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Abstract
In this paper, we consider a fractional singular three-point boundary value problem
with p-Laplacian operator. The nonlinearity f (t,u) may be singular at t = 0, 1 and u = 0.
Some properties of the associated Green function are obtained. By using the upper
and lower solutions method and a fixed point theorem, the existence result of
positive solution is established.
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1 Introduction
In this paper, we investigate the following fractional three-point boundary value problem
(BVP) with p-Laplacian operator:

⎧
⎨

⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) = f (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ

0+ u(0) = 0, Dβ

0+ u(1) = bDβ

0+ u(η),
(1.1)

where α ∈ (1, 2], β ∈ (3, 4], Dα
0+ and Dβ

0+ are the standard Riemann–Liouville derivatives,
ϕp(s) = |s|p–2s, p > 1, ϕ–1

p = ϕq, 1
p + 1

q = 1, η ∈ (0, 1), b ∈ (0,η
1–α
p–1 ), f (t, u) : (0, 1) × (0, +∞) →

[0, +∞) is continuous and may be singular at t = 0, 1 and u = 0.
The differential equations with p-Laplacian operator have deep background in physics.

In recent years, boundary value problems of fractional differential equations with or with-
out p-Laplacian operator have been widely studied. By means of nonlinear analysis theory
and methods, many existence and multiplicity results of solutions or positive solutions
have been obtained, see [1–29] and the references therein.

In [11], Xu and Dong considered three-point BVP (1.1), but their nonlinearity f : [0, 1]×
[0, +∞) → [0, +∞) is continuous, the existence and uniqueness of positive solutions were
obtained by using the upper and lower solutions method and Schauder’s fixed point the-
orem.

By means of the lower and upper solutions method and monotone iterative technique,
Liu et al. [12] investigated the existence of positive solutions for mixed fractional BVP with
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p-Laplacian operator
⎧
⎨

⎩

Dα
0+ (ϕp(cDβ

0+ u(t))) = f (t, u(t),c Dβ

0+ u(t)), 0 < t < 1,
cDβ

0+ u(0) = u′(0) = 0, u(1) = r1u(η), cDβ

0+ u(1) = rc
2Dβ

0+ u(ξ ),

where α,β ∈ (1, 2], Dα
0+ and cDβ

0+ are the Riemann–Liouville fractional derivative and Ca-
puto fractional derivative, respectively.

By using upper and lower solutions method, Wang and Xiang [13] established existence
results of positive solution for a fractional BVP with p-Laplacian operator

⎧
⎨

⎩

Dα
0+ (ϕp(Dβ

0+ u(t))) = f (t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = au(ξ ), Dβ

0+ u(0) = 0, Dβ

0+ u(1) = bDβ

0+ u(η),

where α,β ∈ (1, 2], a, b ∈ (0, 1], ξ ,η ∈ (0, 1), Dα
0+ and Dβ

0+ are the Riemann–Liouville frac-
tional derivatives.

In [17], Zhang et al. studied the integral BVP of fractional differential equations with
parameter and p-Laplacian operator

⎧
⎨

⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) = λf (t, u(t), 0 < t < 1,

u(0) = 0, Dβ

0+ u(0) = 0, u(1) =
∫ 1

0 u(s)dA(s),

where α ∈ (0, 1], β ∈ (1, 2], Dα
0+ and Dβ

0+ are the Riemann–Liouville fractional derivatives,
∫ 1

0 u(s)dA(s) is the Riemann–Stieltjes integral, f (t, u) : (0, 1) × (0, +∞) → [0, +∞) is con-
tinuous.

Motivated by the papers mentioned above, in this paper, we study the p-Laplacian frac-
tional differential equation three-point BVP (1.1). The existence of positive solution is
obtained by using the upper and lower solutions method and a fixed point theorem. It is
worth pointing out that f (t, u) may be singular at t = 0, 1 and u = 0.

