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Abstract
This paper deals with a Neumann boundary value problem in a d-dimensional box
T
d = (0,π )d (d = 1, 2, 3) for a nonlinear diffusion chemotaxis model with logistic

source. By using the embedding theorem, the higher-order energy estimates and
bootstrap arguments, the condition of chemotaxis-driven instability and the
nonlinear evolution near an unstable positive constant equilibrium for this
chemotaxis model are proved. Our result provides a quantitative characterization for
early spatial pattern formation on the positive constant equilibrium. Finally, numerical
simulations are carried out to support our theoretical nonlinear instability results.
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1 Introduction
Chemotaxis models take into account a diffusion term in the cell dynamics to model an
undirected or random component to movement. In general, a constant diffusion coeffi-
cient is assumed in many applications. However, using a nonlinear dependence on the cell
density in research of cell movement has also proliferated in recent years, it can be utilized
in ecological applications to describe “population-induced” movement for insect popula-
tions. In this case when possibly also cell proliferation is included, this leads to models of
form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ut = d1∇ · (D(U)∇U) – χ∇ · (U∇V ) + f (U), x ∈ �, t > 0,

τVt = d2�V + αU – βV , x ∈ �, t > 0,
∂U
∂xi

= ∂V
∂xi

= 0, x ∈ ∂�, t > 0,

U(x, 0) = U0(x) ≥ 0, V (x, 0) = V0(x) ≥ 0, x ∈ �,

(1.1)

where χ > 0 is the chemotactic sensitivity, and U(x, t), V (x, t) denote the density of the
cells population and the concentration of the chemoattractant, respectively. d1, d2 > 0 are
the cell and chemical diffusion coefficients, respectively. The function D(U) describes the
density-dependent motility of cells, and f (U) represents the proliferation rate of the cells.
The term αU – βV asserts that the chemical has a linear production and degradation.

For model (1.1) without the growth term f (U), when τ = 1, Höfer et al. in [1] intro-
duced a phenomenological description of cell-cell adhesion in a model for Dictyostelium
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discoideum aggregation by considering D(U) = μ1 + μ2N4

N4+U4 where N is a critical cell den-
sity. For the case D(U) = Un, n ≥ 0, Kowalczyk [2] obtained blow-up control relies on
the presence of a pressure function, which increases faster than a logarithm for high
enough cells densities: for such a pressure function the solutions cannot blow-up in a finite
time, and proved the global boundedness for (1.1) under some other conditions. However,
Hillen and Painter in [3] also reviewed its formulation from a biological perspective, and
showed necessary conditions for instability by a standard linear analysis at the homoge-
neous steady state of the model (1.1). Senba and Suzuki [4] described that if the positive
function D(U) rapidly increases with respect to U , then solutions to the system (1.1) ex-
ist globally in time. When the diffusion function D(U) takes values sufficiently large, i.e.
takes values greater than the values of a power function with sufficiently high power, in
[5], Kowalczyk and Szymańska proved that global-in-time existence of weak solutions.
In addition, the uniqueness of solutions was given provided that some higher regularity
condition on solutions is known a priori.

When τ = 0, for the model (1.1) with logistic source, in [6] it is shown that under
some suitable assumptions, then there exist initial data such that the smooth local-in-
time solution of a higher-dimensional chemotaxis system blows up in finite time. Cao and
Zheng [7] considered the boundedness for simplified the model (1.1) with the special case
D(U) ≥ c(U + 1)p, p ∈ R. For the case D(U) ≥ CDUm–1, m ≥ 1, Wang et al. [8] proved
that, for the case of positive diffusion function, the model (1.1) possesses a unique global
classical solution which is uniformly bounded, and that the weak solutions are global ex-
istence if the diffusion function is zero at some point, or a positive diffusion function and
the logistic damping effect is rather mild. Moreover, they asserted that the solutions ap-
proach constant equilibria in the large time for a specific case of the logistic source. In [9],
for the case of D(U) = (U + 1)p, p ≥ 0, Zheng et al. studied the global boundedness and
finite-time blow-up of solutions for a chemotaxis system with generalized volume-filling
effect and logistic source f (U) = λU – μUk , with λ ≥ 0, μ > 0 and k > 1. When D(U) = 1,
Zheng et al. [10] considered the global boundedness of solutions in a chemotaxis system
with nonlinear sensitivity and logistic source.

If D(U) ≡ 1 and f (U) = 0, then the model (1.1) reduces to the classical Keller–Segel
system. This model attracted a lot of attention in the mathematical literature (refer to
[11–14]). The first nonlinear instability result is due to Guo et al. in [15] who investigated
nonlinear dynamics near an unstable constant equilibrium in the classical Keller–Segel
model. Their results can be interpreted as a rigorous quantitative characterization for the
early-stage pattern formation in the Keller–Segel model. Recently, Fu et al. in [16] and
[17] studied nonlinear instability in the Keller–Segel model with a logistic source and cu-
bic source term, respectively. Their results indicated that chemotaxis-driven nonlinear
instability occurs in these models.

Motivated by the arguments in [15–17], it is the goal of the present paper to investigate
nonlinear evolution of pattern formation for the following nonlinear diffusion chemotaxis
model with logistic source under homogeneous Neumann boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ut = d1∇ · (Un∇U) – χ∇ · (U∇V ) + rU(1 – U
k ), x ∈ T

d, t > 0,

Vt = d2�V + αU – βV , x ∈ T
d, t > 0,

∂U
∂xi

= ∂V
∂xi

= 0, at xi = 0,π , 1 ≤ i ≤ d, t > 0,

U(x, 0) = U0(x) ≥ 0, V (x, 0) = V0(x) ≥ 0, x ∈ T
d,

(1.2)
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where T
d = (0,π )d (d = 1, 2, 3) is a d-dimensional box. The nonlinear diffusion is of the

form D(U) = Un for n ≥ 0, as studied by Kowalczyk [2], which means that the rate of
diffusion increases with increasing cell density. Eberl [18] also used this formulation in a
model for biofilm growth.

