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Abstract
In this paper, we are concerned with the existence of solutions for a class of
quasilinear elliptic problems driven by a nonlocal integro-differential operator with
homogeneous Dirichlet boundary data. As a particular case, we study the following
problem:

(–�)spu = f (x,u) in �,

u = 0 in R
N \ �,

where (–�)sp is the fractional p-Laplace operator, � is an open bounded subset of RN

with Lipschitz boundary, and f :�×R →R is a Carathéodory function. The existence
of nonnegative solutions is obtained by using Leray-Schauder’s nonlinear alternative.
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1 Introduction and main results
Recently, a great deal of attention has been paid to the study of problems involving
fractional and nonlocal operators, both in pure mathematical research and in real-
world applications, such as optimization, finance, continuum mechanics, phase transi-
tion phenomena, population dynamics, minimal surfaces, and game theory, as they are
the typical outcome of stochastically stabilization of Lévy processes; see [–] and the
references therein. Especially, the fractional Laplacian operators of the form (–�)s can
be viewed as the infinitesimal generators of stable Lévy processes; see for instance [].
Some interesting topics concerning the nonlocal fractional operators, such as the nonlin-
ear fractional Schrödinger equation (see []), the fractional porous medium equation (see
[, ]), and so on, have attracted considerable attention. There is no doubt that the liter-
ature on fractional and nonlocal operators is quite large; see for example [–]. For the
basic properties of fractional Sobolev spaces and their applications to elliptic fractional
problems, we refer the reader to [, ] and the references therein.
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In this paper we are interested in the existence of solutions for the following problem:

⎧
⎨

⎩

LK u = f (x, u) in �,

u =  in R
N \ �,

(.)

where � ⊂ R
N is an open bounded set with Lipschitz boundary ∂�, f : � × R → R is a

Carathéodory function, and LK is a nonlocal operator defined as

LKϕ(x) = lim
ε→+


∫

RN \Bε (x)

∣
∣ϕ(x) – ϕ(y)

∣
∣p–(

ϕ(x) – ϕ(y)
)
K(x – y) dy, x ∈R

N ,

along any ϕ ∈ C∞
 (RN ), where Bε(x) denotes the ball in R

N of radius ε >  at the center
x ∈R

N and K : RN \ {} →R
+ is a measurable function with the following property:

⎧
⎪⎪⎨

⎪⎪⎩

γ K ∈ L(RN ), where γ (x) = min{|x|p, };
there exist s ∈ (, ) and K > 

such that K(x) ≥ K|x|–(N+ps) for any x ∈R
N \ {}.

(.)

Throughout the paper, without further mention, we always assume that  < s <  and  <
p < N/s.

A typical example for K is given by the singular kernel K(x) = |x|–(N+ps). In this case,
problem (.) becomes

⎧
⎨

⎩

(–�)s
pu = f (x, u) in �,

u =  in R
N \ �,

(.)

where (–�)s
p is the fractional p-Laplace operator; see [] for more details. When p = ,

problem (.) reduces to the fractional Laplacian problem

⎧
⎨

⎩

(–�)su = f (x, u) in �,

u =  in R
N \ �.

(.)

A distinguishing characterization of the fractional operator (–�)s in (.) is in the non-
locality, in the sense that this operator takes care of the behavior of the solution in the
whole space. This is in contrast with the usual elliptic partial differential equations, which
are governed by local differential operators like the Laplace operator. Of course, there are
other explanations for this feature; see for example [, ]. The functional space that takes
into account this boundary condition was introduced in []. In [], the authors get the
existence of nontrivial weak solutions of problem (.) by using the mountain pass theo-
rem. See also [] for the related discussions. In [], the author studied the existence of
solutions to a variational inequality involving nonlocal elliptic operators and obtained the
existence of solutions by using Schauder’s fixed point theorem combined with adequate
variational arguments and a penalization technique.