2 Preliminaries and lemmas
Let ϕp(Dβ

0+ u(t)) = v(t), then v(0) = 0, v(1) = bp–1v(η). We now consider the following BVP:

⎧
⎨

⎩

–Dα
0+ v(t) = y(t), 0 < t < 1,

v(0) = 0, v(1) = bp–1v(η).
(2.1)

Lemma 2.1 ([11]) If y ∈ C[0, 1], then BVP (2.1) has a unique solution

v(t) =
∫ 1

0
H(t, s)y(s) ds,

where

H(t, s) = h(t, s) +
bp–1tα–1

1 – bp–1ηα–1 h(η, s),

h(t, s) =
1

�(α)

⎧
⎨

⎩

tα–1(1 – s)α–1, 0 ≤ t ≤ s ≤ 1,

tα–1(1 – s)α–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1.
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From the above analysis, the BVP

⎧
⎨

⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) = y(t), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ

0+ u(0) = 0, Dβ

0+ u(1) = bDβ

0+ u(η)

is equal to

⎧
⎨

⎩

Dβ

0+ u(t) = ϕq(
∫ 1

0 H(t, s)y(s) ds), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0.
(2.2)

Lemma 2.2 ([30]) If y ∈ C[0, 1], BVP (2.2) has a unique solution

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
H(s, τ )y(τ )dτ

)

ds,

where

G(t, s) =
1

�(β)

⎧
⎨

⎩

tβ–2(1 – s)β–2[(s – t) + (β – 2)(1 – t)s], 0 ≤ t ≤ s ≤ 1,

tβ–2(1 – s)β–2[(s – t) + (β – 2)(1 – t)s] + (t – s)β–1, 0 ≤ s ≤ t ≤ 1.

Lemma 2.3 The functions H , G ∈ C([0, 1] × [0, 1], [0, +∞)) have the following properties:
(1)

H(t, s) ≤ d1(1 – s)α–1, t, s ∈ (0, 1),

where d1 = 1
(1–bp–1ηα–1)�(α) .

(2)

(β – 2)k(t)q(s) ≤ �(β)G(t, s) ≤ M0q(s), t, s ∈ (0, 1),

where

k(t) = tβ–2(1 – t)2, q(s) = s2(1 – s)β–2, M0 = max
{
β – 1, (β – 2)2}.

(3)

G(t, s) ≥ β – 2
M0

tβ–2(1 – t)2G(t0, s), t, s, t0 ∈ (0, 1).

Proof
(1) For any t, s ∈ (0, 1),

h(t, s) ≤ 1
�(α)

[
t(1 – s)

]α–1 ≤ (1 – s)α–1

�(α)
,

then

h(η, s) ≤ 1
�(α)

[
η(1 – s)

]α–1.
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Therefore

H(t, s) ≤ (1 – s)α–1

�(α)
+

bp–1

1 – bp–1ηα–1
ηα–1(1 – s)α–1

�(α)

=
(1 – s)α–1

�(α)(1 – bp–1ηα–1)
= d1(1 – s)α–1.

(2) See Lemma 2.4(2) of [30].
(3) For any t, s, t0 ∈ (0, 1), we have

G(t, s) ≥ (β – 2)k(t)q(s)
�(β)

=
(β – 2)k(t)

M0�(β)
M0q(s)

≥ (β – 2)k(t)
M0�(β)

�(β)G(t0, s)

=
β – 2
M0

tβ–2(1 – t)2G(t0, s).

This completes the proof. �

Remark 2.1 By Lemmas 2.2 and 2.3, if Dβ

0+ u ≥ 0 and u(0) = u(1) = u′(0) = u′(1) = 0, we
conclude that u(t) ≥ 0, t ∈ [0, 1].

u is said to be a lower solution for BVP (1.1) if u satisfies the following inequality system:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) ≤ f (t, u(t)), 0 < t < 1,

u(0) ≤ 0, u(1) ≤ 0, u′(0) ≤ 0, u′(1) ≤ 0,

–Dβ

0+ u(0) ≤ 0, –Dβ

0+ u(1) ≤ –bDβ

0+ u(η).

Similarly, we define the upper solution for BVP (1.1) by replacing “least or equal” by
“greater or equal”.

3 Main result
Theorem 3.1 Assume that the following conditions (H1)–(H3) are satisfied:

(H1) f (t, u) ∈ C((0, 1) × (0, +∞), [0, +∞)) and f (t, u) is nonincreasing relative to u.
(H2) For any constant λ > 0,

0 <
∫ 1

0
(1 – s)α–1f

(
s,λsβ–2(1 – s)2)ds < +∞.