Yang et al. in [19] studied the global boundedness of solutions to (1.2) in the higher-
dimension (d ≥ 2). To the best of our knowledge, however, it is still open mathematically
whether there exists an unstable solutions to the linearized problem of (1.2) and the non-
linear problem (1.2). Particularly, nonlinear instability remained open. The proof of the
nonlinear instability based on unstable eigenvalues is nontrivial for several reasons. The
main difficulty is that the nonlinear term d1∇ · [(

∑n
i=1 Ci

nkn–iui)∇u]. The technical key of
our work is controlling the nonlinear growth of higher-order energy norm for the pertur-
bation by the linear growth rate.

To avoid excessive technicalities, let n ∈ Z
+ throughout this paper. Our main result (see

Theorem 5.1) indicates that chemotaxis-driven nonlinear instability occurs in the model
(1.2), that is, nonlinear patterns are created by chemotaxis for the model (1.2) with non-
linear diffusion.

The organization of this paper is as follows: In Sect. 2, we study local stability of positive
constant equilibrium point for the model (1.2) without chemotaxis. In Sect. 3, we consider
the growing modes of (1.2). In Sect. 4, the bootstrap lemma is established. In Sect. 5, we
show that, given any general initial perturbation, its nonlinear evolution is dominated by
the corresponding linear dynamics along a fixed finite number of fastest growing modes.
In the last section we draw some conclusions and carry out simple numerical simulations
for this model.

2 Analysis of local stability
We consider the following PDE system (1.2) without chemotaxis:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ut = d1∇ · (Un∇U) + rU(1 – U
k ), x ∈ T

d, t > 0,

Vt = d2�V + αU – βV , x ∈ T
d, t > 0,

∂U
∂xi

= ∂V
∂xi

= 0, at xi = 0,π , 1 ≤ i ≤ d, t > 0,

U(x, 0) = U0(x) ≥ 0, V (x, 0) = V0(x) ≥ 0, x ∈ T
d.

(2.1)

We use [·, ·] to denote a column vector. It is clear to see that the trivial equilibrium point
E0 = [0, 0] is unconditionally unstable, and that W̄ = [Ū , V̄ ] = [k, α

β
k] is the unique positive

equilibrium solution.
Let 0 = μ1 < μ2 < μ3 < · · · be the eigenvalues of the operator –� on T

d (d = 1, 2, 3)
with the homogeneous Neumann boundary condition, and E(μi) be the eigenspace corre-
sponding to μi in H1(Td). Let X = [H1(Td)]2, {φij : j = 1, . . . , dim E(μi)} be an orthonormal
basis of E(μi), and Xij = {c · φij | c ∈R

2}. Then X =
⊕∞

i=1 Xi, Xi =
⊕dim E(μi)

j=1 Xij.
Denote D = diag(d1kn, d2), F(W) = [rU(1 – U

k ),αU – βV ] and L = D� + FW(W̄), where

FW(W̄) =

(
–r 0
α –β

)

.

The linearization of (2.1) at [Ū , V̄ ] is Wt = L(W – W̄). For each i ≥ 1, Xi is invariant under
the operator L, and λ is an eigenvalue of L on Xi if and only if it is an eigenvalue of the
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matrix

–μiD + FW(W̄) =

(
–d1knμi – r 0

α –d2μi – β

)

.

Then –μiD + FW(W̄) has two negative eigenvalues –d1knμi and –d2μi – 1. Hence, the
positive equilibrium point [Ū , V̄ ] of (2.1) is locally asymptotically stable (see [20]).

Remark 2.1 The above result indicates that the Turing instability does not occur in the
absence of chemotactic effect.

3 L2-Estimate
Let u(x, t) = U(x, t) – Ū , v(x, t) = V (x, t) – V̄ . Then

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1kn∇2u – χk∇2v + d1∇[(
∑n

i=1 Ci
nkn–iui)∇u]

– χ∇(u∇v) – ru – r
k u2,

vt = d2∇2v + αu – βv,

(3.1)

where Ci
n = n!

i!(n–i)! . The corresponding linearized system is as follows:

⎧
⎨

⎩

ut = d1kn∇2u – χk∇2v – ru,

vt = d2∇2v + αu – βv.
(3.2)

Let w(x, t) ≡ [u(x, t), v(x, t)], q = [q1, . . . , qd] ∈ N
d ≡ �, and eq(x) =

∏d
i=1 cos(qixi). Then

{eq(x)}q∈� forms a basis of the space of functions in T
d that satisfy Neumann boundary

conditions.
We will find a normal mode to the linear reaction–diffusion system (3.2) of the following

form:

w(x, t) = rqeλqteq(x), (3.3)

where rq is a vector depending on q. Substituting (3.3) into (3.2), it is easy to see the fol-
lowing dispersion formula for λq:

λ2
q +

[(
d1kn + d2

)
q2 + r + β

]
λq + q2(d1d2knq2 + d1knβ + rd2 – αχk

)
+ rβ = 0, (3.4)

where q2 =
∑d

i=1 q2
i . Thus, we derive a linear instability criterion by requiring that there

exists a q such that

d1d2knq4 +
(
d1knβ + rd2 – αχk

)
q2 + rβ < 0 (3.5)

to ensure that (3.4) has at least one positive root λq. It follows from (3.5) that

[(
d1kn – d2

)
q2 + r – β

]2 + 4αχkq2 > 0. (3.6)
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There exist two distinct real roots

λ±
q =

–[q2(d1kn + d2) + r + β] ±√
[(d1kn – d2)q2 + r – β]2 + 4αχkq2

2
. (3.7)

The corresponding (linearly independent) eigenvectors by r–(q) and r+(q) are given by

r±(q) =
[

λ±
q + d2q2 + β

α
, 1
]

. (3.8)

Hence, there are only finitely many q such that λ+
q > 0. We denote the largest eigenvalue by

λmax > 0 and define �max ≡ {q ∈ � | λ+
q = λmax}. From (3.7) we can regard λ+

q as a function
of q2. Moreover, there is one q2 (possible two) having λ+(q2) = λmax.

