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Abstract
This paper is concerned with the existence of ground state solutions for a class of
generalized quasilinear Schrödinger–Poisson systems in R

3 which have appeared in
plasma physics, as well as in the description of high-power ultrashort lasers in matter.
By employing a change of variables, the generalized quasilinear systems are reduced
to a semilinear one, whose associated functionals are well defined in the usual
Sobolev space and satisfy the mountain-pass geometric. Finally, we use Ekeland’s
variational principle and the mountain-pass theorem to obtain the ground state
solutions for the given problem.
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1 Introduction and main results
The aim of this paper is to establish the existence of ground state solutions to the following
generalized quasilinear Schrödinger–Poisson system:

⎧
⎨

⎩

– div(g2(u)∇u) + g(u)g ′(u)|∇u|2 + a(x)u + φG(u)g(u) = k(x, u), x ∈R
3,

–�φ = G2(u), x ∈R
3,

(1.1)

where g : R →R
+ = [0,∞) is an even differential function, g ′(s) ≥ 0 for all s ≥ 0, and G(t) =

∫ t
0 g(s) ds, k : R3 ×R →R is continuous, a(x) : R3 →R

+ is continuous.
If φ = 0 in (1.1), solutions of this type are related to the existence of solitary wave solu-

tions for quasilinear Schrödinger equations of the form

i∂tz = –�z + W (x)z – k(x, z) – ω�l
(|z|2)l′

(|z|2)z, x ∈R
N , (1.2)

where ω is a real constant, N ≥ 3, z : R × R
N → C, W : RN → R is a given potential,

l : R→ R and k : RN ×R→ R are suitable functions.
The semilinear case corresponding to ω = 0 has been studied extensively by many schol-

ars in recent years (see [1–5]). Quasilinear equations of the form (1.2) have been derived as
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models of several physical phenomena corresponding to various types of l(s). For instance,
the case l(s) = s models the time evolution of the condensate wave function in a superfluid
film [6, 7], and it is called the superfluid film equation in fluid mechanics by Kurihara [6].
In the case l(s) = (1 + s)1/2, problem (1.2) models the self-channeling of a high-power ul-
tra short laser in matter, the propagation of a high-irradiance laser in a plasma creates an
optical index depending nonlinearly on the light intensity and this leads to an interesting
new nonlinear wave equation (see [8–11]). Equation (1.2) also appears in plasma physics
and fluid mechanics [12–15], in dissipative quantum mechanics [16] and in condensed
matter theory [17].

Recently, Deng–Peng–Yan [18] introduced a class of generalized quasilinear critical
Schrödinger equations,

– div
(
g2(u)∇u

)
+ g(u)g ′(u)|∇u|2 + a(x)u = k(x, u), x ∈R

N , (1.3)

to study the existence of positive soliton solutions. The reason we call Eq. (1.3) a general-
ized quasilinear Schrödinger equation is that if we take

g2(u) = 1 +
[l′(u2)]2

2
,

then the following quasilinear equation:

–�u + a(x)u – �l
(
u2)l′

(
u2)u = k(x, u), x ∈ R

N ,

turns into it (see [18, 19]). Equation (1.3) also arises in biological models and propagation
of laser beams when g(u) is a positive constant. If we set g2(u) = 1 + 2u2, i.e. l(s) = s, we get
the superfluid film equation in plasma physics:

–�u + V (x)u – �
(
u2)u = k(x, u), x ∈R

N .

If we set g2(u) = 1 + u2

2(1+u2) , i.e. l(s) = (1 + s)1/2, we get the equation

–�u + V (x)u –
[
�

(
1 + u2) 1

2
] 1

2(1 + u2) 1
2

u = k(x, u), x ∈R
N ,

which models the self-channeling of a high-power ultrashort laser in matter. For the re-
lated and important results on quasilinear Schrödinger equations, we refer the reader to
[19–26] and the references therein.

We call problem (1.1) the generalized quasilinear Schrödinger–Poisson system because
of the coupling of the Poisson equation with (1.3). Indeed, if we choose g(t) = 1 for all
t ∈R, then (1.1) transforms to the following classical Schrödinger–Poisson system:

⎧
⎨

⎩

–�u + a(x)u + φu = k(x, u), x ∈R
3,

–�φ = u2, x ∈R
3,

proposed by Benci–Fortunato [27, 28] to represent solitary waves for nonlinear Schrö-
dinger type equations and look for the existence of standing waves interacting with an



Shen Boundary Value Problems  (2018) 2018:44 Page 3 of 17

unknown electrostatic field. We refer the reader to [29–34] for some related and impor-
tant results. In view of this, it is also reasonable to consider the generalized quasilinear
Schrödinger–Poisson system.

