we can easily see that η(0) > 0, and then η(t) > 0, ∀t ≥ 0.
Therefore, (19) implies that ξ is monotone increasing, and then v blows up in finite time
t∗ in L2-norm.

Combining (18)–(20) and using Schwarz’s inequality

(∫
�

vvt dx
)2

≤
∫

�

v2 dx
∫

�

(vt)2 dx,

we can derive

4ξ (t)η′(t) ≥ (
ξ ′(t)

)2 ≥ 2I2ξ
′(t)η(t). (21)

Applying (19) and (21), we can compute

η(t) ≥ η(0)

(ξ (0))
I2
2

(
ξ (t)

) I2
2

and

ξ ′(t) ≥ 2I2η(0)

(ξ (0))
I2
2

(
ξ (t)

) I2
2 . (22)

Hence, (22) leads to

t∗ ≤ ξ (0)
I2(I2 – 2)η(0)

. �
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Remark 2 In the fast and linear diffusion situation (0 < m ≤ 1), we set

F(u) =
∫ u

0
ξp

(∫
�

ξ q dx
)

dξ , G(u) =
∫ u

0
ξ s ds =

1
s + 1

us+1.

Suppose that there exist I3 ≥ I4 > 2 such that

up+1
∫

�

uq dx ≥ I3F(u), us+1 ≤ I4G(u).

If u is a nonnegative solution to problem (1)–(3) and the initial data u0(x) satisfies

–
1
2

∫
�

∇u0∇um
0 dx +

∫
�

a(x)F(u0) dx –
∫

�

G(u0) dx > 0,

then u blows up in L2-norm, and an upper bound for t∗ is

t∗ ≤ χ (0)
I4(I4 – 2)ζ (0)

,

where χ (t) =
∫
�

u2 dx, ζ (t) = – 1
2
∫
�

∇u∇um dx +
∫
�

a(x)F(u) dx –
∫
�

G(u) dx.
The proof is the same as Theorem 3, so we omit it.

3 Lower bounds for the blow-up time
In this section, we seek the lower bounds for the blow-up time of the solution to problem
(1)–(3) in an N-dimensional space � ⊂ RN (N ≥ 1).

3.1 N = 1 case
Suppose � = (0, l), N = 1, then problem (1)–(3) can be rewritten as

ut =
(
um)

xx + a(x)up
∫ l

0
uq dx – us, x ∈ (0, l), t ∈ (

0, t∗), (23)

u(0, t) = u(l, t) = 0, t ∈ (
0, t∗), (24)

u(x, 0) = u0(x) ≥ 0, x ∈ (0, l). (25)

Theorem 4 Suppose that m > 0, 0 ≤ p < 1, q > 1, � = (0, l) and the weight function a(x)
satisfies (a1) or (a2). Define an auxiliary function

ψ1(t) =
∫ l

0
uk+1 dx,

where k > max{2 – m, q – 1}. If the solution u to problem (23)–(25) blows up in Lk+1-norm
at t∗, then t∗ is bounded below by

∫ ∞

ψ1(0)

dη

H1η
k+p+q

k+1
,

where ψ1(0) =
∫ l

0 uk+1
0 (x) dx, positive constant H1 will be given in the proof.
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Proof Differentiating ψ1(t) and using Green’s formula and Hölder’s inequality, we have

ψ ′
1(t) = (k + 1)

∫ l

0
ukut dx

= –mk(k + 1)
∫ l

0
uk+m–2u2

x dx + (k + 1)
∫ l

0
a(x)uk+p dx

∫ l

0
uq dx

– (k + 1)
∫ l

0
uk+s dx

≤ H1

(∫ l

0
uk+1 dx

) k+p+q
k+1

, (26)

where H1 = (k + 1)l
k+1–q

k+1 (
∫ l

0 (a(x))
k+1
1–p dx)

1–p
k+1 .

Hence, applying (26), we can derive that the lower bound for t∗ satisfies

t∗ ≥
∫ ∞

ψ1(0)

dη

H1η
k+p+q

k+1
. �

3.2 N = 2 case
Theorem 5 Suppose that m > 0, 0 ≤ p < 1, q > 1, � ⊂ R2 and the weight function satisfies
(a2) and

(a3) there exists A = (A1, A2) such that –a(x)A ≤ ∇a(x) ≤ a(x)A,
where x ∈ �, Ai > 0, i = 1, 2, while A satisfies |A|2 < λ1. Define a weight function

ψ2(t) =
∫

�

a(x)uk+1 dx,

where λ1 is the first eigenvalue of the fixed membrane problem (8)–(9) for a two-dimensional
space, k > max{q – 1, |A|m

2(
√

λ1–|A|) }. If the solution u to problem (1)–(3) blows up in the measure
ψ2 at t∗, then t∗ is bounded below by

∫ ∞

ψ2(0)

dη

H2η
k+p+q

k+1
,

where ψ2(0) =
∫
�

a(x)uk+1
0 (x) dx, positive constant H2 will be given in the proof.