Given any initial perturbation w(x, 0), we can expand it as

w(x, 0) =
∑

q∈�

wqeq(x) =
∑

q∈�

{
w–

qr–(q) + w+
qr+(q)

}
eq(x). (3.9)

We denote by 〈·, ·〉 and (·, ·) the inner product of [L2(Td)]2 and the scalar product of
R

2, respectively. For any g(·, t) ∈ [L2(Td)]2, we denote ‖g(·, t)‖ ≡ ‖g(·, t)‖L2 . Throughout
this paper, we always denote universal constants depending on d1, d2, χ , k, r, α, β by Ci

(i = 1, 2, . . .) and choose an appropriate constant

K =
χ2

d1d2kn–2 . (3.10)

The unique solution w(x, t) = [u(x, t), v(x, t)] of (3.2) takes the form

w(x, t) =
∑

q∈�

{
w–

qr–(q)eλ–
q t + w+

qr+(q)eλ+
qt}eq(x) ≡ eLtw(x, 0). (3.11)

Our main result in this section is the following lemma.

Lemma 3.1 Let the instability criterion (3.5) hold. Let w(x, t) ≡ eLtw(x, 0) be a solution
to the linearized system (3.2) with initial condition w(x, 0). Then there exists a constant
Ĉ1 ≥ 1 depending on d1, d2, k, χ , r, α, β , such that

∥
∥w(·, t)

∥
∥≤ Ĉ1eλmaxt∥∥w(·, 0)

∥
∥, ∀t ≥ 0. (3.12)

Proof We prove the lemma in the following two cases.
(1) t ≥ 1. From (3.7), for q large, it follows that

lim
q→∞

λ±
q

q2 = –d1kn, –d2, (3.13)

which leads to

λ±
q ≤ – min

{
d1kn, d2

}
q2. (3.14)
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Moreover, there exists positive constant C1 for all q > 0 such that

∣
∣
∣
∣

λ±
q

q2

∣
∣
∣
∣≤ C1. (3.15)

By the quadratic formula of (3.4), we can obtain

∣
∣λ+

q – λ–
q
∣
∣≥ 2q

√
αχk. (3.16)

It follows from wq = w–
qr–(q) + w+

qr+(q) that

∣
∣w±

q
∣
∣≤ |r±(q)| × |wq|

|det [r–(q), r+(q)]| . (3.17)

By (3.8) and (3.15), for all q > 0, there exists a positive constant C2, such that

∣
∣r±(q)

∣
∣≤

(
λ±

q

αq2 +
d2

α

)

q2 +
β

α
+ 1 ≤ C2q2, (3.18)

where C2 = 2 max{ 1
α

(C1 + d2), β

α
+ 1}. By (3.16), we deduce that

1
|det [r–(q), r+(q)]| =

1
|λ+

q – λ–
q| ≤ 1

2q
√

αχk
. (3.19)

Plugging (3.18), (3.19) into (3.17) yields

∣
∣w±

q
∣
∣≤ C2q2 1

2q
√

αχk
|wq| = C3q|wq|. (3.20)

It follows from (3.11), (3.14) and (3.20) that for t ≥ 1 and q large

∥
∥w(x, t)

∥
∥2 ≤ 4

(
π

2

)d

C2
2C2

3

∑

q∈�

q6 exp
(
–2 min

{
d1kn, d2

}
q2)|wq|2

≤ 4C2
4

(
π

2

)d ∑

q∈�

|wq|2 = 4C2
4
∥
∥w(x, 0)

∥
∥2,

thus,

∥
∥w(x, t)

∥
∥≤ 2C4

∥
∥w(x, 0)

∥
∥ exp(λmaxt).

(2) t ≤ 1. It follows from (3.2) that

1
2

d
dt

∫

Td

{|u|2 + K |v|2}dx +
∫

Td

{
d1kn|∇u|2 + Kd2|∇v|2 – χk∇u∇v

}
dx

= –Kβ

∫

Td
v2 dx – r

∫

Td
u2 dx + Kα

∫

Td
uv dx. (3.21)

By Young’s inequality,

–χk∇u∇v ≥ –
d1kn

2
|∇u|2 –

χ2

2d1kn–2 |∇v|2. (3.22)
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Then using Young’s inequality, (3.21), (3.22) and (3.10), we get

1
2

d
dt

∫

Td

{|u|2 + K |v2|}dx ≤
√

K
2

∫

Td

{|u|2 + K |v|2}dx. (3.23)

By the Grownwall inequality, we deduce that

∥
∥w(x, t)

∥
∥≤ Ĉ1eλmaxt∥∥w(x, 0)

∥
∥,

where Ĉ1 = max {2C4,
√

e/K} ≥ 1 if 0 < K < 1, and let Ĉ1 = max {2C4,
√

KeK } ≥ 1 if K ≥ 1.
This completes the proof of Lemma 3.1. �

4 Bootstrap lemma and H2-estimate
By standard PDE theory [21], we can establish the existence of local solutions for (3.1).

Lemma 4.1 (Local existence) For s ≥ 1 (d = 1) and s ≥ 2 (d = 2, 3), there exists a T0 > 0
such that (3.1) with u(·, 0), v(·, 0) ∈ Hs has a unique solution w(·, t) on (0, T0) which satisfies

∥
∥w(t)

∥
∥

Hs ≤ C
∥
∥w(0)

∥
∥

Hs , 0 < t < T0,

where C is a positive constant depending on d1, d2, k, α, β , r, χ .

Lemma 4.2 Let [u(x, t), v(x, t)] be a solution of (3.1). Then

1
2

d
dt

∑

|σ |=2

∫

Td

{∣
∣Dσ u

∣
∣2 + K

∣
∣Dσ v

∣
∣2
}

dx

+
∑

|σ |=2

∫

Td

{
d1kn

4
∣
∣∇Dσ u

∣
∣2 +

d2K
2
∣
∣∇Dσ v

∣
∣2
}

dx

+ r
∑

|σ |=2

∫

Td

∣
∣Dσ u

∣
∣2 dx +

K
2
∑

|σ |=2

∫

Td

∣
∣Dσ v

∣
∣2 dx

≤ Ĉ2

(

χ + d1

n∑

i=1

Ci
nkn–i +

2r
k

)( n∑

i=1

‖w‖i
H2

)
∥
∥∇3w

∥
∥2 + Ĉ3‖u‖2,

where Ĉ3 = C3
0χ6α6

2d5
1d3

2k5n–6 .