According to Ruiz [35], for any u ∈ H1(R3) we can define

φu(x) =
1

4π

∫

R3

u2(y)
|x – y| dy,

which is a weak solution to –�φ = u2 in R
3. Therefore the weak solution of –�φ = G2(u)

can be represented as

φG(u)(x) =
1

4π

∫

R3

G2(u(y))
|x – y| dy

and then (1.1) can be reduced to a single equation:

– div
(
g2(u)∇u

)
+ g(u)g ′(u)|∇u|2 + a(x)u + φG(u)G(u)g(u) = k(x, u), x ∈R

3. (1.4)

In this paper, we establish the existence of ground state solutions for problem (1.1).
To this end, we assume k(x, t) = b(x)|G(u)|p–2G(u)g(u) – c(x)|G(u)|q–2G(u)g(u). Hence the
problem (1.4) can be rewritten in the following form:

– div
(
g2(u)∇u

)
+ g(u)g ′(u)|∇u|2 + a(x)u + φG(u)G(u)g(u)

= b(x)
∣
∣G(u)

∣
∣p–2G(u)g(u) – c(x)

∣
∣G(u)

∣
∣q–2G(u)g(u), (1.5)

whose corresponding variational functional is given by

I(u) =
1
2

∫

R3
g2(u)|∇u|2 dx +

1
2

∫

R3
a(x)u2 dx +

1
4

∫

R3
φG(u)G2(u) dx

–
1
p

∫

R3
b(x)

∣
∣G(u)

∣
∣p dx +

1
q

∫

R3
c(x)

∣
∣G(u)

∣
∣q dx.

Unfortunately, the above functional I may be not well defined in H1(R3). To overcome this
difficulty, we make a change of variable constructed by Shen–Wang [19],

v = G(u) =
∫ u

0
g(τ ) dτ .

Then we get

J(v) =
1
2

∫

R3
|∇v|2 dx +

1
2

∫

R3
a(x)

∣
∣G–1(v)

∣
∣2 dx +

1
4

∫

R3
φvv2 dx

–
1
p

∫

R3
b(x)|v|p dx +

1
q

∫

R3
c(x)|v|q dx. (1.6)

Since g is a nondecreasing positive function, we get |G–1(v)| ≤ |v|/g(0). It is clear that J is
well defined in H1(R3) and J ∈ C1 if assumption (H1) holds.
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If u is a nontrivial solution of (1.5), then it should satisfy
∫

R3

[
g2(u)∇u∇ϕ + g(u)g ′(u)|∇u|2ϕ + a(x)uϕ + φG(u)G(u)g(u)ϕ

– b(x)
∣
∣G(u)

∣
∣p–2G(u)g(u)ϕ + c(x)

∣
∣G(u)

∣
∣q–2G(u)g(u)ϕ

]
dx = 0,

for any ϕ ∈ C∞
0 (R3). Let ϕ = ψ/g(u), we know that the above formula is equivalent to

〈
J ′(v),ψ

〉
=

∫

R3

[

∇v∇ψ + a(x)
G–1(v)

g(G–1(v))
ψ + φvvψ – b(x)|v|p–2vϕ + c(x)|v|q–2vϕ dx

]

= 0, ∀ψ ∈ C∞
0

(
R

3).

Therefore, in order to find the nontrivial solutions of (1.5), it suffices to study the existence
of the nontrivial solutions of the following equations:

–�v + a(x)
G–1(v)

g(G–1(v))
+ φvv = b(x)|v|p–2v – c(x)|v|q–2v. (1.7)

It is easy to verify that the problem (1.5) is equivalent to problem (1.7) and the nontrivial
critical points of J(v) are the nontrivial solutions of problem (1.7). Inspired by all the work
described above, particularly, by the results in [18, 25], we intend to show the existence of
ground state solutions of problem (1.7). To this end, we first give some assumptions on g ,
a, b and c.

(g) g ∈ C1(R) is an even positive function and g ′(t) ≥ 0 for all t ≥ 0 and g(0) = 1;
(H1) a(x), b(x) and c(x) are continuous and nonnegative and bounded;
(H2) a(x) ≤ lim|x|→∞ a(x) � a∞, b(x) ≥ lim|x|→∞ b(x) � b∞ and c(x) ≤ lim|x|→∞ c(x) �

c∞ and one of these inequalities is strict on a set of positive measure.
Our main result is as follows.

Theorem 1.1 Suppose (g) and (H1)–(H2) hold. Problem (1.1) admits at least a ground
state solution if 2 < q < 4 < p < 6.

To prove our main theorem, we need to introduce the limiting equation at infinity related
to problem (1.7)

–�v + a∞
G–1(v)

g(G–1(v))
+ φvv = b∞|v|p–2v – c∞|v|q–2v, (1.8)

which plays a vital role.
The outline of this paper is as follows. In Sect. 2, we introduce and provide several lem-

mas. In Sect. 3, we prove the limiting equation (1.8) has a ground state solution. The proof
of Theorem 1.1 is completed in Sect. 4.

