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Abstract
In this work, the Sturm–Liouville problem perturbated by a Volterra-type
integro-differential operator is studied. We give a uniqueness theorem and an
algorithm to reconstruct the potential of the problem from nodal points (zeros of
eigenfunctions).
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1 Introduction
We consider the boundary value problem L generated by the convolution-type Sturm–
Liouville integro-differential operator

–y′′ + q(x)y +
∫ x

0
M(x, t)y′(t) dt = λy, x ∈ (0,π ) (1)

with boundary conditions

y′(0) – hy(0) = 0, (2)

y′(π ) + Hy(π ) = 0 (3)

and with the discontinuity conditions

{
y( π

2 + 0) = αy( π
2 – 0),

y′( π
2 + 0) = α–1y′( π

2 – 0),
(4)

where λ is the spectral parameter; α is a positive real constant; q(x) and M(x, t) are real-
valued functions from the class L2(0,π ) and W 1

2 (0,π ), respectively. Without loss of gen-
erality, we assume that

∫ π

0 (q(x) + M(x, x)) dx = 0.
The first result of the inverse nodal Sturm–Liouville problem was given by McLaugh-

lin in [1]. In this work, she proved that the potential of the considered problem can be
uniquely determined by a given dense subset of the zeros of the eigenfunctions called
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nodal points. In 1989, Hald and McLaughlin studied more general boundary conditions
and gave some numerical schemes for the reconstruction of the potential from a given
dense subset of nodal points [2]. Yang provided an algorithm to determine the coefficients
of the Sturm–Liouville problem by using the given nodal points in [3]. Inverse nodal prob-
lems for different types of operators have been extensively well studied in several papers
(see [4–14] and [15]).

Inverse problems for integro-differential operators and the other classes of nonlocal op-
erators are more difficult to investigate. The classical methods are often not applicable for
such problems. In present, the studies concerning the perturbation of a differential opera-
tor by a Volterra-type integral operator, namely the integro-differential operator, continue
to be performed and are beginning to have a significant place in the literature (see [16–
21], and [22]). Inverse nodal problem for this type of operator was first discussed by [23].
It is shown in this study that the potential function can be determined by using nodal
points, while the coefficient of the integral operator is known. The inverse nodal problem
for Dirac-type integro-differential operators was first investigated by [24]. In this work, it
is shown that the coefficients of the differential part of the operator can be determined by
using nodal points, and nodal points also give partial information about the integral part.

In the present paper we investigate the inverse nodal problem for Volterra-type integro-
differential operator. This type of operator has previously been addressed in [25] and [26].

2 Preliminaries
Let ϕ(x,λ) be the solution of (1) with the initial conditions

ϕ(0,λ) = 1, ϕ′(0,λ) = h (5)

and the jump conditions (4).
We have the following integral equations of the solution of (1): for x < π

2 ,

ϕ(x,λ) = cos
√

λx + h
sin

√
λx√

λ
+

∫ x

0

sin
√

λ(x – t)√
λ

q(t)ϕ(t,λ) dt

+
∫ x

0

sin
√

λ(x – t)√
λ

∫ t

0
M(t, τ )ϕ′(τ ,λ) dτ dt; (6)

for x > π
2 ,

ϕ(x,λ) = α+ cos
√

λx + α– cos
√

λ(π – x)

+
h√
λ

[
α+ sin

√
λx + sin

√
λ(π – x)

]

+
∫ π/2

0

[
α+ sin

√
λ(x – t)√
λ

+ α– sin
√

λ(π – x – t)
2
√

λ

]
q(t)ϕ(t,λ) dt

+
∫ π/2

0

∫ t

0

[
α+ sin

√
λ(x – t)√
λ

+ α– sin
√

λ(π – x – t)
2
√

λ

]
M(t, τ )ϕ′(τ ,λ) dτ dt

+
∫ x

π/2

+ sin
√

λ(x – t)√
λ

q(t)ϕ(t,λ) dt

+
∫ x

π/2

∫ t

0

sin
√

λ(x – t)√
λ

M(t, τ )ϕ′(τ ,λ) dτ dt, (7)
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where α± = 1
2 (α ± 1

