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Abstract
In this paper we study the viscoelastic plate equation with p-Laplacian and
time-varying delay. We establish a general decay rate result under some restrictions
on the coefficients of strong damping and strong time-varying delay and weakening
the usual assumptions on the relaxation function, using the energy perturbation
method.
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1 Introduction
In this paper, we are concerned with the following problem:

utt + α�2u – �pu –
∫ t

–∞
g(t – s)�2u(s) ds – μ1�ut

– μ2�ut
(
t – τ (t)

)
+ f (u) = h, � ×R

+, (1.1)

u = �u = 0 on ∂� ×R
+, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (1.3)

ut(x, t) = f0(x, t), (x, t) ∈ � × [
–τ (0), 0

)
, (1.4)

where � is a bounded domain of Rn with a sufficiently smooth boundary ∂�, and

�pu = div
(‖∇u‖p–2∇u

)

is the p-Laplacian operator. The unknown function u(x, t) denotes the transverse displace-
ment of a plate filament with prescribed history u0(x, t), t ≤ 0. The constants α and μ1 are
positive and μ2 is a real number. The function τ (t) > 0 represents the time-varying delay,
g > 0 is the memory kernel and f is forcing term.

The plate equation with lower order perturbation of p-Laplacian type,

utt + �2u – �pu – �ut = h(x),
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has been extensively studied (see [1–3]) and results concerning existence, nonexistence
and long-time behavior of solutions have been considered. This model can be regarded
as describing elastoplastic microstructure flows. On the other hand, the elliptic problem
for p-Laplace operator can be found in [4]. Recently, Torres [5] showed the existence of a
solution for the fractional p-Laplacian Dirichlet problem with mixed derivatives.

When μ2 = 0 in Eq. (1.1), that is, in the absence of delay, problem (1.1) with strong damp-
ing was investigated by Jorge Silva and Ma [6]. They established exponential stability of
solutions under the condition

g ′(t) ≤ –cg(t), ∀t ≥ 0, (1.5)

for some c > 0. Andrade et al. [7] proved exponential stability of solutions for the plate
equation with finite memory and p-Laplacian. The viscosity term –�ut is often called
a Kelvin–Voigt type dissipation or strong dissipation; it appears in phenomena of wave
propagation in a viscoelastic material. Nakao [8] obtained the existence and uniqueness of
a global decaying solution for the quasilinear wave equation with Kelvin–Voigt dissipation
and a derivative nonlinearity. Pukach et al. [9] studied sufficient conditions of nonexistence
of global in time solution for a nonlinear evolution equation with memory generalizing
the Voigt–Kelvin model. Recently, Cavalcanti et al. [10] considered intrinsic decay rates
for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods
with variable density.

Time delays so often arise in many physical, chemical, biological, thermal, and econom-
ical phenomena because these phenomena depend not only on the present state but also
on the past history of the system in a more complicated way. In recent years, there has
been published much work concerning the wave equation with constant delay or time-
varying delay effects. Nicaise and Pignotti [11] investigated some stability results for the
following wave equation with a linear damping and delay term in the domain:

utt – �u + μ1ut + μ2ut(t – τ ) = 0 (1.6)

in the case 0 < μ2 < μ1. Moreover, the same results were obtained when both the damping
and the delay act on the boundary. Nicaise and Pignotti [12] studied exponential stability
results for the following wave equation with time-dependent delay:

utt – �u + μ1ut + μ2ut
(
t – τ (t)

)
= 0 (1.7)

under the condition |μ2| <
√

1 – dμ1. Kirane and Said-Houari [13] considered the follow-
ing viscoelastic wave equation with a linear damping and a delay term:

utt – �u +
∫ t

0
g(t – s)�u(s) ds + μ1ut + μ2ut(t – τ ) = 0, (1.8)

where μ1 and μ2 are positive constants. When μ2 ≤ μ1, they proved general decay of the
energy under the condition

g ′(t) ≤ –ξ (t)g(t), ∀t ≥ 0, (1.9)