Proof Notice that if w(x, t) is a solution of (3.1) on T
d , then the even extension of w(x, t)

on 2Td = (–π ,π )d (d = 1, 2, 3) is also the solution of (3.1) which satisfies homogeneous
Neumann boundary conditions and periodical boundary conditions on 2Td = (–π ,π )d

(d = 1, 2, 3). From this, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ũt = d1kn∇2ũ – χk∇2ṽ + d1∇[(
∑n

i=1 Ci
nkn–iũi)∇ũ]

– χ∇(ũ∇ ṽ) – rũ – r
k ũ2,

ṽt = d2∇2ṽ + αũ – β ṽ,
∂ũ
∂xi

= ∂ ṽ
∂xi

= 0, at xi = –π , 0,π , for 1 ≤ i ≤ d,

(4.1)
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where [ũ(x, t), ṽ(x, t)] is the even extension of [u(x, t), v(x, t)] on 2Td . By (4.1), we can easily
deduce that

1
2

d
dt

∫

2Td
|∂xixj ũ|2 dx + d1kn

∫

2Td

∣
∣∇(∂xixj ũ)

∣
∣2 dx

– χk
∫

2Td
∇(∂xixj ũ) · ∇(∂xixj ṽ) dx + r

∫

2Td
|∂xixj ũ|2 dx

= χ

∫

2Td
∇(∂xixj ũ) · ∂xixj (ũ∇ ṽ) dx – d1nkn–1

∫

2Td
∇(∂xixj ũ) · ∂xixj (ũ∇ũ) dx

–
1
2

d1n(n – 1)kn–2
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũ2∇ũ

)
dx

–
1
6

d1n(n – 1)(n – 2)kn–3
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũ3∇ũ

)
dx – · · ·

– d1nk
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũn–1∇ũ

)
dx

– d1

∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũn∇ũ

)
dx

–
2r
k

∫

2Td
ũ|∂xixj ũ|2 dx –

2r
k

∫

2Td
∂xi ũ · ∂xj ũ · ∂xixj ũ dx (4.2)

and

1
2

d
dt

∫

2Td
K |∂xixj ṽ|2 dx + Kd2

∫

2Td

∣
∣∇(∂xixj ṽ)

∣
∣2 dx + Kβ

∫

2Td
|∂xixj ṽ|2 dx

= Kα

∫

2Td
∂xixj ũ · ∂xixj ṽ dx. (4.3)

It follows from (4.2) and (4.3) that

1
2

d
dt

∫

2Td

(|∂xixj ũ|2 + K |∂xixj ṽ|2
)

dx

+
∫

2Td

(
d1kn∣∣∇(∂xixj ũ)

∣
∣2 + Kd2

∣
∣∇(∂xixj ṽ)

∣
∣2 – χk∇(∂xixj ũ) · ∇(∂xixj ṽ)

)
dx

+ r
∫

2Td
|∂xixj ũ|2 dx + βK

∫

2Td
|∂xixj ṽ|2 dx

= χ

∫

2Td
∇(∂xixj ũ) · ∂xixj (ũ∇ ṽ) dx – d1nkn–1

∫

2Td
∇(∂xixj ũ) · ∂xixj (ũ∇ũ) dx

–
1
2

d1n(n – 1)kn–2
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũ2∇ũ

)
dx

–
1
6

d1n(n – 1)(n – 2)kn–3
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũ3∇ũ

)
dx

– · · · – d1nk
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũn–1∇ũ

)
dx

– d1

∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũn∇ũ

)
dx + αK

∫

2Td
∂xixj ũ · ∂xixj ṽ dx

–
2r
k

∫

2Td

(
ũ|∂xixj ũ|2 + ∂xi ũ · ∂xj ũ · ∂xixj ũ

)
dx

:= Jχ + J1 + J2 + J3 + · · · + Jn–1 + Jn + Jα + Jr . (4.4)
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Thanks to Young’s inequality and (3.10),

–χk∇(∂xixj ũ) · ∇(∂xixj ṽ) ≥ –
d1kn

2
∣
∣∇(∂xixj ũ)

∣
∣2 –

d2K
2
∣
∣∇(∂xixj ṽ)

∣
∣2. (4.5)

The nonlinear term Jχ is bounded by

Jχ := χ

∫

2Td
∇(∂xixj ũ) · ∂xixj (ũ∇ ṽ) dx

≤ χ

{∫

2Td

∣
∣∇(∂xixj ũ) · ∂xixj ũ · ∇ ṽ

∣
∣dx +

∫

2Td

∣
∣∇(∂xixj ũ) · ∂xj ũ · ∇(∂xi ṽ)

∣
∣dx

+
∫

2Td

∣
∣∇(∂xixj ũ) · ∂xi ũ · ∇(∂xj ṽ)

∣
∣dx +

∫

2Td

∣
∣ũ · ∇(∂xixj ũ) · ∇(∂xixj ṽ)

∣
∣dx

}

≤ χ‖∇ ṽ‖L∞
∥
∥∇(∂xixj ũ)

∥
∥‖∂xixj ũ‖ + 2χ

d∑

i=1

‖∇ũ‖L∞‖∂xixj ṽ‖
∥
∥∇(∂xixj ũ)

∥
∥

+ χ‖ũ‖L∞
∥
∥∇(∂xixj ũ)

∥
∥
∥
∥∇(∂xixj ṽ)

∥
∥. (4.6)

By applying the Sobolev embedding to control the L∞ norm for d ≤ 3, there exists a con-
stant C5 > 0 such that

‖g‖L∞(2Td) ≤ C5‖g‖H2(2Td). (4.7)

Moreover, notice that
∫

2Td
∇ũ dx =

∫

2Td
∇ ṽ dx = 0,

∫

2Td
∂xixj ũ dx =

∫

2Td
∂xixj ṽ dx = 0. (4.8)

Using the Poincaré inequality, there exists a constant C6 > 0 such that if g ∈ H1(2Td) and
∫

2Td g dx = 0, then

‖g‖L4(2Td) ≤ C6‖∇g‖. (4.9)

From (4.8) and (4.9), it follows that

‖∂xi g‖ ≤ C7‖∇∂xi g‖, ‖∂xixj g‖ ≤ C8‖∇∂xixj g‖

and

‖∇g‖ ≤ C9

(∑

|σ |=2

∥
∥∇Dσ g

∥
∥2
) 1

2 ≤ C2
9

(∑

|α|=2

∥
∥∇(Dσ

)
g
∥
∥2
) 1

2
. (4.10)