α
). By virtue of the above equations, we have the following asymptotic

relations for sufficiently large |λ|: for x < π
2 ,

ϕ(x,λ) = cos
√

λx +
sin

√
λx

2
√

λ

(
2h +

∫ x

0
q(t) dt +

∫ x

0
M(t, t) dt

)

+ o
(

1√
λ

exp |τ |x
)

; (8)

for x > π
2 ,

ϕ(x,λ) = α+ cos
√

λx + α– cos
√

λ(π – x)

+ α+ sin
√

λx
2
√

λ
I1(x) + α–I2(x) + o

(
1√
λ

exp |τ |x
)

, (9)

where I1(x) = 2h +
∫ x

0 q(t) dt +
∫ x

0 M(t, t) dt, I2(x) =
∫ π/2

0 (q(t) + M(t, t)) dt –
∫ x
π/2(q(t) +

M(t, t)) dt, and τ = | Im
√

λ|.
Define a function �(λ) as follows:

�(λ) := ϕ′(π ,λ) + Hϕ(π ,λ). (10)

This entire function is called a characteristic function of the problem L and the zeros of it
are eigenvalues of the problem L. For sufficiently large |λ|, by virtue of (8) and (9), we have
the following asymptotic formula:

�(λ) = –α+
{√

λ sin
√

λπ –
δ1

2
cos

√
λπ +

δ2

2

}
+ o

(
exp |τ |π)

, (11)

where

δ1 = 2h + α+H +
∫ π

0

(
q(t) + M(t, t)

)
dt,

δ2 =
α–

α+

[
–2H +

∫ π

0

(
q(t) + M(t, t)

)
dt – 2

∫ π/2

0

(
q(t) + M(t, t)

)
dt

]
.

It can be easily shown that the sequence {λn}n≥0 satisfies the following asymptotic relation
for n → ∞:

√
λn = n +

μn

2nπ
+ o

(
1
n

)
(12)

and

1√
λn

=
1
n

–
μn

2n3π
+ o

(
1
n3

)
,

where μn = δ1 + (–1)nδ2.

Lemma 1 The eigenfunction ϕ(x,λn) corresponding to the eigenvalue λn has exactly n zeros
{xj

n : n ≥ 1, j = 0, n – 1}, namely nodal points, in (0,π ), such that 0 < x0
n < x1

n < · · · < xn–1
n < π
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and the numbers {xj
n} have the following asymptotic formulae for sufficiently large n: for

xj
n ∈ (0, π

2 ),

xj
n =

⎧⎨
⎩

(j+1/2)π
n – (j+1/2)π

n
(δ1+δ2)
2n2π

+ I1(xj
n)

2n2 + o( 1
n2 ), n = 2k, k ∈ Z,

(j+1/2)π
n – (j+1/2)π

n
(δ1–δ2)
2n2π

+ I1(xj
n)

2n2 + o( 1
n2 ), n = 2k + 1, k ∈ Z;

(13)

and for xj
n ∈ ( π

2 ,π ),

xj
n =

⎧⎨
⎩

(j+1/2)π
n – (j+1/2)π

n
(δ1+δ2)
2n2π

+ α–(δ1+δ2)+α+I1(xj
n)–α–I2(xj

n)
2ρnn2 + o( 1

n2 ), n = 2k, k ∈ Z,
(j+1/2)π

n – (j+1/2)π
n

(δ1–δ2)
2n2π

+ –α–(δ1–δ2)+α+I1(xj
n)+α–I2(xj

n)
2ρnn2 + o( 1

n2 ), n = 2k + 1, k ∈ Z,

(14)

where ρn = α+ + (–1)nα–.