Kang Boundary Value Problems  (2018) 2018:29 Page 3 of 11

where ξ : R+ → R+ is a nonincreasing differentiable function. Dai and Yang [14] improved
the results of [13]. They also obtained an exponentially decay results for the energy of the
problem (1.8) in the case μ1 = 0. Liu [15] studied a general decay result for the following
viscoelastic wave equation with time-dependent delay:

utt – �u +
∫ t

0
g(t – s)�u(s) ds + μ1ut + μ2ut

(
t – τ (t)

)
= 0 (1.10)

under the conditions (1.9) and |μ2| <
√

1 – dμ1. For the plate equation with time delay
term, Yang [16] considered the stability for an Euler–Bernoulli viscoelastic equation with
constant delay

utt + �2u +
∫ t

0
g(t – s)�2u(s) ds + μ1ut + μ2ut(t – τ ) = 0 (1.11)

under the conditions (1.5) and 0 < |μ2| < μ1. Moreover, he proved the exponential decay
results of the energy in the case μ1 = 0. Recently, Feng [17] investigated an exponential
stability results for the following plate equation with time-varying delay and past history:

utt + α�2u –
∫ t

–∞
g(t – s)�2u(s) ds + μ1ut + μ2ut

(
t – τ (t)

)
+ f (u) = 0 (1.12)

under the conditions (1.5) and 0 < |μ2| <
√

1 – dμ1. Mustafa and Kafini [18] showed the
decay rates for memory type plate system (1.12) with τ (t) = τ and f (u) = –u|u|γ . Park [19]
obtained the general decay estimates for a viscoelastic plate equation with time-varying
delay under the condition (1.9). The stability of the solutions to a viscoelastic system under
the condition (1.9) was studied in [20–23] and the references therein. With respect to wave
equation with strong time delay, there is just little published work. Messaoudi et al. [24]
considered the following wave equation with strong time delay:

utt – �u – μ1�ut – μ2�ut(t – τ ) = 0 (1.13)

and proved the well-posedness under the condition |μ2| ≤ μ1 and obtained exponential
decay of energy under the condition |μ2| < μ1. Recently, Feng [25] established the gen-
eral decay result for the following viscoelastic wave equation with strong time-dependent
delay:

utt – �u +
∫ t

0
g(t – s)�u(s) ds – μ1�ut – μ2�ut

(
t – τ (t)

)
= 0 (1.14)

under the conditions (1.9) and |μ2| <
√

1 – dμ1.
However, to the best of my knowledge, there is no stability result for the viscoelastic plate

equation with strong time-varying delay. Motivated by [24, 25], we study a general decay
result for viscoelastic plate equation with p-Laplacian and time-varying delay (1.1)–(1.4)
for relaxation function g satisfying the condition (1.9). This result improves on earlier ones
in the literature because it allows for certain relaxation functions which are not necessarily
of exponential or polynomial decay.
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We end this section by establishing the usual history setting of problem (1.1)–(1.4). Fol-
lowing a method devised in [26–29], we shall use a new variable ηt to the system with past
history. Let us define

η = ηt(x, s) = u(x, t) – u(x, t – s), (x, s) ∈ � ×R
+, t ≥ 0. (1.15)

Differentiating in (1.15) we have

ηt
t(x, s) + ηt

s(x, s) = ut(x, t), (x, s) ∈ � ×R
+, t ≥ 0.