(H3) There exist a function a ∈ C[0, 1] and a constant k > 0 such that a(t) ≥ ktβ–2(1 – t)2,
t ∈ [0, 1], and

∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)f

(
s, a(s)

)
ds

)

dr = b(t) ≥ a(t),

∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)f

(
s, b(s)

)
ds

)

dr ≥ a(t).
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Then BVP (1.1) has at least one positive solution w which satisfies w(t) ≥ mtβ–2 ×
(1 – t)2 for some m > 0.

Proof Let

P =
{

u ∈ C[0, 1] : there exists ku > 0 such that u(t) ≥ kutβ–2(1 – t)2, t ∈ [0, 1]
}

.

Define an operator T by

Tu(t) =
∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)f

(
s, u(s)

)
ds

)

dr, u ∈ P.

For u ∈ P, there exists ku > 0 such that u(t) ≥ kutβ–2(1 – t)2, t ∈ [0, 1]. By (H1) and (H2), we
have

∫ 1

0
H(t, s)f

(
s, u(s)

)
ds ≤ d1

∫ 1

0
(1 – s)α–1f

(
s, kusβ–2(1 – s)2)ds < +∞.

Hence

Tu(t) =
∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)f

(
s, u(s)

)
ds

)

dr

≤
∫ 1

0

M0

�(β)
q(r)ϕq

(∫ 1

0
d1(1 – s)α–1f

(
s, kusβ–2(1 – s)2)ds

)

dr

=
M0

�(β)
dq–1

1

∫ 1

0
q(r) drϕq

(∫ 1

0
(1 – s)α–1f

(
s, kusβ–2(1 – s)2)ds

)

< +∞. (3.1)

On the other hand, choose t0 ∈ (0, 1) such that Tu(t0) = kTu > 0. It follows from
Lemma 2.3 that

Tu(t) =
∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)f

(
s, u(s)

)
ds

)

dr

≥ β – 2
�(β)

k(t)
∫ 1

0
q(r)ϕq

(∫ 1

0
H(r, s)f

(
s, u(s)

)
ds

)

dr

≥ β – 2
M0

k(t)Tu(t0) =
β – 2
M0

kTu tβ–2(1 – t)2, t ∈ [0, 1]. (3.2)

It follows from (3.1) and (3.2) that T is well defined and T(P) ⊂ P.
Next, we determine upper and lower solutions of BVP (1.1). In fact, by simple compu-

tations, we have

–Dα
0+

(
ϕp

(
Dβ

0+
(
Tu(t)

)))
= f

(
t, u(t)

)
, t ∈ (0, 1), (3.3)

⎧
⎨

⎩

(Tu)(0) = (Tu)(1) = (Tu)′(0) = (Tu)′(1) = 0,

Dβ

0+ (Tu)(0) = 0, Dβ

0+ (Tu)(1) = bDβ

0+ (Tu)(η).
(3.4)

Let b(t) = Ta(t), then by (H1) and (H3), we have

a(t) ≤ Ta(t) = b(t), b(t) = Ta(t) ≥ Tb(t), t ∈ [0, 1]. (3.5)
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Since a(t) ∈ P, from (3.2), we obtain Ta(t), Tb(t) ∈ P. Thus, by (3.3) and (3.5),

–Dα
0+

(
ϕp

(
Dβ

0+ (Tb)(t)
))

– f
(
t, (Tb)(t)

) ≤ –Dα
0+

(
ϕp

(
Dβ

0+ (Tb)(t)
))

– f
(
t, b(t)

)
= 0, (3.6)

–Dα
0+

(
ϕp

(
Dβ

0+ (Ta)(t)
))

– f
(
t, (Ta)(t)

) ≥ –Dα
0+

(
ϕp

(
Dβ

0+ (Ta)(t)
))

– f
(
t, a(t)

)
= 0. (3.7)

Meanwhile, (3.4) implies that Ta(t), Tb(t) satisfy the boundary conditions of BVP (1.1).
Then, from (3.5)–(3.7), ϕ(t) = Tb(t) and ψ(t) = Ta(t) are lower and upper solutions of BVP
(1.1), respectively.