Notations Throughout this paper we shall denote by C and Ci (i = 1, 2, . . .) various posi-
tive constants whose exact value may change from line to line but are not essential to the
analysis of the problem. Lp(R3) (1 ≤ p ≤ +∞) is the usual Lebesgue space with the stan-
dard norm |u|p. We use “→” and “⇀” to denote the strong and weak convergence in the
related function space, respectively. For any ρ > 0 and any x ∈ R

3, Bρ(x) denotes the ball
of radius ρ centered at x, that is, Bρ(x) := {y ∈R

3 : |y – x| < ρ}.
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2 Variational settings and preliminaries
In this section, we will give some lemmas which are useful for the main results. To solve
problem (1.1), we firstly introduce some function spaces. Throughout the paper, we con-
sider the Hilbert space H1(R3) with the inner product and the norm as follows:

(u, v) =
∫

R3
∇u∇v + a(x)uv dx and

‖u‖ =
(∫

R3
|∇u|2 + a(x)u2 dx

) 1
2

, ∀u, v ∈ H1(
R

3)

which are equivalent to the usual inner product and the norm in H1(R3) because of the
assumption (H1).

Lemma 2.1 Assume (g), the functions g(s) and G(s) have the following properties:
(1) both G and G–1 are odd and for all s ≥ 0, t ≥ 0, we have

G(t) ≤ g(t)t, s/g
(
G–1(s)

) ≤ G–1(s) ≤ s;

(2) for all s ≥ 0, G–1(s)/s is non-increasing and

lim
s→0

G–1(s)
s

=
1

g(0)
= 1 and lim

s→∞
G–1(s)

s
=

⎧
⎨

⎩

1
g(∞) , if g is bounded,

0, if g is unbounded.

Proof The proof is standard, see [18, 25] for example. �

Denote

f (x, s) � b(x)|s|p–2s – c(x)|s|q–2s + a(x)s – a(x)
G–1(s)

g(G–1(s))
(2.1)

and

F(x, s) � 1
p

b(x)|s|p –
1
q

c(x)|s|q +
1
2

a(x)s2 –
1
2

a(x)
∣
∣G–1(s)

∣
∣2. (2.2)

Lemma 2.2 The functions f (x, s) and F(x, s) satisfy the following properties under the as-
sumptions (g) and (H1)–(H2).

(1) f (x, s) = o(s) and F(x, s) = o(s2) as s → 0+ uniformly in x ∈ R
3;

(2) f (x, s) = o(s5) and F(x, s) = o(s6) as s → +∞ uniformly in x ∈ R
3;

(3) 1
4 f (x, s)s – F(x, s) + 1

4 a(x)s2 ≥ 1
4 a(x)|G–1(s)|2 uniformly in x ∈R

3;
(4) lim|x|→∞ f (x, s) = f∞(s) exists and

f∞(s) � b∞|s|p–2s – c∞|s|q–2s + a∞s – a∞
G–1(s)

g(G–1(s))
.

Furthermore, we have

3f∞(s)s – f ′
∞(s)s2 – 2a∞s2 ≤ 0 for any s ∈ R. (2.3)
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Proof Points (1)–(2) are obvious, see [18] for example. Recalling that 2 < q < 4 < p < 6 and
using Lemma 2.1(1), we have

1
4

f (x, s)s – F(x, s) +
1
4

a(x)s2 =
p – 4

4p
b(x)|s|p +

4 – q
4q

c(x)|s|q +
1
4

a(x)
∣
∣G–1(s)

∣
∣2

+
1
4

a(x)
[
∣
∣G–1(s)

∣
∣2 –

G–1(s)s
g(G–1(s))

]

, (2.4)

which yields the point (3). The first part of point (4) follows from our assumption (H2).
Using 2 < q < 4 < p < 6 and Lemma 2.1(1) again, we obtain

3f∞(s)s – f ′
∞(s)s2 – 2a∞s2

= (4 – p)b∞|s|p + (q – 4)c∞|s|q

+ a∞
g(G–1(s))s2 – G–1(s)g ′(G–1(s))s2 – 3G–1(s)g2(G–1(s))s

g3(G–1(s))

≤ a∞
g(G–1(s))s2 – G–1(s)g ′(G–1(s))s2 – 3G–1(s)g2(G–1(s))s

g3(G–1(s))

≤ a∞
–2g(G–1(s))s2 – G–1(s)g ′(G–1(s))s2

g3(G–1(s))
≤ 0,

which gives the second part of point (4). The proof is complete. �

We collect some properties of the functions φv.

Lemma 2.3 (see [29, Lemmas 2.1–2.2]) For any v ∈ H1(R3), we have:
(1) There exists a constant C > 0 such that

∫

R3 φvv2 dx ≤ C|v|412/5;
(2) φv(x) ≥ 0, φtv(x) = t2φv(x) and φv(·+y) = φv(· + y);
(3) If vn ⇀ v in H1(R3) and vn → v a.e. in R

3, we have

lim
n→∞

[∫

R3
φvn v2

n dx –
∫

R3
φvn–v(vn – v)2 dx –

∫

R3
φvv2 dx

]

= 0 (2.5)

and

lim
n→∞

[∫

R3
φvn vnϕ dx –

∫

R3
φvvϕ dx

]

= 0 for any ϕ ∈ C∞
0

(
R

3). (2.6)

We now introduce some definitions. Let (X,‖ · ‖) be a Banach space with its dual space
(X–1,‖ ·‖∗), and � be its functional on X. The (Ce) sequence (or (PS) sequence) at level c ∈
R ((Ce)c sequence ((PS)c sequence) in short) corresponding to � assumes that �(xn) → c
and (1 + ‖xn‖)‖�′(xn)‖∗ → 0 (�′(xn) → 0) as n → ∞, where {xn} ⊂ X. If for any (Ce)c

sequence {xn} in X, there exists a subsequence {xnk } such that xnk → x0 in X for some
x0 ∈ X, then we say that the functional � satisfies the so called (Ce)c condition.