Taking α = 1 +
∫ ∞

0 g(s) ds, the original problem (1.1)–(1.4) can be transformed into the
new system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt + �2u – �pu +
∫ ∞

0 g(s)�2ηt(s) ds

– μ1�ut – μ2�ut(t – τ (t)) + f (u) = h, in � ×R
+,

ηt
t = –ηt

s + ut , (x, t, s) ∈ � ×R
+ ×R

+,

ut(x, t) = f0(x, t), (x, t) ∈ � × [–τ (0), 0),

(1.16)

with boundary conditions

u(x, t) = 0 on ∂� ×R
+, η = 0 on ∂� ×R

+ ×R
+, (1.17)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), ηt(x, 0) = 0, η0(x, s) = η0(x, s), (1.18)

where

⎧⎪⎪⎨
⎪⎪⎩

u0(x) = u0(x, 0), x ∈ �,

u1(x) = ∂tu0(x, t)|t=0, x ∈ �,

η0(x, s) = u0(x, 0) – u0(x, –s), (x, s) ∈ � ×R
+.

The paper is organized as follows. In Sect. 2, we state the notation and main result. In
Sect. 3, we prove the general decay of the solutions to the viscoelastic plate equation with
p-Laplacian and time-varying delay by using the energy perturbation method.

2 Preliminaries
In this section, we present some material needed in the proof of our result and state the
main result.

For a Banach space X,‖ · ‖X denotes the norm of X. For simplicity, we denote ‖ · ‖L2(�) by
‖ · ‖. We use the standard Lebesgue and Sobolev spaces, with their usual scalar products
and norms, and the Sobolev–Poincaré inequality

‖u‖2
q ≤ C∗‖�u‖2, u ∈ H2

0 (�), (2.1)

for q ≥ 2 if 1 ≤ n ≤ 4 or 2 ≤ q ≤ 2n
n–4 if n ≥ 5.
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In the following, we fix some notations on the function spaces that will be used. Let

V0 = L2(�), V1 = H1
0 (�), V2 = H2(�) ∩ H1

0 (�)

and

V3 =
{

u ∈ H3(�)|u = �u = 0 on ∂�
}

.

In order to consider the new variable η, we introduce the weighted L2-spaces

Mi = L2
g
(
R

+; Vi
)

=
{
η : R+ → Vi

∣∣∣
∫ ∞

0
g(s)

∥∥η(s)
∥∥2

Vi
ds < ∞

}
, i = 0, 1, 2, 3,

which are Hilbert spaces endowed with the inner products and norms

(η, ξ )Mi =
∫ ∞

0
g(s)

(
η(s), ξ (s)

)
Vi

ds and ‖η‖2
Mi

=
∫ ∞

0
g(s)

∥∥η(s)
∥∥2

Vi
ds, i = 0, 1, 2, 3,

respectively. To simplify the notation, we define the Hilbert spaces

H = V2 × V0 ×M2 and H1 = V3 × V1 ×M3.

Let us begin with the precise hypotheses on the constant p and the functions f and g .
For n ∈N, we assume that

2 ≤ p ≤ 2n – 2
n – 2

if n ≥ 3 and p ≥ 2 if n = 1, 2. (2.2)

Then

H2(�) ∩ H1
0 (�) ↪→ W 1,2(p–1)

0 (�) ↪→ H1
0 (�) ↪→ L2(�).

The nonlinear function f : R →R satisfying f (0) = 0 and the growth condition,

∣∣f (w) – f (z)
∣∣ ≤ k0

(
1 + |w|ρ + |z|ρ)|w – z|, ∀w, z ∈R, (2.3)

where k0 > 0 and

0 < ρ ≤ 4
n – 4

if n ≥ 5 and ρ > 0 if 1 ≤ n ≤ 4, (2.4)

which implies that H2(�) ↪→ L2(ρ+1)(�). In addition, we assume that

0 ≤ F(u) ≤ f (u)u, ∀u ∈R, (2.5)

where F(z) =
∫ z

0 f (s) ds.
For the relaxation function g , we assume that g : R+ →R

+ is a nonincreasing C1 function
satisfying

g(0) > 0, l := 1 –
∫ ∞

0
g(s) ds > 0, (2.6)
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and there exists a nonincreasing differentiable function ξ : R+ →R
+ satisfying

ξ (t) > 0, g ′(t) ≤ –ξ (t)g(t), ∀t ≥ 0 (2.7)

and
∫ +∞

0
ξ (t) dt = ∞.