In order to prove Theorem 5, we firstly need to give a lemma.

Lemma 1 Suppose that a(x) satisfies (a2), (a3), and |A|2 < λ1. If u ∈ C1(�) is nonnegative,
then we have the differential inequality

(√
λ1 –

|A|
2

)(∫
�

a(x)u2k dx
) 1

2 ≤
(∫

�

a(x)
∣∣∇uk∣∣2 dx

) 1
2

, k > 0, x ∈ �.

Proof By virtue of the Rayleigh principle, we know

λ1

∫
�

ω2 dx ≤
∫

�

|∇ω|2 dx, where ω|∂� = 0.
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Now, choosing ω = a 1
2 (x)uk , by (a3) and Hölder’s inequality, we have

λ1

∫
�

a(x)u2k dx

≤
∫

�

∣∣∇(
a

1
2 (x)uk)∣∣2

dx

=
1
4

∫
�

|∇a(x)|2
a(x)

u2k dx +
∫

�

a(x)
∣∣∇uk∣∣2 dx +

∫
�

uk∇a(x)∇uk dx

≤ |A|2
4

∫
�

a(x)u2k dx +
∫

�

a(x)
∣∣∇uk∣∣2 dx

+ |A|
(∫

�

a(x)u2k dx
) 1

2
(∫

�

a(x)
∣∣∇uk∣∣2 dx

) 1
2

≤
[ |A|

2

(∫
�

a(x)u2k dx
) 1

2
+

(∫
�

a(x)
∣∣∇uk∣∣2 dx

) 1
2
]2

.

Hence, we derive

(√
λ1 –

|A|
2

)(∫
�

a(x)u2k dx
) 1

2 ≤
(∫

�

a(x)
∣∣∇uk∣∣2 dx

) 1
2

. �

The proof of Theorem 5 can be given as follows.

Proof Differentiating ψ2(t) and using Green’s formula, Hölder’s inequality, and Lemma 1,
we have

ψ ′
2(t) = (k + 1)

∫
�

a(x)ukut dx

= –(k + 1)
∫

�

(∇a(x)uk + ka(x)uk–1∇u
)
mum–1∇u dx

+ (k + 1)
∫

�

a2(x)uk+p dx
∫

�

uq dx – (k + 1)
∫

�

a(x)uk+s dx

≤ 2m(k + 1)|A|
k + m

∫
�

a(x)u
k+m

2
∣∣∇u

k+m
2

∣∣dx

–
4mk(k + 1)

(k + m)2

∫
�

a(x)
∣∣∇u

k+m
2

∣∣2 dx

+ (k + 1)
∫

�

a2(x)uk+p dx
∫

�

uq dx – (k + 1)
∫

�

a(x)uk+s dx

≤ 2m(k + 1)|A|
k + m

(∫
�

a(x)uk+m dx
) 1

2
(∫

�

a(x)
∣∣∇u

k+m
2

∣∣2 dx
) 1

2

–
4mk(k + 1)

(k + m)2

∫
�

a(x)
∣∣∇u

k+m
2

∣∣2 dx

+ (k + 1)
∫

�

a2(x)uk+p dx
∫

�

uq dx

≤
[

4m(k + 1)|A|
(2

√
λ1 – |A|)(k + m)

–
4mk(k + 1)

(k + m)2

]∫
�

a(x)
∣∣∇u

k+m
2

∣∣2 dx

+ (k + 1)
∫

�

a2(x)uk+p dx
∫

�

uq dx. (27)
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By the value of k, we can easily get that the coefficient of
∫
�

a(x)|∇u k+m
2 |2 dx in (28) is

negative. Then, applying Hölder’s inequality, we have

ψ ′
2(t) ≤ H2ψ

k+p+q
k+1

2 , (28)

where H2 = (k + 1)(
∫
�

(a(x))
k+2–p

1–p dx)
1–p
k+1 (

∫
�

(a(x))– q
k+1–q dx)

k+1–q
k+1 .