Lemma 2.4 The functional J(v) satisfies the mountain-pass geometry, that is,
(i) there exist η,ρ > 0 such that J(v) ≥ η > 0 when ‖v‖ = ρ ;

(ii) there exists e ∈ H1(R3) with ‖e‖ > ρ such that J(e) < 0.
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Proof (i) From Lemma 2.2(1)–(2), for any ε > 0, there exists Cε > 0 such that

J(v) =
1
2
‖v‖2 +

1
4

∫

R3
φvv2 dx –

∫

R3
F(x, v) dx

≥ 1
2
‖v‖2 – ε‖v‖2 – Cε‖v‖6.

It follows that

J(v) ≥ C‖v‖2 – C‖v‖6

if we choose sufficiently small ε > 0 and ρ > 0, which implies the result (i).
(ii) Choosing v0 ∈ H1(R3) \ {0} and using Lemma 2.1(1), one has

J(tv0) ≤ t2

2
‖v0‖2 +

t4

4

∫

R3
φvv2 dx –

tp

p

∫

R3
b(x)|v0|p dx

+
tq

q

∫

R3
c(x)|v0|q dx → –∞

as t → +∞. Hence letting e = t0v0 ∈ H1(R3) \ {0} with t0 sufficiently large, we have ‖e‖ > ρ

and J(e) < 0. �

By Lemma 2.4 and the variant mountain-pass theorem [36, Theorem 1], a (Ce)c sequence
of the functional J(v) at the level

c := inf
γ∈�

max
t∈[0,1]

J
(
γ (t)

)
> 0 (2.7)

can be constructed, where the set of paths is defined as

� :=
{
γ ∈ C

(
[0, 1], H1(

R
3)) : γ (0) = 0, J

(
γ (1)

)
< 0

}
.

In other words, there exists a sequence {vn} ⊂ H1(R3) such that

J(vn) → c,
(
1 + ‖vn‖

)∥
∥J ′(vn)

∥
∥∗ → 0 as n → ∞. (2.8)

Lemma 2.5 Any sequence {vn} ⊂ H1(R3) verifying (2.8) is bounded.

Proof Since {vn} ⊂ H1(R3) is a (Ce)c sequence, we have

c + 1 ≥ J(vn) –
1
4
〈
J ′(vn), vn

〉

=
1
4

∫

R3
|∇vn|2 dx +

∫

R3

[
1
4

f (x, vn)vn – F(x, vn) +
1
4

a(x)v2
n

]

dx

(2.4)≥ 1
4

∫

R3
|∇vn|2 dx +

1
4

∫

R3
a(x)

∣
∣G–1(vn)

∣
∣2 (2.9)
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and by Lemma 2.1(1),

∫

R3
a(x)v2

n dx =
∫

|G–1(vn)|>1
a(x)v2

n dx +
∫

|G–1(vn)|≤1
a(x)v2

n dx

≤ C
∫

R3
v6

n dx + g2(1)
∫

|G–1(vn)|≤1
a(x)

v2
n

g2(G–1(vn))
dx

≤ C
∫

R3
v6

n dx + g2(1)
∫

R3
a(x)

∣
∣G–1(vn)

∣
∣2 dx. (2.10)

Combining (2.9)–(2.10) and the Sobolev inequality, the sequence {vn} is bounded. �

Let {vn} be a (Ce) sequence of J . Going to a subsequence if necessary, we may assume that
vn ⇀ v in H1(R3), vn → v in Lr

loc(R3) with r ∈ [1, 6) and vn → v a.e. in R
3. Set wn = vn – v,

by Lemma 2.2 we have the following lemma.

Lemma 2.6 (see [37, Lemma 1.3]) If vn ⇀ v in H1(R3) and vn → v a.e. in R
3, then

lim
n→∞

[∫

R3
F(x, vn) dx –

∫

R3
F(x, v) dx –

∫

R3
F(x, wn) dx

]

= 0.

As a consequence of Lemma 2.6, we have the following lemma.

Lemma 2.7 Let {vn} be a (Ce) sequence of J at the level c, and set wn = vn – v, then {wn} is
a (PS) sequence of J at the level c – J(v).

Proof We claim first that J ′(v) = 0. In fact, it is enough to show that 〈J ′(v),ϕ〉 = 0 for any
ϕ ∈ C∞

0 (R3). By Lemma 2.2(1)–(2), it is easy to verify

lim
n→∞

∫

R3
f (x, wn)ϕ dx = lim

n→∞

[∫

R3
f (x, vn)ϕ dx –

∫

R3
f (x, v)ϕ dx

]

= 0.