As in [12], for the time-varying delay, we assume that τ ∈ W 2,∞([0, T]) for T > 0, and there
exist positive constants τ0, τ1 and d satisfying

0 < τ0 ≤ τ (t) ≤ τ1 and τ ′(t) ≤ d < 1 ∀t > 0, (2.8)

and that μ1 and μ2 satisfy

|μ2| <
√

1 – dμ1. (2.9)

We can prove the existence of weak solution by making use of the classical Faedo–
Galerkin method. Then using elliptic regularity and second order estimates we can show
the regularity of the solution. We state a well-posedness result without a proof here (see
[6, 7, 13, 17]).

Theorem 2.1 Suppose that hypotheses (2.2)–(2.9) hold.
(i) If the initial data (u0, u1,η0) ∈H, f0(x, t) ∈ H1(� × (–τ (0), 0)) and h(x) ∈ L2(�), then

problem (1.16)–(1.18) has a unique weak solution

(
u, ut ,ηt) ∈ C(0, T ;H), ∀T > 0,

satisfying

u ∈ L∞(0, T ; V2), ut ∈ L∞(0, T ; V0) ∩ L2(0, T ; V1), ηt ∈ L∞(0, T ;M2).

(ii) If the initial data (u0, u1,η0) ∈H1, f0(x, t) ∈ H2(� × (–τ (0), 0)) and h(x) ∈ H1(�),
then the above weak solution has higher regularity

u ∈ L∞(0, T ; V3), ut ∈ L∞(0, T ; V1) ∩ L2(0, T ; V2),

ηt ∈ L∞(0, T ;M3).

In order to state our main result, we define the energy of problem (1.16)–(1.18) by

E(t) =
1
2
∥∥ut(t)

∥∥2 +
1
2
∥∥�u(t)

∥∥2 +
1
p
∥∥∇u(t)

∥∥p
p +

∫
�

F(u) dx

+
1
2
∥∥ηt∥∥2

M2
+

ξ

2

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds,
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where ξ and λ are positive constants satisfying

|μ2|√
1 – d

< ξ < 2μ1 –
|μ2|√
1 – d

and λ <
1
τ1

log

∣∣∣∣ξ
√

1 – d
|μ2|

∣∣∣∣. (2.10)

Note that this choice of ξ is possible from assumption (2.9).

Theorem 2.2 Suppose that assumptions (2.2)–(2.9) hold. Let h = 0 and the initial data
(u0, u1,η0) ∈H, f0(x, t) ∈ H1(�× (–τ (0), 0)). Then there exist two positive constants k1 and
k2 such that the energy E(t) satisfies

E(t) ≤ k1e–k2
∫ t

0 ξ (s) ds, ∀t ≥ 0. (2.11)

3 General decay of the energy
In this section we shall establish the decay rates in Theorem 2.2. To demonstrate the sta-
bility of the system (1.16)–(1.18) the lemmas below are essential.

Lemma 3.1 Under the assumptions of Theorem 2.2, the energy functional E(t) satisfies, for
any t ≥ 0,

E′(t) ≤
( |μ2|

2
√

1 – d
– μ1 +

ξ

2

)
‖∇ut‖2 +

( |μ2|
√

1 – d
2

–
ξ (1 – d)

2eλτ1

)∥∥∇ut
(
t – τ (t)

)∥∥2

+
1
2

∫ ∞

0
g ′(s)

∥∥�ηt(s)
∥∥2 ds –

λξ

2

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds. (3.1)

Proof Multiplying the first equation of (1.16) by ut(t), we get the identity

d
dt

(
1
2
‖ut‖2 +

1
2
‖�u‖2 +

1
p
‖∇u‖p

p +
∫

�

F(u) dx
)

= –μ1‖∇ut‖2 – μ2

∫
�

∇ut
(
t – τ (t)

)∇ut dx –
∫

�

∫ ∞

0
g(s)�ηt(s)�ut(t) ds dx. (3.2)

Applying the second equation of (1.16) to (3.2), we have

E′(t) = –μ1‖∇ut‖2 – μ2

∫
�

∇ut
(
t – τ (t)

)∇ut dx –
(
ηt

s ,η
t)
M2

+
ξ

2
‖∇ut‖2

–
ξ

2
e–λτ (t)(1 – τ ′(t)

)∥∥∇ut
(
t – τ (t)

)∥∥2 –
λξ

2

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds.