Next, we shall show that the BVP

⎧
⎨

⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) = g(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ

0+ u(0) = 0, Dβ

0+ u(1) = bDβ

0+ u(η)
(3.8)

has a positive solution, where

g
(
t, u(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

f (t,ϕ(t)), u(t) < ϕ(t),

f (t, u(t)), ϕ(t) ≤ u(t) ≤ ψ(t),

f (t,ψ(t)), u(t) > ψ(t).

(3.9)

To see this, we consider the operator A : C[0, 1] → C[0, 1] defined as follows:

Au(t) =
∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)g

(
s, u(s)

)
ds

)

dr.

It is well known that a fixed point of the operator A is a solution of BVP (3.8).
It is clear that A is continuous. Since ϕ(t) ∈ P, there exists kϕ > 0 such that ϕ(t) ≥

kϕtβ–2(1 – t)2, t ∈ [0, 1]. It follows from (H2) that

∫ 1

0
H(t, s)g

(
s, u(s)

)
ds ≤ d1

∫ 1

0
(1 – s)α–1f

(
s,ϕ(s)

)
ds

≤ d1

∫ 1

0
(1 – s)α–1f

(
s, kϕsβ–2(1 – s)2)ds < +∞. (3.10)

Consequently, for u ∈ C[0, 1] and t ∈ [0, 1], by (3.9) and (3.10), we have

Au(t) =
∫ 1

0
G(t, r)ϕq

(∫ 1

0
H(r, s)g

(
s, u(s)

)
ds

)

dr

≤ M0

∫ 1

0
q(r)ϕq

(∫ 1

0
d1(1 – s)α–1g

(
s, u(s)

)
ds

)

dr

≤ M0dq–1
1

∫ 1

0
q(r) drϕq

(∫ 1

0
(1 – s)α–1f

(
s, kϕsβ–2(1 – s)2)ds

)

< +∞,

which implies that A is uniformly bounded.
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On the other hand, since G(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous
on [0, 1]×[0, 1]. Thus, for s ∈ [0, 1] and for each ε > 0, there exists δ > 0 such that |t1 –t2| < δ

implies

∣
∣G(t1, s) – G(t2, s)

∣
∣ <

ε

ϕq(d1
∫ 1

0 (1 – s)α–1f (s, kϕsβ–2(1 – s)2) ds)
.

Furthermore, for u ∈ C[0, 1],

∣
∣Au(t1) – Au(t2)

∣
∣

≤
∫ 1

0

∣
∣G(t1, r) – G(t2, r))

∣
∣ϕq

(∫ 1

0
H(r, s)g

(
s, u(s)

)
ds

)

dr

≤
∫ 1

0

∣
∣G(t1, r) – G(t2, r)

∣
∣ϕq

(∫ 1

0
d1(1 – s)α–1f

(
s,ϕ(s)

)
ds

)

dr

≤
∫ 1

0

∣
∣G(t1, r) – G(t2, r)

∣
∣drϕq

(

d1

∫ 1

0
(1 – s)α–1f

(
s, kϕsβ–2(1 – s)2)ds

)

< ε,

which implies that A is equicontinuous. Thus, the Ascoli–Arzela theorem guarantees A
is a compact operator. It follows from Schauder’s fixed point theorem that A has a fixed
point w, i.e., w = Aw. Consequently, (3.8) has a solution.

Finally, we will show that BVP (1.1) has at least one positive solution. In fact, we only
need to prove that ϕ(t) ≤ w(t) ≤ ψ(t), t ∈ [0, 1]. By (H1), we have

f
(
t,ψ(t)

) ≤ g
(
t, w(t)

) ≤ f
(
t,ϕ(t)

)
, t ∈ [0, 1]. (3.11)

It follows from (3.5) and (H3) that

f
(
t, b(t)

) ≤ g
(
t, w(t)

) ≤ f
(
t, a(t)

)
, t ∈ [0, 1]. (3.12)

Since a(t) ∈ P, by (3.3), we have

–Dα
0+

(
ϕp

(
Dβ

0+ψ(t)
))

= –Dα
0+

(
ϕp

(
Dβ

0+ (Ta)(t)
))

= f
(
t, a(t)

)
, t ∈ (0, 1).