Proof By virtue of (8) and (9), we get the following asymptotic formula for eigenfunction
ϕ(x,λn):

ϕ(x,λn) = cos
√

λnx +
sin

√
λnx√

λn
I1(x) + o

(
e|τ |x
√

λn

)
for x <

π

2
,

ϕ(x,λn) = α+ cos
√

λnx + α– cos
√

λn(π – x) +
α+ sin

√
λnx

2
√

λn
I1(x)

+
α– sin

√
λn(π – x)

2
√

λn
I2(x) + o

(
e|τ |x
√

λn

)
for x <

π

2

for sufficiently large n, uniformly in x. Since the zeros of eigenfunctions are nodal points,
from ϕ(xj

n,λn) = 0, we get

α+ cos
√

λnxj
n + α– cos

√
λn

(
π – xj

n
)

+
α+ sin

√
λnxj

n√
λn

I1
(
xj

n
)

+
α– sin

√
λnπ cos

√
λnxj

n

2
√

λn
I2

(
xj

n
)

–
α– sin

√
λnxj

n cos
√

λnπ

2
√

λn
I2

(
xj

n
)

+ o
(

e|τ |xj
n√

λn

)
= 0,

which implies that

cot
√

λnxj
n

(
α+ + α– cos

√
λnπ +

α– sin
√

λnπ

2
√

λn
I2

(
xj

n
))

= α– sin
√

λnπ –
α+

2
√

λn
I1

(
xj

n
)

+
α– cos

√
λnπ

2
√

λn
I2

(
xj

n
)

+ o
(

e|τ |xj
n√

λn

)
,

cot
√

λnxj
n =

–α– sin
√

λnπ – α+

2
√

λn
I1(xj

n) + α– cos
√

λnπ

2
√

λn
I2(xj

n) + o( e|τ |xj
n√

λn
)

α+(1 + α–
α+ cos

√
λnπ + α– sin

√
λnπ

2α+√
λn

I2(xj
n))

=
–1
ρn

(
α– sin

√
λnπ +

α+

2
√

λn
I1

(
xj

n
)

–
α– cos

√
λnπ

2
√

λn
I2

(
xj

n
))

+ o
(

e|τ |xj
n√

λn

)
,
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which is equivalent to

tan

(
π

2
–

√
λnxj

n

)
=

–1
ρn

(
α– sin

√
λnπ +

α+

2
√

λn
I1

(
xj

n
)

–
α– cos

√
λnπ

2
√

λn
I2

(
xj

n
))

+ o
(

e|τ |xj
n√

λn

)

for xj
n > π

2 . Taylor’s expansions formula for the arctangent yields

√
λnxj

n = (j + 1/2)π

+
1
ρn

(
α– sin

√
λnπ +

α+

2
√

λn
I1

(
xj

n
)

–
α– cos

√
λnπ

2
√

λn
I2

(
xj

n
))

+ o
(

e|τ |xj
n√

λn

)
.

If we divide both sides of this equality by
√

λn and take account of the asymptotic formula
of

√
λn, we get

xj
n =

(j + 1/2)π
n

–
(j + 1/2)π

n
μn

2n2π

+
(–1)nα–μn + α+I1(xj

n) – (–1)nα–I2(xj
n)

2ρnn2 + o
(

1
n2

)
.

The proof of (14) is completed. Equation (13) can be proved similarly. �

Let 
 = 
0 ∪ 
1 be the set of zeros of eigenfunction, i.e., 
0 = {xj
n : n = 2k, k ∈ Z},


1 = {xj
n : n = 2k + 1, k ∈ Z}. For each fixed x ∈ (0,π ), there exists a sequence (xj(n)

n ) ⊂ 
m

(m = 0, 1), which converges to x. Therefore, from Lemma 1, we can show that the following
finite limits exist:

lim
n→∞ 2n2

(
xj(n)

n –
(j(n) + 1

2 )π
n

)
= fm(x) for x <

π

2
, (15)

lim
n→∞ 2n2

(
xj(n)

n –
(j(n) + 1

2 )π
n

)
= gm(x) for x >

π

2
, (16)

where

fm(x) = –
μmx
π

+ I1(x) for x <
π

2
, (17)

gm(x) = –
μmx
π

+ I1(x) + σm for x >
π

2
, (18)

where σm = (–1)mα–(μm–2I1( π
2 )+2h)