Hence, using (27), we can obtain that the lower bound for t∗ satisfies

t∗ ≥
∫ ∞

ψ2(0)

dη

H2η
k+p+q

k+1
. �

3.3 N ≥ 3 case
Theorem 6 Suppose that m > 0, p + q > max{m, s}, � ⊂ RN (N ≥ 3) is a bounded convex
region with smooth boundary, the weight function a(x) satisfies (a1) or (a2) and

(a3)′ there exists A = (A1, . . . , AN ) such that –a(x)A ≤ ∇a(x) ≤ a(x)A,
where x ∈ �, Ai > 0, i = 1, . . . , N , N ≥ 3.

Define a weight function

ψ3(t) =
∫

�

a(x)uNk dx,

where λ1 is the first eigenvalue of the fixed membrane problem (8)–(9) for the N-
dimensional space, k > max{ 1

N , 2(N–2)(p+q–1)
N , 2–2m

3 }. If the solution u to problem (1)–(3) blows
up in the measure ψ3 at t∗, then t∗ is bounded below by

∫ ∞

ψ3(0)

dη

H3η
(N–2)θ

N–2–N(1–θ )γ + H4η
(N–2)θ

N–2–N(1–θ ) + H5

,

where ψ3(0) =
∫
�

a(x)uNk
0 (x) dx and positive constants H3, H4, H5, γ , θ will be given in the

proof.

Proof Differentiating ψ3(t) and using Green’s formula, Hölder’s, and Young’s inequalities,
and condition (a3)′, we have

ψ ′
3(t) = Nk

∫
�

a(x)uNk–1ut dx

= Nk
∫

�

a(x)uNk–1�um dx + Nk
∫

�

a2(x)uNk+p–1 dx
∫

�

uq dx

– Nk
∫

�

a(x)uNk+s–1 dx

= –mNk(Nk – 1)
∫

�

a(x)uNk+m–3|∇u|2 dx

– mNk
∫

�

∇a(x)uNk+m–2∇u dx

+ Nk
∫

�

a2(x)uNk+p–1 dx
∫

�

uq dx – Nk
∫

�

a(x)uNk+s–1 dx

≤ –
4mNk(Nk – 1)
(Nk + m – 1)2

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
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+ mNk|A|
(∫

�

a(x)uNk+m–1 dx
) 1

2

×
(

4
(Nk + m – 1)2

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) 1

2

+ Nk
∫

�

a2(x)uNk+p–1 dx
∫

�

uq dx – Nk
∫

�

a(x)uNk+s–1 dx

≤
[

–
4mNk(Nk – 1)
(Nk + m – 1)2 +

2mNk|A|ε1

(Nk + m – 1)2

]∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx

+
mNk|A|

2ε1

∫
�

a(x)uNk+m–1 dx + Nk
∫

�

a2(x)uNk+p–1 dx
∫

�

uq dx

– Nk
∫

�

a(x)uNk+s–1 dx, (29)

where ε1 is a positive constant to be determined later.
To begin with, applying Hölder’s inequality, we get the inequality

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

≤
(∫

�

a(x)uNk dx
)θ(∫

�

(
a

1
2 (x)u

Nk+m–1
2

) 2N
N–2 dx

)1–θ

, (30)

where θ = 3k+2m–2
4k+2m–2 . Using Hölder’s and Young’s inequalities to estimate the second term

on the right-hand side of (29), we have

∫
�

a(x)uNk+m–1 dx ≤
(∫

�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

)γ (∫
�

(
a(x)

)σ1 dx
)1–γ

≤ γ

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx + (1 – γ )

∫
�

(
a(x)

)σ1 dx, (31)

where γ = 2(N–2)(Nk+m–1)
Nk(2N–3) , σ1 such that 1 = N–2θ

N–2 γ + σ1(1 – γ ).
Next, applying Hölder’s inequality to the third term on the right-hand side of (29), we

obtain the inequality

∫
�

a2(x)uNk+p–1 dx
∫

�

uq dx

≤
(∫

�

(
a(x)

)σ2 dx
) q

Nk+p+q–1
(∫

�

(
a(x)

)σ3 dx
) Nk+p–1

Nk+p+q–1

×
∫

�

am1+ N–2θ
N–2 m2 (x)uNk+p+q–1 dx, (32)

where m1 = Nk–2N(p+q)+2N+4(p+q)–4
Nk–2Ns+2N+4s–4 , m2 = 2(p+q–s)(N–2)