Using (4.7), we get

‖∇g‖L∞ ≤ C10‖∇g‖H2 ≤ C11
∥
∥∇3g

∥
∥. (4.11)

Thus from (4.7) and (4.11), one can derive that

Jχ ≤ χC12‖w̃‖H2
∥
∥∇3w̃

∥
∥2. (4.12)
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Similarly, one knows that

J1 ≤ d1nkn–1C12‖w̃‖H2
∥
∥∇3w̃

∥
∥2. (4.13)

Applying interpolation inequalities, one has

‖∂xixj g‖2 ≤ C0

(

a
∥
∥∇(∂xixj g)

∥
∥2 +

‖g‖2

4a2

)

, ∀a > 0. (4.14)

By the choice of a = d2
1d2k2n–2

2α2χ2C0
in (4.14),

Jα := αK
∫

2Td
∂xixj ũ · ∂xixj ṽ dx

≤ K
2
∑

|σ |=2

∫

2Td

∣
∣Dσ ṽ

∣
∣2 dx +

d1kn

4
∑

|σ |=2

∫

2Td

∣
∣∇(Dσ ũ

)∣
∣2 dx + Ĉ3‖ũ‖2, (4.15)

where Ĉ3 = C3
0χ6α6

2d5
1d3

2k5n–6 .
Now, according to Hölder’s inequality, (4.7), (4.9) and (4.11), one can verify that

J2 := –
1
2

d1n(n – 1)kn–2
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũ2∇ũ

)
dx

≤ d1n(n – 1)kn–2‖∇ũ‖L∞‖∇ũ‖2
L4

∥
∥∇(∂xixj ũ)

∥
∥

+ d1n(n – 1)kn–2‖∇ũ‖L∞‖ũ‖L∞‖∂xixj ũ‖∥∥∇(∂xixj ũ)
∥
∥

+ 2d1n(n – 1)kn–2
d∑

i=1

‖ũ‖L∞‖∇ũ‖L∞‖∂xixj ũ‖∥∥∇(∂xixj ũ)
∥
∥

+
1
2

d1n(n – 1)kn–2‖ũ‖2
L∞
∥
∥∇(∂xixj ũ)

∥
∥2

≤ 1
2

d1n(n – 1)kn–2C13‖w̃‖2
H2

∥
∥∇3w̃

∥
∥2, (4.16)

J3 := –
1
6

d1n(n – 1)(n – 2)kn–3
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũ3∇ũ

)
dx

≤ d1n(n – 1)(n – 2)kn–3‖ũ‖L∞‖∇ũ‖L∞‖∇ũ‖2
L4

∥
∥∇(∂xixj ũ)

∥
∥

+
3
2

d1n(n – 1)(n – 2)kn–3‖ũ‖2
L∞‖∇ũ‖L∞‖∂xixj ũ‖∥∥∇(∂xixj ũ)

∥
∥

+
1
6

d1n(n – 1)(n – 2)kn–3‖ũ‖3
L∞
∥
∥∇(∂xixj ũ)

∥
∥2

≤ 1
6

d1n(n – 1)(n – 2)kn–3C14‖w̃‖3
H2

∥
∥∇3w̃

∥
∥2, (4.17)

Jn–1 := –d1nk
∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũn–1∇ũ

)
dx

≤ d1nk
{

(n – 1)(n – 2)‖ũ‖n–3
L∞ ‖∇ũ‖L∞‖∇ũ‖2

L4

∥
∥∇(∂xixj ũ)

∥
∥

+ 3(n – 1)‖ũ‖n–2
L∞ ‖∇ũ‖L∞‖∂xixj ũ‖∥∥∇(∂xixj ũ)

∥
∥ + ‖ũ‖n–1

L∞
∥
∥∇(∂xixj ũ)

∥
∥2}

≤ d1nkC1n‖w̃‖n–1
H2

∥
∥∇3w̃

∥
∥2, (4.18)
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and

Jn := –d1

∫

2Td
∇(∂xixj ũ) · ∂xixj

(
ũn∇ũ

)
dx

≤ d1
{

n(n – 1)‖ũ‖n–2
L∞ ‖∇ũ‖L∞‖∇ũ‖2

L4

∥
∥∇(∂xixj ũ)

∥
∥

+ 3n‖ũ‖n–1
L∞ ‖∇ũ‖L∞‖∂xixj ũ‖∥∥∇(∂xixj ũ)

∥
∥ + ‖ũ‖n

L∞
∥
∥∇(∂xixj ũ)

∥
∥2}

≤ d1C1n+1‖w̃‖n
H2

∥
∥∇3w̃

∥
∥2, (4.19)

where C13 = 2C2
6C11 + 6C5C11 + C2

5 , C14 = 6C5C2
6C11 + 9C2

5C11 + C3
5 , C1n = (n – 1)(n –

2)Cn–3
5 C2

6C11 + 3(n – 1)Cn–2
5 C11 + Cn–1

5 and C1,n+1 = n(n – 1)Cn–2
5 C2

6C11 + 3nCn–2
5 C11 + Cn

5 .
Again by (4.7), (4.10) and (4.11), we can estimate

Jr ≤ 2r
k
{‖ũ‖L∞‖∂xixj ũ‖2 + ‖∇ũ‖L∞‖∇ũ‖‖∂xixj ũ‖},

further,

∑

|α|=2

Jr ≤ 2r
k

C1r‖w̃‖H2
∥
∥∇3w̃

∥
∥2, (4.20)

where C1r = C8(C5C8 + C11).
Recall that [ũ, ṽ] is the even extension of [u, v]. Plugging (4.12), (4.13), (4.15), (4.16),

(4.17), (4.18), (4.19), (4.20) into (4.4),

1
2

d
dt

∑

|σ |=2

∫

2Td

(∣
∣Dσ ũ

∣
∣2 + K

∣
∣Dσ ṽ

∣
∣2
)

dx

+
∑

|σ |=2

∫

2Td

(
d1kn

4
∣
∣∇Dσ ũ

∣
∣2 +

d2K
2
∣
∣∇(Dσ ṽ

)∣
∣2
)

dx

+ r
∑

|σ |=2

∫

2Td

∣
∣Dσ ũ

∣
∣2 dx +

K
2
∑

|σ |=2

∫

2Td

∣
∣Dσ ṽ

∣
∣2 dx

≤ Ĉ2

(

χ + d1

n∑

i=1

Ci
nkn–i +

2r
k

)( n∑

i=1

‖w̃‖i
H2

)
∥
∥∇3w̃

∥
∥2 + Ĉ3‖ũ‖2,

where Ĉ2 = C12 +
∑n+1

i=2 C1i + C1r . This completes the proof. �

Lemma 4.3 Let w(x, t) be a solution of (3.1) such that, for 0 ≤ t ≤ T < T0,

n∑

i=1

∥
∥w(·, t)