ρm
. Put

Fm(x) =

{
fm(x) for x < π

2 ,
gm(x) for x > π

2 .
(19)
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The following theorem shows that if one of q(x) or M(x, x) is given, then the other one can
be determined uniquely by using a dense subset of the given nodal set.

Theorem 1 The given dense subset of the nodal set 
0 (or 
1) uniquely determines q(x) +
M(x, x), a.e. on (0,π ) and the coefficients h, H , and α of the boundary and discontinuity
conditions. q(x) + M(x, x) and the constants h, H , and α can be constructed by the following
formulae:

1. For each fixed x ∈ (0,π ), choose a sequence (xj(n)
n ) ⊂ 
0, i.e., limn→∞ xj(n)

n = x;
2. Find Fm(x) from equation (19) and calculate

h =
F0(0)

2
,

μ0 = –F0(π ) + F0(0) – F0

(
π

2
– 0

)
+ F0

(
π

2
+ 0

)
,

q(x) + M(x, x) = F ′
0(x) +

μ0

π
,

α =

√
F0(0) – 2F0( π

2 – 0)
F0(0) – 2F0( π

2 + 0)
,

2I1

(
π

2

)
= –F0(π ) + F0(0) + F0

(
π

2
– 0

)
+ F0

(
π

2
+ 0

)
,

H =
α+(μ0 – 2h) + 2α–(I1(π/2) – F0(0))

(α+)2 – 2α– .

Example 1 Consider the following BVP:

L :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–y′′ + q(x)y +
∫ x

0 M(x, t)y′(t) dt = λy, x ∈ (0,π ),
y′(0) – hy(0) = 0,
y′(π ) + Hy(π ) = 0,
y( π

2 + 0) = αy( π
2 – 0),

y′( π
2 + 0) = α–1y′( π

2 – 0),

where q(x) and M(x, t) are real-valued functions from the class L2(0,π ) and W 1
2 (0,π ), re-

spectively, and h, H , α are unknown coefficients we confirmed on the assumptions of the
problem L. Let {xj

n} be the zeros of the eigenfunction of the considered problem in (0,π )
with the following asymptotics: If xj

n ∈ (0, π
2 ),

xj
n =

(j + 1/2)π
n

–
(j + 1/2)π

n
2

5n2π
+

2 + sin( j+1/2
n )π

2n2 + o
(

1
n2

)
.

If xj
n ∈ ( π

2 ,π ),

xj
n =

(j + 1/2)π
n

–
(j + 1/2)π

n
2

5n2π
+

2 + sin( j+1/2
n )π

2n2 –
6/5
2n2 + o

(
1
n2

)
,

then we can calculate that

F0(x) =

{
– 4x

5π
+ sin x + 2 for x < π

2 ,
– 4x

5π
+ sin x + 4

5 for x > π
2 .
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According to Theorem 1,

h =
F0(0)

2
= 1,

μ0 = –F0(π ) + F0(0) – F0

(
π

2
– 0

)
+ F0

(
π

2
+ 0

)
=

4
5

,

q(x) + M(x, x) = F ′
0(x) +

μ0

π
= cos x,

α =

√
F0(0) – 2F0( π

2 – 0)
F0(0) – 2F0( π

2 + 0)
= 2,

H =
α+(μ0 – 2h) + 2α–(I1(π/2) – F0(0))

(α+)2 – 2α– = 0.

3 Conclusion
In this paper we have investigated the discontinuous inverse nodal problem for Volterra
type integro-differential operator. We showed that if one of q(x) or M(x, x) is given, then
the other one can be determined uniquely by using only the given nodal points.
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