In the present paper, motivated by the above papers, we study the existence of weak so-
lutions for problem (.) involving nonlocal fractional operator. It is worth noticing that
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there are a few authors addressing the fractional p-Laplacian problems by using the non-
linear alternative of Leray-Schauder.

In this spirit, we suppose that f : � ×R →R is a Carathéodory function satisfying:

(f) there exist q ∈ (, p) and C >  such that

∣
∣f (x, t)

∣
∣ ≤ a(x) + C|t|q/q′

for all t ∈R and a.e. x ∈ �,

where q′ satisfies 
q + 

q′ = , and a ∈ Lq′ (�), with a ≥  a.e. in �.

A simple example of f is given by f (x, t) = |t|q–t + ln( + |t|) for all (x, t) ∈ � ×R.
Now we are in a position to give the main result as follows.

Theorem . Let K : RN \ {} → R
+ be a function satisfying (.). Suppose that f satis-

fies (f). If  < q < p, then there exists R >  such that problem (.) has a solution u ∈ W

with ‖u‖W ≤ R, where the fractional Sobolev space W will be introduced in Section .

This paper is organized as follows. In Section , we recall some necessary definitions
and properties of the fractional Sobolev space W. In Section , applying the properties of
the operator LK and the nonlinear alternative of Leray-Schauder, we obtain the existence
of solutions for problem (.).

2 Preliminaries
In this section, we first recall some basic results, which will be used in the next section.
Let  < s <  < p < ∞ be real numbers and the fractional critical exponent p∗

s be defined as

p∗
s =

⎧
⎨

⎩

Np
N–sp if sp < N ,

∞ if sp ≥ N .

In the following, we denote Q = R
N \O, where

O = C(�) × C(�) ⊂R
N ,

and C(�) = R
N \ �. W is a linear space of Lebesgue measurable functions from R

N to R

such that the restriction to � of any function u in W belongs to Lp(�) and

∫∫

Q

∣
∣u(x) – u(y)

∣
∣pK(x – y) dx dy < ∞.

The space W is equipped with the norm

‖u‖W = ‖u‖Lp(�) +
(∫∫

Q

∣
∣u(x) – u(y)

∣
∣pK(x – y) dx dy

)/p

.

It is easy to prove that ‖ · ‖W is a norm on W . We shall work in the closed linear subspace

W =
{

u ∈ W : u(x) =  a.e. in R
N \ �

}
,
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endowed with the norm

‖u‖W := [u]s,p,K =
(∫∫

Q

∣
∣u(x) – u(y)

∣
∣pK(x – y) dx dy

)/p

.

Then (W,‖·‖W ) is a uniformly convex Banach space; see []. Moreover, C∞
 (�) is dense

in W; see [].

Lemma . (see Lemma . of []) Let K : RN \ {} → R
+ satisfy (.) and let vj be a

bounded sequence in W. Then there exists v ∈ Lν(RN ) with v =  a.e. in R
N \ � such that

up to a subsequence,

vj → v strongly in Lν(�) as j → ∞

for any ν ∈ [, p∗
s ).

3 Proof of the main result
In this section we prove the existence of solutions to problem (.). Our method is based
on the properties of the operator LK and again on the nonlinear alternative of Leray-
Schauder.

Let W ∗
 denote the dual space of W. We first give some properties to operator LK .

Lemma .
() LK : W → W ∗

 is a continuous, bounded and strictly monotone operator;
() LK is a mapping of type (S+), i.e. if un ⇀ u in W and

lim sup
n→∞

〈LK un – LK u, un – u〉 ≤ ,

then un → u in W;
() L : W → W ∗

 is a homomorphism.

Proof () Note that, by the Hölder inequality, one has

∣
∣〈LK u, v〉∣∣ =

∣
∣
∣
∣

∫∫

Q

∣
∣u(x) – u(y)

∣
∣p–(u(x) – u(y)

)(
v(x) – v(y)

)
K(x – y) dx dy

∣
∣
∣
∣

≤ ‖u‖p–
W

‖v‖W

for all u, v ∈ W. Following this inequality, we easily see that LK is continuous and
bounded.