∥
∥i

H2 ≤ 1
Ĉ2

min

{
d1kn

4
,

d2K
2

}

, (4.21)

and

∥
∥w(·, t)

∥
∥≤ Ĉ1eλmaxt∥∥w(·, 0)

∥
∥. (4.22)

Then

∥
∥w(·, t)

∥
∥n

H2 ≤ Ĉ4
{∥
∥w(·, 0)

∥
∥2

H2 + e2λmaxt∥∥w(·, 0)
∥
∥2} n

2 , 0 ≤ t ≤ T ,
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where Ĉ4 = max {((1 + C2
9)K) n

2 , [Ĉ2
1(1 + (1+C2

9 )Ĉ2
3

λmax
)] n

2 }, if K ≥ 1 and Ĉ4 = max{( 1+C2
9

K ) n
2 , [Ĉ2

1(1+
(1+C2

9 )Ĉ2
3

Kλmax
)] n

2 }, if K < 1.

Proof From (4.10), one knows that

∥
∥∇w(·, t)

∥
∥2 ≤ C2

9

∑

|σ |=2

∥
∥Dσ w(·, t)

∥
∥2, (4.23)

which leads to

∥
∥w(·, t)

∥
∥n

H2 ≤
(
∥
∥w(·, t)

∥
∥2 +

(
C2

9 + 1
)∑

|σ |=2

∥
∥Dσ w(·, t)

∥
∥2
) n

2
. (4.24)

By Lemma 4.2 and (4.21), we can see that

1
2

d
dt

∑

|σ |=2

∫

Td

(∣
∣Dσ u

∣
∣2 + K

∣
∣Dσ v

∣
∣2
)

dx ≤ Ĉ3‖u‖2 ≤ Ĉ3
∥
∥w(·, t)

∥
∥2. (4.25)

From this and (4.22), it follows that

∑

|σ |=2

∫

Td

(∣
∣Dσ u(·, t)

∣
∣2 + K

∣
∣Dσ v(·, t)

∣
∣2
)

dx

≤
∑

|σ |=2

∫

Td

(∣
∣Dσ u(·, 0)

∣
∣2 + K

∣
∣Dσ v(·, 0)

∣
∣2
)

dx +
Ĉ2

1Ĉ3

λmax
e2λmaxt∥∥w(·, 0)

∥
∥2. (4.26)

We will proceed in the following two cases: K ≥ 1, K < 1.
(1) If K ≥ 1, using (4.26) yields

∑

|σ |=2

∥
∥Dσ w(·, t)

∥
∥2 ≤ K

∑

|σ |=2

∥
∥Dσ w(·, 0)

∥
∥2 +

Ĉ2
1Ĉ3

λmax
e2λmaxt∥∥w(·, 0)

∥
∥2.

Then it is not hard to verify from (4.22), (4.24) and (4.26) that

∥
∥w(·, t)

∥
∥n

H2 ≤ Ĉ4
(∥
∥w(·, 0)

∥
∥2

H2 +
∥
∥w(·, 0)

∥
∥2e2λmaxt) n

2 ,

where Ĉ4 = max {((1 + C2
9)K) n

2 , [Ĉ2
1(1 + (1+C2

9 )Ĉ2
3

λmax
)] n

2 }.
(2) If K < 1, notice that

K
∑

|σ |=2

∥
∥Dσ w(·, t)

∥
∥2 ≤

∑

|σ |=2

∥
∥Dσ w(·, 0)

∥
∥2 +

Ĉ2
1Ĉ3

λmax
e2λmaxt∥∥w(·, 0)

∥
∥2.

Moreover, applying (4.22) and (4.24), we can see that

∥
∥w(·, t)

∥
∥n

H2 ≤ Ĉ4
(∥
∥w(·, 0)

∥
∥2

H2 +
∥
∥w(·, 0)

∥
∥2e2λmaxt) n

2 ,

where Ĉ4 = max {( 1+C2
9

K ) n
2 , [Ĉ2

1(1 + (1+C2
9 )Ĉ2

3
λmaxK )] n

2 } and thereby we complete the proof. �
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5 Main result
Let θ be a small fixed constant, and λmax be the dominant eigenvalue which is the maximal
growth rate. We also denote the gap between the largest growth rate λmax and the rest by
ρ > 0 i.e., ρ = minq∈�\�max |λmax – λq|. Then for δ > 0 arbitrary small, we define the escape
time Tδ by

θ = δeλmaxTδ
, (5.1)

or equivalently

Tδ =
1

λmax
ln

θ

δ
. (5.2)

Our main theorem in this paper is as follows.

Theorem 5.1 Assume that the set of q2 =
∑d

i=1 q2
i satisfying instability criterion (3.5) is not

empty for given parameters d1, d2, k, χ , α, β , r. Let

w0(x) =
∑

q∈�

{
w–

qr–(q) + w+
qr+(q)

}
eq(x) ∈ H2, (5.3)

such that ‖w0‖ = 1. Then there exist constants δ0 > 0, Ĉ > 0 and θ > 0 depending on d1, d2,
k, χ , α, β , r, such that, for all 0 < δ ≤ δ0, if the initial perturbation of the steady state [Ū , V̄ ]
is wδ(·, 0) = δw0, then its nonlinear evolution wδ(·, t) satisfies

∥
∥
∥
∥wδ(·, t) – δeλmaxt

∑

q∈�max

w+
qr+(q)eq(x)

∥
∥
∥
∥

≤ Ĉ

{

e–ρt +
n∑

i=1

(
δi‖w0‖i+1

H2 + δieiλmaxt)
}

δeλmaxt (5.4)

for 0 ≤ t ≤ Tδ , and ρ > 0 is the gap between λmax and the rest of λq in (5.4).