Using the above formula and (2.6), we have

0 = lim
n→∞

〈
J ′(vn),ϕ

〉
=

〈
J ′(v),ϕ

〉
(2.11)

which yields the claim. By (2.11), we derive

lim
n→∞ J(wn) = lim

n→∞
[
J(vn) – J(v)

]
= c – J(v),

lim
n→∞

〈
J ′(wn),ϕ

〉
= lim

n→∞
[〈

J ′(vn),ϕ
〉
–

〈
J ′(v),ϕ

〉]
= 0,

which show that {wn} is a (PS) sequence of J at the level c – J(v). �

The proofs of the following lemmas can be found in the corresponding references.

Lemma 2.8 (see [38, 39]) Let {ρn} be a sequence of nonnegative functions satisfying |ρn|1 =
λ and λ > 0 is fixed, then there exists a subsequence, still denoted by {ρn}, satisfying one of
the following two possibilities:
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(i) (Vanishing) for any fixed R > 0, we have

lim
n→∞ sup

y∈RN

∫

BR(y)
ρn(x) dx = 0.

(ii) (Nonvanishing) there exist β > 0, R ∈ (0, +∞) and {yn} ⊂ R
N such that

lim
n→∞

∫

BR(yn)
ρn(x) dx ≥ β > 0.

Lemma 2.9 (see [38, 39]) Assume that {un} is bounded in H1(R3) and satisfies

lim
n→∞ sup

y∈R3

∫

BR(y)
|un|2 dx = 0,

for some R > 0. Then un → 0 in Lr(R3) for every 2 < r < 6.

3 The existence of ground state solution for limit equation at infinity
In this section, by employing Ekeland’s variational principle [40], we prove the existence
of ground state solution for problem (1.8) which is the limit equation of problem (1.7) at
infinity. To establish the ground sate solution of problem (1.8), we set

m∞ = inf
u∈N∞

J∞(u) and N∞ =
{

u ∈ H1(
R

3) \ {0} :
〈
J ′
∞(u), u

〉
= 0

}
.

Since a∞ is positive, the norm and inner product in this section are not distinguished
by the norm and inner product used in the previous section. To show that the Nehair
manifold N∞ is nonempty and m∞ is well defined, we prove the following lemma.

Lemma 3.1 Assume (g) and (H1)–(H2), then we have the following properties:
(a) For any v ∈ H1(R3) \ {0}, there exists a unique tv > 0 such that tvv ∈N∞ and

J∞(tvv) = maxt≥0 J∞(tv). In particular, if v ∈N∞ we have J∞(v) = maxt≥0 J∞(tv);
(b) There exists α > 0 such that ‖u‖ ≥ α for all u ∈N∞;
(c) J∞ is bounded from below on N∞ by a positive constant;
(d) J∞ is coercive on N∞, i.e. J∞(v) → ∞ as ‖v‖ → ∞ when v ∈N∞.

Proof (a) Given v ∈ H1(R3)\ {0}, by [41, Lemma 2.4] and Lemma 2.2(1)–(2) we derive that

ξ (t) = c1t2 + c2t4 –
∫

R3
F∞(tv) dx

has a unique positive critical point which corresponds to its maximum, where the fact
F∞(tv)/t2 → ∞ as t → ∞ is used. Let ξ (t) = J∞(tv), then we can conclude the result (a).

(b) If v ∈N∞, using Lemma 2.2(1)–(2) one has

‖v‖2 ≤ ‖v‖2 +
∫

R3
φvv2 dx =

∫

R3
f∞(v)v dx ≤ ε

∫

R3
v2 dx + Cε

∫

R3
v6 dx

≤ Cε‖v‖2 + CCε‖v‖6 =
1
2
‖v‖2 + C‖v‖6

if we choose Cε = 1/2 and the result (b) follows.
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(c) If v ∈N∞, then

J∞(v) = J∞(v) –
1
4
〈
J ′
∞(v), v

〉 ≥ 1
4

∫

R3
|∇v|2 dx +

1
4

∫

R3
a∞

∣
∣G–1(v)

∣
∣2 dx,

which together with the result (b) and (2.10) gives the result (c).
(d) Combining the above formula and (2.10), the result (d) is obvious. �

Lemma 3.2 Assume (g), then m∞ = infu∈N∞ J∞(u) can be attained.

Proof If it is possible to verify that a minimizing sequence of m∞ is radially symmetric,
the minimizer may be easily obtained. In particular, the minimizer is a critical point of J∞
restricted on N∞. Finally, we proceed as follows.