Using Young’s inequality, we obtain

–μ2

∫
�

∇ut
(
t – τ (t)

)∇ut dx ≤ |μ2|
2
√

1 – d
‖∇ut‖2 +

|μ2|
√

1 – d
2

∥∥∇ut
(
t – τ (t)

)∥∥2.

By (2.8) we get

–
ξ

2
e–λτ (t)(1 – τ ′(t)

)∥∥∇ut
(
t – τ (t)

)∥∥2 ≤ –
ξ

2
e–λτ1 (1 – d)

∥∥∇ut
(
t – τ (t)

)∥∥2.
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Since ηt(0) = 0, we have

–
(
ηt

s ,η
t)
M2

=
1
2

∫ ∞

0
g ′(s)

∥∥�ηt(s)
∥∥2 ds.

Combining with the above estimates, we obtain the desired inequality (3.1). The proof is
now complete. �

Now, let us define the perturbed modified energy by

L(t) = E(t) + ε�(t), (3.3)

where

�(t) =
∫

�

utu dx.

Then it is easily shown that there exists C1 > 0 such that

∣∣L(t) – E(t)
∣∣ ≤ εC1E(t), ∀t ≥ 0,∀ε > 0,

where C1 = max{1, C∗}.

Lemma 3.2 There exist positive constants C2 and C3 such that

L′(t) ≤ –C2E(t) + C3

∫ ∞

0
g(s)

∥∥�ηt(s)
∥∥2 ds, ∀t ≥ 0. (3.4)

Proof By using (1.16), we get

�′(t) = ‖ut‖2 – ‖�u‖2 – ‖∇u‖p
p –

∫
�

∫ ∞

0
g(s)�ηt(s)�u(t) ds dx

– μ1

∫
�

∇ut∇u dx – μ2

∫
�

∇ut
(
t – τ (t)

)∇u dx –
∫

�

f (u)u dx.

Adding and subtracting E(t), we see that

�′(t) = –E(t) +
3
2
‖ut‖2 –

1
2
‖�u‖2 –

(
1 –

1
p

)
‖∇u‖p

p +
1
2
∥∥ηt∥∥2

M2

+
∫

�

(
F(u) – f (u)u

)
dx

–
∫

�

∫ ∞

0
g(s)�ηt(s)�u(t) ds dx – μ1

∫
�

∇ut∇u dx

– μ2

∫
�

∇ut
(
t – τ (t)

)∇u dx

+
ξ

2

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds.
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Applying Young’s inequality and (2.6), we have

∫
�

∫ ∞

0
g(s)�ηt(s)�u(t) ds dx ≤ 1

8
‖�u‖2 + 2(1 – l)

∥∥ηt∥∥2
M2

,

–μ1

∫
�

∇ut∇u dx ≤ 1
16

‖�u‖2 + 4d1μ
2
1‖∇ut‖2

and

–μ2

∫
�

∇ut
(
t – τ (t)

)∇u dx ≤ 1
16

‖�u‖2 + 4d1μ
2
2
∥∥∇ut

(
t – τ (t)

)∥∥2,

where d1 > 0 is an embedding constant for H2(�)∩H1
0 (�) ↪→ H1

0 (�). Combining all above
estimates and using (2.5), we obtain

�′(t) ≤ –E(t) +
(

4d1μ
2
1 +

3
2

d2

)
‖∇ut‖2 –

1
4
‖�u‖2

–
(

1 –
1
p

)
‖∇u‖p

p +
(

2(1 – l) +
1
2

)∥∥ηt∥∥2
M2

+ 4d1μ
2
2
∥∥∇ut

(
t – τ (t)