Proof Let wδ(x, t) be the solutions to (3.1) with initial data wδ(·, 0) = δw0. We define

T∗ = sup

{

t
∣
∣
∣
∥
∥wδ(·, t) – δeLtw0

∥
∥≤ Ĉ1

2
δeλmaxt

}

(5.5)

and

T∗∗ = sup

{

t
∣
∣
∣

n∑

i=1

∥
∥wδ(·, t)

∥
∥i

H2 ≤ 1
Ĉ∗

2
min

{
d1kn

4
,

d2K
2

}}

. (5.6)

First, one can estimate the H2 norm of wδ(x, t) for 0 ≤ t ≤ min {Tδ , T∗, T∗∗}. From the
definition of T∗ and Lemma 3.1, for 0 < t ≤ T∗, it derives that

∥
∥wδ(·, t)

∥
∥≤ 3

2
Ĉ1δeλmaxt . (5.7)
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In the light of Lemma 4.3, it is easy to see that

∥
∥wδ(·, t)

∥
∥

H2 ≤ Ĉ
1
n

4
{
δ‖w0‖H2 + δeλmaxt} (5.8)

and

∥
∥wδ(·, t)

∥
∥i+1

H2 ≤ 2iĈ
i+1
n

4
{
δi+1‖w0‖i+1

H2 + δi+1e(i+1)λmaxt}, 1 ≤ i ≤ n. (5.9)

Second, we establish a sharper L2 estimate for wδ(x, t) for 0 ≤ t ≤ min {Tδ , T∗, T∗∗}. By
Duhamel’s principle, the solution of (3.1) is written as

wδ(·, t) = δeLtw0 –
∫ t

0
eL(t–τ )

[

–d1∇
(( n∑

i=1

Ci
nkn–i(uδ(τ )

)i
)

∇(uδ(τ )
)
)

+ χ∇(uδ(τ )∇uδ(τ )
)

+
r
k
(
uδ(τ )

)2, 0

]

dτ . (5.10)

By Lemma 3.1, (4.7), (4.9) and (5.9), notice that t ≤ min {Tδ , T∗, T∗∗}; it is bounded by

∥
∥wδ(t) – δeLtw0

∥
∥

≤ Ĉ1

∫ t

0
eλmax(t–τ )

[

χ
∥
∥∇uδ(τ )

∥
∥

L4

∥
∥∇vδ(τ )

∥
∥

L4 + χ
∥
∥uδ(τ )

∥
∥

L∞
∥
∥∇2(vδ(τ )

)∥
∥

+ d1

( n∑

i=1

Ci
nkn–ii

∥
∥uδ(τ )

∥
∥i–1

L∞

)
∥
∥∇uδ(τ )

∥
∥2

L4 +
r
k
∥
∥uδ(τ )

∥
∥2

L4

]

dτ

≤ Ĉ1

∫ t

0
eλmax(t–τ )

{
[
χ
(
C5 + C2

6
)

+ rC2
6/k

]∥
∥wδ(τ )

∥
∥2

H2 + C̄
n∑

i=1

∥
∥wδ(τ )

∥
∥i+1

H2

}

dτ

≤ Ĉ1Ĉ5

∫ t

0
eλmax(t–τ )

n∑

i=1

∥
∥wδ(τ )

∥
∥i+1

H2 dτ

≤ Ĉ1Ĉ5

{
1

λmax

n∑

i=1

Ĉ
i+1
n

4 2iδi‖w0‖i+1
H2 +

1
λmax

n∑

i=1

Ĉ
i+1
n

4
2i

i
δieiλmaxt

}

δeλmaxt . (5.11)

Next, there exists sufficiently small δ0, for 0 < δ ≤ δ0, so we can prove that

Tδ = min
{

Tδ , T∗, T∗∗}.

If T∗∗ is the smallest, we can let t = T∗∗ ≤ Tδ in (5.8) and (5.9) to obtain

n∑

i=1

∥
∥wδ

(·, T∗∗)∥∥i
H2 ≤

n∑

i=1

Ĉ
i
n

4 2i–1(δi∥∥w(·, 0)
∥
∥i

H2 + δieiλmaxT∗∗)

≤
n∑

i=1

Ĉ
i
n

4 2i–1∥∥wδ(·, 0)
∥
∥i

H2 +
n∑

i=1

Ĉ
i
n

4 2iθ i.
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Choosing θ satisfies

Ĉ∗
2

n∑

i=1

Ĉ
i
n

4 2iθ i ≤ 1
2

min

{
d1kn

4
,

d2K
2

,
λmax

2

}

(5.12)

and for δ sufficiently small, such that

n∑

i=1

Ĉ
i
n

4 2i–1∥∥wδ(·, 0)
∥
∥i

H2 ≤ 1
2Ĉ∗ min

{
d1kn

4
,

d2K
2

}

.

Thus, one can get

n∑

i=1

∥
∥wδ

(·, T∗∗)∥∥i
H2 ≤ 1

Ĉ∗
2

min

{
d1kn

4
,

d2K
2

}

.

This is a contradiction to the definition of T∗∗. On the other hand, if T∗ is the minimum,
we let t = T∗ ≤ Tδ in (5.11). By (5.12) and for δ ≤ δ0,

Ĉ4Ĉ5
1

λmax

n∑

i=1

Ĉ
i
n

4 2iδi
0
∥
∥w(·, 0)

∥
∥i+1

H2 <
1
4

,

then

∥
∥wδ

(·, T∗) – δeLT∗w0
∥
∥

≤ Ĉ1Ĉ4Ĉ5

{
1

λmax

n∑

i=1

Ĉ
i
n

4 2iδi∥∥w(·, 0)
∥
∥i+1

H2 +
1

λmax

n∑

i=1

Ĉ
i
n

4
2i

i
θ i

}

δeλmaxT∗

<
1
2

ĈδeλmaxT∗
,

where let Ĉ4Ĉ5/Ĉ∗
2 ≤ 1. This again contradicts the definition of T∗. Hence, Tδ is the small-

est.
Now, it follows from (3.10) that

∥
∥
∥
∥wδ(·, t) – δeλmaxt

∑

q∈�max

w+
qr+(q)eq(x)