Step 1: Any minimizing sequence of m∞ can be radially symmetric.
Let {vn} ⊂ H1(R3) be a minimizing sequence of m∞, that is, 〈J ′∞(vn), vn〉 = 0 and J∞(vn) →

m∞ as n → ∞. According to the Schwarz symmetrization v∗
n of vn, we know that v∗

n is
continuous and nonnegative and satisfies

∫

R3

∣
∣∇v∗

n
∣
∣2 dx ≤

∫

R3
|∇vn|2 dx and

∫

R3
h
(
v∗

n
)

dx =
∫

R3
h(vn) dx for any h(vn) ∈ L1(

R
3),

which give 〈J ′∞(v∗
n), v∗

n〉 ≤ 〈J ′∞(vn), vn〉 = 0. It is obvious that 〈J ′∞(tv∗
n), tv∗

n〉 > 0 for sufficiently
small t > 0. Hence there is t0 ∈ (0, 1] satisfying 〈J ′∞(t0v∗

n), t0v∗
n〉 = 0 and then

m∞ ≤ J∞
(
t0v∗

n
)

= J∞
(
t0v∗

n
)

–
1
4
〈
J ′
∞

(
t0v∗

n
)
, t0v∗

n
〉

=
t2
0
4

∫

R3

∣
∣∇v∗

n
∣
∣2 dx +

1
4

∫

R3
a∞

∣
∣G–1(t0v∗

n
)∣
∣2 dx +

p – 4
4p

tp
0

∫

R3
b∞

∣
∣v∗

n
∣
∣p dx

+
4 – q

4q
tq
0

∫

R3
c∞

∣
∣v∗

n
∣
∣q dx

≤ 1
4

∫

R3

∣
∣∇v∗

n
∣
∣2 dx +

1
4

∫

R3
a∞

∣
∣G–1(v∗

n
)∣
∣2 dx +

p – 4
4p

∫

R3
b∞

∣
∣v∗

n
∣
∣p dx

+
4 – q

4q

∫

R3
c∞

∣
∣v∗

n
∣
∣q dx

≤ 1
4

∫

R3
|∇vn|2 dx +

1
4

∫

R3
a∞

∣
∣G–1(vn)

∣
∣2 dx +

p – 4
4p

∫

R3
b∞|vn|p dx

+
4 – q

4q

∫

R3
c∞|vn|q dx

= J∞(vn) –
1
4
〈
J ′
∞(vn), vn

〉
= J∞(vn) → m∞

which yields t0 = 1. Therefore we conclude that 〈J ′∞(v∗
n), v∗

n〉 = 0 and J∞(v∗
n) → m∞ as n →

∞. So the proof of Step 1 is complete.
Step 2: Any minimizing sequence of m∞ contains a strongly convergent subsequence.
Let {vn} ⊂ H1(R3) be a minimizing sequence of m∞, then similar to Lemma 2.5 we know

that {vn} is bounded in H1(R3). From the Step 1, we know that {vn} is radially symmetric.
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Up to a subsequence, there exists v ∈ H1(R3) such that vn ⇀ v in H1(R3), vn → v in Lr(R3)
with r ∈ (2, 6) and vn → v a.e. in R

3. By using Fatou’s lemma, one has

∫

R3
|∇v|2 dx +

∫

R3
a∞

∣
∣G–1(v)

∣
∣2 dx +

∫

R3
φvv2 dx

≤ lim inf
n→∞

(∫

R3
|∇vn|2 dx +

∫

R3
a∞

∣
∣G–1(vn)

∣
∣2 dx +

∫

R3
φvn vn

2 dx
)

= lim inf
n→∞

(∫

R3
b∞|vn|p dx –

∫

R3
c∞|vn|q dx

)

=
∫

R3
b∞|v|p dx –

∫

R3
c∞|v|q dx,

which gives 〈J ′∞(v), v〉 ≤ 0. It is easy to check that 〈J ′∞(tv), tv〉 > 0 for sufficiently small t > 0.
Hence there exists t ∈ (0, 1] such that 〈J ′∞(tv), tv〉 = 0 and then

m∞ ≤ J∞(tv) = J∞(tv) –
1
4
〈
J ′
∞(tv), tv

〉 ≤ J∞(v) –
1
4
〈
J ′
∞(v), v

〉

≤ lim inf
n→∞

[

J∞(vn) –
1
4
〈
J ′
∞(vn), vn

〉
]

= m∞,

which indicates that t = 1. Thus we have 〈J ′∞(v), v〉 = 0 and J∞(v) = m∞. �

Proposition 3.3 Assume (g), any minimizer of m∞ is a critical point of J∞ in H1(R3).

Proof If v is a minimizer of m∞, according to Lemma 3.2 we know that v is a critical point
of J∞|N∞ , that is, v ∈ N∞ and J ′∞|N∞ (v) = 0. Hence there is a Lagrange multiplier λ ∈ R

such that J ′∞(v) = λ� ′∞(v), where �∞(v) = 〈J ′∞(v), v〉. To end the proof, it is enough to show
that λ = 0.

In fact, using 0 = 〈J ′∞(v), v〉 = λ〈� ′∞(v), v〉 and v ∈ H1(R3) \ {0} we have

〈
� ′

∞(v), v
〉

= 2
∫

R3
|∇v|2 + a∞v2 dx + 4

∫

R3
φvv2 dx –

∫

R3

[
f ′
∞(v)v2 + f∞(v)v

]
dx

= –2
∫

R3
|∇v|2 dx +

∫

R3

[
3f∞(v)v – f ′

∞(v)v2 – 2a∞v2]dx

(2.3)≤ –2
∫

R3
|∇v|2 dx < 0,

which implies that λ = 0. Hence the proof is complete. �

Theorem 3.4 Assume (g), the system (1.8) has a ground state solution.