Nk–2Ns+2N+4s–4 , σ2,σ3 such that

2 =
Nk + p – 1

Nk + p + q – 1

(
m1 +

N – 2θ

N – 2
m2

)
+

q
Nk + p + q – 1

σ2,

0 =
q

Nk + p + q – 1

(
m1 +

N – 2θ

N – 2
m2

)
+

Nk + p – 1
Nk + p + q – 1

σ3.
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Thus, applying Hölder’s and Young’s inequalities to the third integral term on the right-
hand side of (32), we can derive the inequality

∫
�

am1+ N–2θ
N–2 m2 (x)uNk+p+q–1 dx

≤
(∫

�

a(x)uNk+s–1 dx
)m1(∫

�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

)m2

≤ m1ε2

∫
�

a(x)uNk+s–1 dx + m2ε
– m1

m2
2

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx, (33)

where ε2 > 0 is a constant to be determined later.
Now, we substitute (31)–(33) into (29) and choose suitable ε2 > 0 to make the coefficient

of
∫
�

a(x)uNk+s–1 dx in (29) vanish, that is,

m1

(∫
�

(
a(x)

)σ2 dx
) p

Nk+p+q–1
(∫

�

(
a(x)

)σ3 dx
) Nk+q–1

Nk+p+q–1
ε2 = 1.

We can obtain the inequality

ψ ′
3(t) ≤ C1

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx + C2

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx + C3, (34)

where

C1 = –
4mNk(Nk – 1)
(Nk + m – 1)2 +

2mNk|A|ε1

(Nk + m – 1)2 ,

C2 = Nkm2ε
– m1

m2
2

(∫
�

(
a(x)

)σ2 dx
) p

Nk+p+q–1
(∫

�

(
a(x)

)σ3 dx
) Nk+q–1

Nk+p+q–1
+

mNk|A|γ
2ε1

,

C3 =
mNk|A|(1 – γ )

2ε1

∫
�

(
a(x)

)σ1 dx.

In order to deal with the gradient term in (34), we will use Sobolev’s inequality

(∫
�

(
a

1
2 (x)u

Nk+m–1
2

) 2N
N–2 dx

) N–2
2N ≤ Cs

(∫
�

∣∣∇(
a

1
2 (x)u

Nk+m–1
2

)∣∣2 dx
) 1

2
, (35)

where Cs is the optimal Sobolev constant. Applying condition (a3)′ and Hölder’s inequality
to the right-hand side of (35), we have

∫
�

∣∣∇(
a

1
2 (x)u

Nk+m–1
2

)∣∣2 dx

≤ |A|2
4

∫
�

a(x)uNk+m–1 dx +
∫

�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx

+ |A|
∫

�

a(x)u
Nk+m–1

2
∣∣∇u

Nk+m–1
2

∣∣dx

≤
[ |A|

2

(∫
�

a(x)uNk+m–1 dx
) 1

2
+

(∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) 1

2
]2

. (36)
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Now, using (30), (35), and (36) to estimate the second term on the right-hand side of (34),
we obtain

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

≤ C
2N(1–θ )

N–2
s

(∫
�

a(x)uNk dx
)θ(∫

�

∣∣∇a
1
2 (x)u

Nk+m–1
2

∣∣2 dx
) N(1–θ )

N–2

≤ C
2N(1–θ )

N–2
s

(∫
�

a(x)uNk dx
)θ

×
[ |A|

2

(∫
�

a(x)uNk+m–1 dx
) 1

2
+

(∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) 1

2
] 2N(1–θ )

N–2
. (37)

Next, applying the inequality

(x + y)k ≤ (
2 max{x, y})k ≤ 2k max

{
xk , yk} ≤ 2k(xk + yk), ∀x, y, k ≥ 0,

and (31), we derive an estimate for the summation of the bracket in (37) as follows:

[ |A|
2

(∫
�

a(x)uNk+m–1 dx
) 1

2
+

(∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) 1

2
] 2N(1–θ )

N–2

≤ |A| 2N(1–θ )
N–2

(∫
�

(
a(x)

)σ1 dx
) N(1–θ )(1–γ )

N–2
(∫

�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

) N(1–θ )γ
N–2

+ 2
2N(1–θ )

N–2

(∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) N(1–θ )

N–2
. (38)

Substituting (38) into (37), we have

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

≤ C4

(∫
�

a(x)uNk dx
)θ(∫

�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

) N(1–θ )γ
N–2

+ C5

(∫
�

a(x)uNk dx
)θ(∫

�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) N(1–θ )

N–2
, (39)

where C4 = (Cs|A|) 2N(1–θ )
N–2 (

∫
�

(a(x))σ1 dx)
N(1–θ )(1–γ )