)∥∥2 +
ξ

2

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds,

where d2 > 0 is an embedding constant for H1
0 (�) ↪→ L2(�). Thus, taking two positive

constants

c1 = max

{
4d1μ

2
1 +

3
2

d2, 4d1μ
2
2

}
and c2 = 2(1 – l) +

1
2

,

we find that

�′(t) ≤ –E(t) + c1‖∇ut‖2 + c1
∥∥∇ut

(
t – τ (t)

)∥∥2

+ c2
∥∥ηt∥∥2

M2
+

ξ

2

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds. (3.5)

Using (3.1), (3.3) and (3.5), we deduce that

L′(t) ≤ –εE(t) +
( |μ2|

2
√

1 – d
– μ1 +

ξ

2
+ εc1

)
‖∇ut‖2

+
( |μ2|

√
1 – d

2
–

ξ (1 – d)
2eλτ1

+ εc1

)∥∥∇ut
(
t – τ (t)

)∥∥2

+
1
2

∫ ∞

0
g ′(s)

∥∥�ηt(s)
∥∥2 ds + εc2

∥∥ηt∥∥2
M2

–
ξ

2
(λ – ε)

∫ t

t–τ (t)
eλ(s–t)∥∥∇ut(s)

∥∥2 ds.

From (2.10), we see that

|μ2|
2
√

1 – d
– μ1 +

ξ

2
< 0,

|μ2|
√

1 – d
2

–
ξ (1 – d)

2eλτ1
< 0.
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We choose ε > 0 sufficiently small for

|μ2|
2
√

1 – d
– μ1 +

ξ

2
+ εc1 < 0,

|μ2|
√

1 – d
2

–
ξ (1 – d)

2eλτ1
+ εc1 < 0 and λ – ε > 0.

Hence, we conclude that (3.4) holds for some constants C2, C3 > 0. �

Proof of Theorem 2.2 From the ideas presented in [19–23], we get the following results.
Multiplying (3.4) by ξ (t) and using (2.7) and (3.1), we get

ξ (t)L′(t) ≤ –C2ξ (t)E(t) + C3 lim
t→∞

∫ t

0
ξ (s)g(s)

∥∥�ηt(s)
∥∥2 ds

≤ –C2ξ (t)E(t) – C3

∫ ∞

0
g ′(s)

∥∥�ηt(s)
∥∥2 ds

≤ –C2ξ (t)E(t) – 2C3E′(t).

Using the fact that ξ ′(t) ≤ 0 and letting

L(t) = ξ (t)L(t) + 2C3E(t) ∼ E(t) (3.6)

we have

L′(t) ≤ –C2ξ (t)E(t) ≤ –C4ξ (t)L(t), ∀t ≥ 0, (3.7)

where C4 is a positive constant. A simple integrating of (3.7) over (0, t) leads to

L(t) ≤L(0)e–C4
∫ t

0 ξ (s) ds, ∀t ≥ 0. (3.8)

Consequently, from (3.6) and (3.8), we obtain the desired inequality (2.11). �

4 Conclusions
In this paper, a viscoelastic plate equation with p-Laplacian and time-varying delay has
been investigated. In recent years, there has been published much work concerning the
wave equation with constant delay or time-varying delay. However, to the best of my
knowledge, there was no stability result for the viscoelastic plate equation with strong time
delay. We have been proved that the general decay rate result under some restrictions on
the coefficients of strong damping and strong time-varying delay. Furthermore, we have
been obtained the general decay rate result under weakening the usual assumptions on
the relaxation function, using the energy perturbation method. This result improves on
earlier ones in the literature because it allows for certain relaxation functions which are
not necessarily of exponential or polynomial decay.
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