∥
∥
∥
∥

≤ ∥
∥wδ(·, t) – δeLtw0

∥
∥ +

∥
∥
∥
∥δ

∑

q∈�max

w–
qr–(q)eλ–

q teq(x)
∥
∥
∥
∥

+
∥
∥
∥
∥δ

∑

q∈�\�max

{
w–

qr–(q)eλ–
q t + w+

qr+(q)eλ+
qt}eq(x)

∥
∥
∥
∥

=
∥
∥wδ(·, t) – δeLtw0

∥
∥ + I1 + I2. (5.13)

By (3.7), we know that there is one (or two) q2 satisfying λ+(q2) = λmax. If there is only one q2

satisfying λ+(q2) = λmax, it is denoted by q2
max; if there are q2

1 and q2
2 satisfying λ+(q2

i ) = λmax
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(i = 1, 2), one can let q2
max = max {q2

1, q2
2}. Using (3.17) and(3.19) yields

I2
1 ≤ 4δ2e2(λmax–ρ)t

(
π

2

)d ∑

q∈�max

∣
∣w–

q
∣
∣2
∣
∣r–(q)

∣
∣2

≤ 4C2
2C2

4δ
2e2(λmax–ρ)t

(
π

2

)d ∑

q∈�max

q6|wq|2

≤ 4C2
2C2

4δ
2e2(λmax–ρ)tq6

max,

that is,

I1 ≤ Ĉ6δe(λmax–ρ)t . (5.14)

Similarly, one can verify that

I2 ≤ δe(λmax–ρ)t . (5.15)

Combining (5.11) with (5.13)–(5.14) yields

∥
∥
∥
∥wδ(·, t) – δeλmaxt

∑

q∈�max

w+
qr+(q)eq(x)

∥
∥
∥
∥

≤
{

(Ĉ6 + 1)e–ρt +
Ĉ1Ĉ4Ĉ5

λmax

( n∑

i=1

Ĉ
i
n

4 2iδi∥∥w(·, 0)
∥
∥i+1

H2 +
∑n

i=1 Ĉ
i
n

4
2i

i δieiλmaxt

λmax

)}

· δeλmaxt

≤ Ĉ

{

e–ρt +
n∑

i=1

(
δi‖w0‖i+1

H2 + δieiλmaxt)
}

δeλmaxt ,

where Ĉ = max{Ĉ6 + 1, Ĉ1Ĉ5
λmax

∑n
i=1 Ĉ

i+1
n

4 2i} and thereby conclude the proof. �

Theorem 5.1 implies that the dynamics of a general perturbation is characterized by such
linear dynamics over a long time period of εT δ ≤ t ≤ Tδ , for any ε > 0. In particular, we
can choose a function w0(x) ∈ H2(Td) such that w+

q0 �= 0 for at least one q0 = [q01, . . . , q0d] ∈
�max. Let w0(x) = κ

r+(q0)
|r+(q0)| eq0 (x), where κ = 1/‖eq0‖ =

√
(2/π )d so that ‖w0(x)‖ = 1. Then

∥
∥w0(x)

∥
∥

H2 =
(
1 + |q0|2 + |q0|4

) 1
2 ≡ C(q0). (5.16)

It follows from Theorem 5.1 that for t = Tδ

∥
∥wδ

(·, Tδ
)

– δeλmaxTδ
w0(x)

∥
∥

≤ Ĉ

{

e–ρTδ
+

n∑

i=1

δi‖w0‖i+1
H2 +

n∑

i=1

δieiλmaxTδ

}

δeλmaxTδ

≤ Ĉ

{

e–ρTδ
+

n∑

i=1

δi‖w0‖i+1
H2 +

n∑

i=1

θ i

}

θ .
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Choose θ i < 1
4nĈ

and δ sufficiently small such that

e–ρTδ
=
(

δ

θ

) ρ
λmax

<
1

8Ĉ
,

n∑

i=1

δi‖w0‖i+1
H2 = C(q0)

n∑

i=1

(
C(q0)δ

)i <
1

8Ĉ
.

Thus

∥
∥wδ

(·, Tδ
)

– δeλmaxTδ
w0(x)

∥
∥ <

θ

2
,

that is,

∥
∥wδ

(
x, Tδ

)∥
∥≥ ∥

∥δeλmaxTδ
w0(x)

∥
∥ –

1
2
θ > δeλmaxTδ

–
1
2
θ =

θ

2
> 0.

which shows that the solution can leave a positive distance before the escape time T δ . This
results also imply that the linearized unstable equilibrium point W̄ = [k, α

β
k] is nonlinearly

unstable.

6 Conclusion and numerical simulations
In this paper we analyze the pattern formation of a chemotaxis model with nonlinear cell
diffusion. We address verification that, given any general perturbation of magnitude δ,
its nonlinear evolution is dominated by the corresponding linear dynamics along a finite

Figure 1 Pattern appears in system (1.2). In Fig. 1, the point W̄ = [2, 3.33] is nonlinearly unstable. Numerical
solutions of the model (1.2) in one-dimensional domain [0,π ], [0, 60], respectively, and a period of time
[0, 100], [0, 40], respectively
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number of fixed fastest growing modes, over a time period of the order ln(1/δ). Therefore,
our main results provide a quantitative characterization for nonlinear pattern formation
in a nonlinear diffusion chemotaxis model with logistic source.

Finally, we give simple numerical simulations to illustrate the results got in Theorem 5.1.
We apply a finite difference method on an equidistant grid and solve the resulting chemo-
taxis system by Newton’s method. The Matlab PDE solver is implemented to solve system
(1.2) subject to the Neumann boundary conditions, where the time step size �t = 0.1 and
spatial step size �x = 0.1.

We consider the particular case of system (1.2) with fixed parameters n = 2, d1 = 1, d2 =
0.5, χ = 2.5, r = 1, k = 2, α = 2, β = 1.2, q = [0, 1], q2 = 1, then the condition (3.5) is satisfied,
and (3.4) has the two eigenvalues λ1(q) = 0.215, λ2(q) = –6.915. Initial data u0(x) = 2 +
0.1 cos(x/10), v0(x) = 3.33 + 0.1 sin(x/10). The positive equilibrium solution W̄ = [2, 3.33]
becomes unstable under chemotaxis effects; see Fig. 1.
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