N–2 , C5 = (2Cs)
2N(1–θ )

N–2 .
Now, applying Young’s inequality to the two terms on the right-hand side of (39), we can

get

(∫
�

a(x)uNk dx
)θ(∫

�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

) N(1–θ )γ
N–2

≤ N – 2 – N(1 – θ )γ
N – 2

ε
– N(1–θ )γ

N–2–N(1–θ )γ
3

(∫
�

a(x)uNk dx
) (N–2)θ

N–2–N(1–θ )γ

+
N(1 – θ )γ ε3

N – 2

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx, (40)
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and

(∫
�

a(x)uNk dx
)θ(∫

�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx
) N(1–θ )

N–2

≤ N – 2 – N(1 – θ )
N – 2

ε
– N(1–θ )

N–2–N(1–θ )
4

(∫
�

a(x)uNk dx
) (N–2)θ

N–2–N(1–θ )

+
N(1 – θ )ε4

N – 2

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx, (41)

where ε3, ε4 > 0 are constants to be determined later. Substituting (40), (41) into (39) leads
to

(
1 –

C4N(1 – θ )γ ε3

N – 2

)∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

≤ N – 2 – N(1 – θ )γ
N – 2

C4ε
– N(1–θ )γ

N–2–N(1–θ )γ
3

(∫
�

a(x)uNk dx
) (N–2)θ

N–2–N(1–θ )γ

+
N – 2 – N(1 – θ )

N – 2
C5ε

– N(1–θ )
N–2–N(1–θ )

4

(∫
�

a(x)uNk dx
) (N–2)θ

N–2–N(1–θ )

+
C5N(1 – θ )ε4

N – 2

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx.

Choose ε3 > 0 small enough such that ρ := 1 – C4N(1–θ)γ ε3
N–2 > 0.

It follows that the second term on the right-hand side of (34) satisfies

∫
�

a
N–2θ
N–2 (x)u

Nk(2N–3)
2(N–2) dx

≤ C6

(∫
�

a(x)uNk dx
) (N–2)θ

N–2–N(1–θ )γ
+ C7

(∫
�

a(x)uNk dx
) (N–2)θ

N–2–N(1–θ )

+ C8

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx, (42)

where

C6 =
N – 2 – N(1 – θ )γ

(N – 2)ρ
C4ε

– γ N(1–θ )
N–2–γ N(1–θ )

3 ,

C7 = C5
N – 2 – N(1 – θ )

(N – 2)ρ
ε

N(θ–1)
N–2–N(1–θ )
4 ,

C8 =
C5N(1 – θ )ε4

(N – 2)ρ
.

Then, substituting (42) into (44), we can derive

ψ ′
3(t) ≤ (C1 + C2C8)

∫
�

a(x)
∣∣∇u

Nk+m–1
2

∣∣2 dx

+ C2C6ψ
(N–2)θ

N–2–N(1–θ )γ
3 + C2C7ψ

(N–2)θ
N–2–N(1–θ )

3 + C3. (43)
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Choose ε1 small enough such that C1 < 0 and ε4 such that C1 + C2C8 = 0. Therefore, (43)
can be rewritten as

ψ ′
3(t) ≤ H3ψ

(N–2)θ
N–2–N(1–θ )γ

3 + H4ψ
(N–2)θ

N–2–N(1–θ )
3 + H5, (44)

where H3 = C2C6, H4 = C2C7, H5 = C3.
Note that (N–2)θ

N–2–N(1–θ) > 1, then integrating (44) from 0 to t∗, we derive

t∗ ≥
∫ ∞

ψ3(0)

dη

H3η
(N–2)θ

N–2–N(1–θ )γ + H4η
(N–2)θ

N–2–N(1–θ ) + H5

. �

Remark 3 If the null Dirichlet boundary condition (2) is replaced by the null Neumann
boundary condition

∂u
∂ν

(x, t) = 0, (x, t) ∈ ∂� × (
0, t∗), (2′)

where ν is the unit outward normal vector on ∂�, then Theorem 1 is valid for the case
m ≥ 1, and Theorems 4–6 are also valid.

4 Conclusion
Bounds for the blow-up time to a porous medium equation with weighted nonlocal source
and inner absorption terms under some appropriate measure in the whole-dimensional
space (N ≥ 1) are derived in this paper. Note that the methods for a semilinear parabolic
equation in [16, 28] are not necessarily applicable to our quasilinear parabolic model, and
our results extend the results for the model in [20, 28].
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