Let us now recall the well-known Simon inequality (see [] and []): for all ξ ,η ∈ R,
there exists Cp >  such that

Cp
(|ξ |p–ξ – |η|p–η

) · (ξ – η) ≥
⎧
⎨

⎩

|ξ – η|p if p ≥ ,

|ξ – η|(|ξ |p + |η|p)(p–)/p if  < p < .
(.)

It follows from (.) that the operator LK is strictly monotone.



Qiu and Xiang Boundary Value Problems  (2016) 2016:83 Page 5 of 8

() By (), if un ⇀ u and lim supn→∞〈LK un – LK u, un – u〉 ≤ , then limn→∞〈LK un –
LK u, un – u〉 = . Using the well-known vector inequalities (.), we obtain, for p > ,

‖un – u‖p
W

≤ Cp〈LK un – LK u, un – u〉 = o(), (.)

and, for  < p < ,

‖un – u‖p
W

≤ Cp/
p

[〈LK un – LK u, un – u〉]p/(‖un‖p
W

+ ‖u‖p
W

)(–p)/

≤ Cp/
p

[〈LK un – LK u, un – u〉]p/(‖un‖p(–p)/
W

+ ‖u‖p(–p)/
W

)

≤ C
[〈LK un – LK u, un – u〉]p/ = o(), (.)

where C >  is a constant. Combining (.) with (.), we obtain un → u in W as n → ∞,
i.e. LK is of type (S+).

() By the strictly monotonicity, LK is an injection. Since

lim‖u‖W →∞
〈LK u, u〉
‖u‖W

= lim‖u‖W →∞

∫∫

Q |u(x) – u(y)|pK(x – y) dx dy
‖u‖W

= lim‖u‖W →∞‖u‖p–
W

= ∞,

thanks to  < p < N
s . Hence LK is coercive on W. Furthermore, by the Minty-Browder

theorem (see Theorem A of []), we know LK is a surjection. Thus LK has an inverse
mapping L–

K : W ∗
 → W. Now we check the continuity of L–

K . Assume gn, g ∈ W ∗
 , with

gn → g in W ∗
 . Let un = L–

K gn and u = L–
K g , then LK un = gn and LK u = g . Clearly, {un} is

bounded in W. Thus there exist u ∈ W and a subsequence of {un} still denoted by {un}
such that un ⇀ u. Since gn → g , we have

lim
n→∞〈LK un – Lku, un – u〉 = lim

n→∞〈gn, un – u〉 = .

In view of LK is of type (S+), we get un → u in W. Moreover, u = u a.e. in �. Hence
un → u in W, so that L–

K is continuous. Thus, we complete the proof. �

To prove the existence of solutions for problem (.), we need the following theorem.

Theorem . (Alternative of Leray-Schauder; see []) Let B(, R) denote the closed ball
in a Banach space X, {u ∈ X : u ≤ R}, and let I : B(, R) → X be a compact operator. Then
either:

(i) the equation λIu = u has a solution in B(, R) for λ =  or
(ii) there exists u ∈ X with ‖u‖ = R satisfying λIu = u for some λ ∈ (, ).

Proof of Theorem . Following the idea of [], for simplicity of notation, we set

Y = Lq(�), Y ∗ = Lq′
(�), ‖ · ‖Y = ‖ · ‖Lq(�).