By (3.4), (3.5), (3.11), and (3.12), we have

–Dα
0+

(
ϕp

(
Dβ

0+ψ(t)
))

–
[
–Dα

0+
(
ϕp

(
Dβ

0+ w(t)
))]

= f
(
t, a(t)

)
– g

(
t, w(t)

) ≥ 0, t ∈ [0, 1],

(ψ – w)(0) = (ψ – w)(1) = (ψ – w)′(0) = (ψ – w)′(1) = 0,

Dβ

0+ (ψ – w)(0) = 0, Dβ

0+ (ψ – w)(1) = bDβ

0+ (ψ – w)(η).

Setting z = ϕp(Dβ

0+ψ(t)) – ϕp(Dβ

0+ w(t)), then

–Dα
0+ z(t) = –Dα

0+
(
ϕp

(
Dβ

0+ψ(t)
))

–
[
–Dα

0+
(
ϕp

(
Dβ

0+ w(t)
))] ≥ 0,

z(0) = 0, z(1) = ϕp(b)z(η).

Hence, by Lemma 2.1, we get z(t) ≥ 0, t ∈ [0, 1]. Since ϕp is monotone increasing, we have
Dβ

0+ψ(t) ≥ Dβ

0+ w(t), that is, Dβ

0+ (ψ(t) – w(t)) ≥ 0, t ∈ [0, 1]. By Remark 2.1, we have w(t) ≤
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ψ(t) for t ∈ [0, 1]. Similarly, w(t) ≥ ϕ(t) on [0, 1]. Therefore, w(t) is a positive solution of
BVP (1.1). And ϕ(t) ∈ P implies that there exists m > 0 such that w(t) ≥ ϕ(t) ≥ mtβ–2(1 –
t)2, t ∈ [0, 1]. This completes the proof. �

4 An example
Example 4.1 Consider the following fractional singular BVP:

⎧
⎨

⎩

–D
3
2
0+ (ϕp(D

7
2
0+ u(t))) = (1 – t)– 1

4 u– 1
2 , 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, D
7
2
0+ u(0) = 0, D

7
2
0+ u(1) = 1

4 D
7
2
0+ u( 1

2 ),
(4.1)

where ϕp(t) = |t|p–2t, p > 1. Then BVP (4.1) has a positive solution w(t) ≥ mt 3
2 (1 – t)2 for

some m > 0.
In fact, let α = 3

2 , β = 7
2 , f (t, u) = (1 – t)– 1

4 u– 1
2 , t ∈ (0, 1). Obviously, f (t, u) is singular at

t = 1 and u = 0. It is easy to check that (H1) in Theorem 3.1 is satisfied. For any constant
λ > 0,

0 <
∫ 1

0
(1 – s)α–1f

(
s,λsβ–2(1 – s)2)ds

=
∫ 1

0
(1 – s)

1
2 (1 – s)– 1

4
[
λs

3
2 (1 – s)2]– 1

2 ds

= λ– 1
2

∫ 1

0
s– 3

4 (1 – s)– 3
4 ds

= λ– 1
2 B

(
1
4

,
1
4

)

= λ– 1
2
�2( 1

4 )√
π

< +∞,

so (H2) in Theorem 3.1 is satisfied.
Set μ = 1

2 , then f (t, u) ≤ f (t, ru) ≤ r–μf (t, u) for any r ∈ (0, 1). Since e(t) = t 3
2 (1 – t)2 ∈ P,

by (3.2) we know Te ∈ P, T2e ∈ P, then there exist positive numbers k and l such that

Te ≥ ke and T2e ≥ le. Take 0 < r0 < min{1, k, l
1

1–μ2 }, then

T(r0e) ≥ Te ≥ ke ≥ r0e, T2(r0e) ≥ rμ2

0 T2e ≥ rμ2

0 le ≥ r0e.

If we take a(t) = r0t 3
2 (1– t)2, then condition (H3) of Theorem 3.1 is satisfied. Consequently,

the above conclusion is guaranteed by Theorem 3.1.

5 Conclusion
In this paper, we consider the fractional singular three-point boundary value problem with
p-Laplacian operator. It is worth pointing out that f (t, u) may be singular at t = 0, 1 and
u = 0. Some properties of the associated Green function are obtained. By using the upper
and lower solutions method and a fixed point theorem, the existence result of positive
solution is established.
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