Proof In view of Lemma 3.1, we know that the Nehair manifold N∞ is nonempty and m∞
is well defined. It follows from Lemma 3.2 that m∞ is attained by some v ∈ N∞ and v is a
critical point of J∞|N∞. By Proposition 3.4, we have J ′∞(v) = 0 in the whole space H1(R3).
Consequently, we have shown that J(v) = m∞ > 0 and J ′∞(v) = 0, which show that v is a
ground state solution of problem (1.8). The proof is complete. �
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4 Proof of Theorem 1.1
In this section, we prove Theorem 1.1 by applying the variant mountain-pass theorem [36].
In the following, we will verify that the mountain-pass value c given by (2.7) is satisfied.

Lemma 4.1 Suppose that (g) and (H1)–(H2) hold, then 0 < c < m∞.

Proof By Theorem 3.4, we know that there exists v ∈ H1(R3) such that J ′∞(v) = 0 and
J∞(v) = m∞ > 0. Since J(0) = 0 and limt→∞ J(tv) = –∞, there exists t̃ > 0 such that

J(t̃v) = max
t≥0

J(tv).

Choosing a sufficient large t0 > 0 to satisfy J(t0v) < 0, then γ0(t) = tt0v ∈ � and hence

c ≤ max
t∈[0,1]

J
(
γ0(t)

) ≤ max
t≥0

J(tv) = J(t̃v) < J∞(t̃v) ≤ J∞(v) = m∞,

where (H2) yields the strict inequality. The proof is complete. �

Proposition 4.2 Assume that (g) and (H1)–(H2) hold, then J(v) satisfies the (Ce)c condition
if c ∈ (0, m∞).

Proof Let {vn} be a (Ce)c sequence of J(v). Similar to Lemma 2.5, we find that {vn} is
bounded in H1(R3) and there exists a subsequence, still denoted by {vn}, such that

⎧
⎪⎪⎨

⎪⎪⎩

vn ⇀ v, in H1(R3),

vn → v, in Lr
loc(R3) for 1 ≤ r < 6,

vn → v, a.e. in R
3,

and J ′(v) = 0 with J(v) ≥ 0 by (2.4). Denote wn = vn – v, then it follows from Lemma 2.7
that {wn} is a (PS) sequence of J(v) at the level c – J(v). To prove that ‖wn‖ → 0 as n → ∞,
we divide our proof into the following two steps.

Step 1: The nonvanishing case for ρn = |wn|22 in Lemma 2.8 can never occur.
Arguing indirectly, by Lemma 2.8 we know that there exist β > 0, R ∈ (0, +∞) and {yn} ⊂

R
N such that

lim inf
n→∞

∫

BR(yn)
|wn|2 dx ≥ β > 0. (4.1)

Without loss of generality, we choose |yn| → ∞ as n → ∞. Otherwise, {wn} is tight, and
thus |wn|2 → 0 as n → ∞, which yields a contradiction to (4.1). Denote wn(x) = wn(x + yn).
Since lim supn→∞ ‖wn‖ = lim supn→∞ ‖wn‖ ≤ C < +∞, we may assume that there exists
w0 ∈ H1(R3) such that wn ⇀ w0 in H1(R3), wn → w0 in Lr

loc(R3) with r ∈ [1, 6) and wn → w0

a.e. in R
3. We then claim that {wn} is a (PS) sequence of J∞(v) at the level c – J(v). In fact,

in view of limn→∞ a(x + yn) = a∞, we have

∫

R3
a(x)

∣
∣G–1(wn)

∣
∣2 dx =

∫

R3
a(x + yn)

∣
∣G–1(wn)

∣
∣2 dx =

∫

R3
a∞

∣
∣G–1(wn)

∣
∣2 dx + o(1)
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and by limn→∞ b(x + yn) = b∞ and limn→∞ c(x + yn) = c∞,

∫

R3
b(x)|wn|p dx =

∫

R3
b∞|wn|p dx + o(1),

∫

R3
c(x)|wn|q dx =

∫

R3
c∞|wn|q dx + o(1),

which give

J(wn) =
1
2

∫

R3
|∇wn|2 + a(x)w2

n dx +
1
4

∫

R3
φwn w2

n dx –
∫

R3
F(x, wn) dx

=
1
2

∫

R3
|∇wn|2 + a∞w2

n dx +
1
4

∫

R3
φwn w2

n dx –
∫

R3
F∞(wn) dx + o(1)

= J∞(wn) + o(1).

On the other hand, since limn→∞ a(x + yn) = a∞, for any φ ∈ C∞
0 (RN ) we have

∣
∣
∣
∣

∫

R3

[
a(x + yn) – a∞

] G–1(wn)
g(G–1(wn))

φ dx
∣
∣
∣
∣

≤
∫

R3

∣
∣
[
a(x + yn) – a∞

]
wnφ

∣
∣dx

≤ C
(∫

R3

∣
∣a(x + yn) – a∞

∣
∣2|φ|2

) 1
2 → 0.