By Lemma . and  < q < p∗
s , W is compactly embedded in Y . Denote by i the compact

injection of W in Y and by i∗ : Y ∗ → W ∗
 , i∗v = v ◦ i for all v ∈ Y ∗, its adjoint. It follows
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from assumption (f) that the Nemytskii operator Nf generated by f , (Nf u)(x) = f (x, u(x)),
is well defined from Y into Y ∗, continuous, and bounded (see for example []). In order to
prove that problem (.) has a weak solution in W it is sufficient to prove that the equation

LK u =
(
i∗Nf i

)
u (.)

has a solution in W. Indeed, if u ∈ W satisfies (.), then for all v ∈ W, one has

〈LK u, v〉 =
〈(

i∗Nf i
)
u, v

〉
=

〈
Nf (iu), iv

〉
,

which can be rewritten
∫∫

Q

∣
∣u(x) – u(y)

∣
∣p–(u(x) – u(y)

)(
v(x) – v(y)

)
K(x – y) dx dy =

∫

�

f (x, u)v dx,

this means that u is a weak solution in W to problem (.).
By Lemma ., LK is a homeomorphism of W onto W ∗

 . Equation (.) can be equiva-
lently rewritten

u = L–
K

(
i∗Nf i

)
u. (.)

Therefore, proving problem (.) has a weak solution in W reduces to proving that the
compact operator

L = L–
K

(
i∗Nf i

)
: W → W ∗



has a fixed point.
By Theorem ., a sufficient condition for L to have a fixed point is that there exists a

constant R >  such that

S =
{

u ∈ W : u = λL u for some t ∈ [, ]
} ⊂ B(, R).

Since for λ =  the only solution of equation u = λL u is u = , it is enough to show that
there exists a constant such that any u ∈ W which satisfies

u = λL–
K

[(
i∗Nf i

)
u
]

(.)

for some λ ∈ (, ] belongs to B(, R).
Indeed, if u ∈ W satisfies (.) for some λ ∈ (, ], then we have

〈LK u, u〉 = λ
〈(

i∗Nf i
)
u, u

〉
. (.)

It follows from (.) that

‖u‖p
W

= λ
〈(

i∗Nf i
)
u, u

〉 ≤ 〈(
i∗Nf i

)
u, u

〉

≤ ∥
∥i∗

∥
∥
∥
∥Nf (iu)

∥
∥

Y∗‖u‖W . (.)
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In order to estimate ‖Nf (iu)‖Y∗ , we deduce first from assumption (f) that

∣
∣(Nf v)(x)

∣
∣ =

∣
∣f (x, v)

∣
∣ ≤ c

∣
∣v(x)

∣
∣q/q′

+ a(x).

Hence,

‖Nf v‖Y∗ ≤ ∥
∥c

∣
∣v(x)

∣
∣q/q′

+ a(x)
∥
∥

Y∗ ≤ c‖v‖q–
Y +

∥
∥a(x)

∥
∥

Y∗ . (.)

By taking (.) for v = iu, u ∈ W, we have

∥
∥Nf (iu)

∥
∥

Y∗ ≤ c‖i‖q–‖u‖q–
W

+ ‖a‖Y∗ . (.)

In particular, if u ∈ W and satisfies (.) for some λ ∈ (, ], we derive from (.) and (.)
that

‖u‖p
W

≤ ∥
∥i∗

∥
∥
(
c‖i‖q–‖u‖q–

W
+ ‖a‖Y∗

)‖u‖W = C‖u‖q
W

+ C‖u‖W , (.)

where C = c‖i∗‖‖i‖q, C = ‖i∗‖‖a‖Y∗ . Applying the Young inequality, we get

‖u‖q
W

C ≤ 


‖u‖p
W

+ 
q

p–q C
p

p–q


and

‖u‖W C ≤ 


‖u‖p
W

+ 


p– C
p

p–
 .

Inserting these two inequalities into (.), one has



‖u‖p

W
≤ 

q
p–q C

p
p–q

 + 


p– C
p

p–
 .

Set

R =
(


p+q
p–q C

p
p–q

 + 
p+
p– C

p
p–


)/p.

Then ‖u‖W ≤ R, this implies the set S is bounded. �
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