Denote φn(x) = φ(x – yn), we can deduce that

∫

R3
a(x)

G–1(wn)
g(G–1(wn))

φn dx

=
∫

R3
a(x + yn)

G–1(wn)
g(G–1(wn))

φ dx

=
∫

R3
a∞

G–1(wn)
g(G–1(wn))

φ dx +
∫

R3

[
a(x + yn) – a∞

] G–1(wn)
g(G–1(wn))

φ dx

=
∫

R3
a∞

G–1(wn)
g(G–1(wn))

φ dx + o(1). (4.2)

Similarly, we derive

∫

R3
b(x)|wn|p–2wnφn dx =

∫

R3
b∞|wn|p–2wnφ dx + o(1),

∫

R3
c(x)|wn|q–2vnφn dx =

∫

R3
c∞|wn|q–2wnφ dx + o(1).

(4.3)

Combining (4.2) and (4.3), we have

〈
J ′
∞(wn),φ

〉
=

〈
J ′(wn),φn

〉
+ o(1) = o(1).
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Hence the claim is true. Furthermore, we can conclude that J ′∞(w0) = 0. We now use (4.1)
to show that w0 �≡ 0. In the contrary case wn → 0 in L2

loc(R3), we have

0 = lim
n→∞

∫

BR(0)
|wn|2 dx = lim

n→∞

∫

BR(yn)
|wn|2 dx

≥ lim inf
n→∞

∫

BR(yn)
|wn|2 dx ≥ β > 0,

which yields a contradiction. Thus w0 �≡ 0.
Denote zn = wn – w0, by the Brézis–Lieb lemma [42] we easily get

J∞(wn) = J∞(zn) + J∞(w0) + o(1)

and

J ′
∞(wn) = J ′

∞(zn) + J ′
∞(w0) + o(1) = J ′

∞(zn) + o(1).

Hence we have

lim inf
n→∞ J∞(zn) = lim inf

n→∞

[

J∞(zn) –
1
4
〈
J ′
∞(zn), zn

〉
]

(2.4)≥ 0

and then

c = J(vn) + o(1) = J(v) + J(wn) + o(1) = J(v) + J∞(wn) + o(1)

= J(v) + J∞(zn) + J∞(w0) + o(1),

which implies that

c ≥ J∞(w0) ≥ m∞,

a contradiction. So the proof of Step 1 is complete.
Step 2: ‖wn‖ → 0 as n → ∞.
In fact, as a consequence of Step 1 and Lemma 2.8, for any fixed R > 0, we have

lim
n→∞ sup

y∈R3

∫

BR(y)
w2

n dx = 0.

By Lemma 2.9, we have

lim
n→∞

∫

R3
|wn|r dx = 0 for all 2 < r < 6.

Since 2 < q < p < 6, by (H1) we have

lim
n→∞

∫

R3
b(x)|wn|p dx = lim

n→∞

∫

R3
c(x)|wn|q dx = 0.



Shen Boundary Value Problems  (2018) 2018:44 Page 15 of 17

Therefore

lim
n→∞

(∫

R3
|∇wn|2 dx +

∫

R3
a(x)

∣
∣G–1(wn)

∣
∣2 dx

)

= lim
n→∞

〈
J ′(wn), wn

〉
= 0,

which together with (2.10) yields ‖wn‖ → 0 as n → ∞.
Summing the above two steps, we obtain vn → v in H1(R3) as n → ∞. �

Complement of proof of Theorem 1.1 By Lemma 2.4 and the variant mountain-pass theo-
rem [36], a sequence verifying (2.8) can be obtained. Using Lemma 4.1 and Proposition 4.2,
there exists v ∈ H1(R3) such that J ′(v) = 0 and J(v) = c > 0, which imply that v is a nontrivial
solution to (1.1). To show the existence of ground state solution, we set

m = inf
u∈N

J(u) and N =
{

u ∈ H1(
R

3) \ {0} :
〈
J ′(u), u

〉
= 0

}
.

Obviously, we have c ≥ m. On the other hand, for any v ∈ N , choosing a sufficient large
t0 > 0 to satisfy J(t0v) < 0, then γ0(t) = tt0v ∈ � and similar to the proof of Lemma 3.1 (a)
we obtain

c ≤ max
t∈[0,1]

J
(
γ0(t)

) ≤ max
t≥0

J(tv) = J(v),

which indicates that m ≥ c. Hence J(v) = m > 0. The proof is complete. �

5 Conclusion
In this paper, we consider the existence of ground state solutions for a class of general-
ized quasilinear Schrödinger–Poisson systems in R

3. By employing a change of variables
constructed by Shen–Wang [19] and used in [18, 25] and the references therein, the gen-
eralized quasilinear systems are reduced to a semilinear one, whose associated functionals
are well defined in the usual Sobolev space and satisfy the mountain-pass geometric. To
obtain a ground state solution, the nonlinearities in [18, 25] are assumed to satisfy the
monotone condition which is unnecessary in this paper and we believe that it is a partial
extension which can reduce the restrictions on the nonlinearity.
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