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Abstract
In this paper, we prove two concise inequalities for the associated Pollaczek
polynomials. The first one is obtained by using Askey’s theorem (SIAM J. Math. Anal.
2:340–346, 1971) on orthogonal expansions with positive coefficients. The second
one is proved by using a triple integral representation due to the authors (Integral
Transforms Spec. Funct. 30:893–919, 2019). In the concluding section, we briefly point
out some useful variations and known cases of our inequalities.
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1 Introduction and main result
The associated Pollaczek polynomials Pλ

n(cos θ ; a, b, c) can be defined by (see, e.g., [13, 14]
and [17])

∞∑

n=0

Pλ
n(cos θ ; a, b, c)tn =

(
1 – te–iθ )–λ–iΦ(

1 – teiθ )–λ+iΦ

× F1
[
c, 1 – λ – iΦ , 1 – λ + iΦ ; c + 1; te–iθ , teiθ ], (1.1)

where |t| < 1,

Φ ≡ Φ(θ ) :=
a cos θ + b

sin θ
, (1.2)

and F1 is the Appell hypergeometric function defined by ([18, p. 53, Eq. (4)])

F1[α,β1,β2;γ ; x, y] =
∞∑

m,n=0

(α)m+n(β1)m(β2)n

(γ )m+n

xm

m!
yn

n!
, max

{|x|, |y|} < 1.

Here the Pochhammer symbol (λ)n is defined (for λ ∈C) by

(λ)n :=

⎧
⎨

⎩
1 (n = 0),

λ(λ + 1) · · · (λ + n – 1) (n ∈N := {1, 2, . . .}).
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When c = 0, we may obtain from (1.1) the generating function of the Pollaczek polynomials
Pλ

n(cos θ ; a, b):

∞∑

n=0

Pλ
n(cos θ ; a, b)tn =

(
1 – te–iθ)–λ–iΦ(

1 – teiθ)–λ+iΦ . (1.3)

Conventionally, the polynomials obtained by setting λ = 1
2 in Pλ

n(cos θ ; a, b) are simply de-
noted by Pn(cos θ ; a, b). For classical results on Pollaczek polynomials, we refer the inter-
ested reader to [6, 7, 10], and [16]. Furthermore, readers are encouraged to see [13, 14]
and [9] for the latest development in this area.

Despite some important results, we still know little about the associated Pollaczek poly-
nomials, especially about the inequalities satisfied by this class of polynomials. In this pa-
per, our aim is to establish two interesting inequalities for the associated Pollaczek poly-
nomials.

The first inequality is given by the following:

Theorem 1.1 For a, b, c ≥ 0, λ > 0, and x ∈ [–1, 1], we have

∣∣Pλ
n(x; a, b, c)

∣∣ ≤ Pλ
n(1; a, b, c). (1.4)

As we will show in the following sections, Theorem 1.1 is obtained by using an impor-
tant result from Askey’s work on orthogonal expansions with positive coefficients. Theo-
rem 1.2 is obtained by using a completely different method.

Theorem 1.2 For θ ∈ (0,π ), c > 0, λ > 0, and c + 2λ > 1, we have

∣∣Pλ
n(cos θ ; a, b, c)

∣∣ ≤ [Γ (λ)]2

|Γ (λ + iΦ)|2
(c + 2λ)n(2c + 2λ)n

(c + 1)nn!
(1 + 2 sin θ )n, (1.5)

where Φ is given by (1.2).

We denote by Pn(cos θ ; a, b, c) the polynomials obtained by letting λ = 1
2 in Pλ

n(cos θ ;
a, b, c). Then, using Theorem 1.2, we have

sech(πΦ)
∣∣Pn(cos θ ; a, b, c)

∣∣ ≤ (2c + 1)n

n!
(1 + 2 sin θ )n,

where we have used the relation that |Γ ( 1
2 + iy)|2 = π sech(πy) (see [16, p. 137, Eq. (5.4.4)]).

2 Key lemmas
In this section, we present some useful lemmas used in our proofs. The first result due to
Askey [3] gives a sufficient condition for writing a set of orthogonal polynomials as a linear
combination of a second set of orthogonal polynomials with nonnegative coefficients. We
will use it in the proof of Theorem 1.1.

Let pn(x) be defined by

xpn(x) = pn+1(x) + αnpn(x) + βnpn–1(x), n = 0, 1, 2, . . . , (2.1)



Luo and Raina Journal of Inequalities and Applications          (2020) 2020:9 Page 3 of 13

where p–1(x) = 0, p0(x) = 1, αn–1 real, βn > 0, n = 1, 2, . . . , and the polynomials are normal-
ized to be monic (i.e., the leading coefficients of the polynomials are one).

Similarly, let pn(x) be defined by

xqn(x) = qn+1(x) + γnqn(x) + δnqn–1(x), n = 0, 1, 2, . . . , (2.2)

where q–1(x) = 0, q0(x) = 1, γn–1 real, δn > 0, n = 1, 2, . . . . Then Askey’s result can be stated
as follows.

Lemma 2.1 ([3, p. 341]) Let pn(x) and qn(x) be defined by (2.1) and (2.2) and set

qn(x) =
n∑

k=0

a(k, n)pk(x).

Then a(k, n) ≥ 0 if

αk ≥ γn, k = 0, 1, . . . , n, n = 0, 1, . . . , (2.3)

βk ≥ δn, k = 0, 1, . . . , n, n = 0, 1, . . . . (2.4)

To use this lemma, we require three-term recurrence relations for the normalized
(monic) associated Pollaczek polynomials and some of their particular cases. Let P̂λ

n(x;
a, b, c) denote the normalized associated Pollaczek polynomials. We have ([6, p. 185])

P̂λ
n(x; a, b, c) =

(c + 1)n

2n(λ + a + c)n
Pλ

n(x; a, b, c),

from which we have the following three-term recurrence relation ([6, p. 185, Eq. (5.9)]):

xP̂λ
n(x; a, b, c) = P̂λ

n+1(x; a, b, c) –
b

n + λ + a + c
P̃λ

n(x; a, b, c)

+
(n + c)(n + 2λ + c – 1)

4(n + λ + a + c)(n + λ + a + c – 1)
P̂λ

n–1(x; a, b, c). (2.5)

When a = b = 0, (2.5) reduces to the three-term recurrence relation of the normalized
associated ultraspherical (Gegenbauer) polynomials Ĉλ

n(x, c) given by

xĈλ
n(x, c) = Ĉλ

n+1(x, c) +
(n + c)(n + 2λ + c – 1)

4(n + λ + c)(n + λ + c – 1)
Ĉλ

n–1(x, c). (2.6)

It was also proved in [3, p. 345] that

∣∣Ĉλ
n (x, c)

∣∣ ≤ Ĉλ
n(1, c), x ∈ [–1, 1],λ > 0, c ≥ 0. (2.7)

Following Carlson [5, p. 52, Def. 3.11-1], we define the Euler measure mα on R+ by

dmα(u) :=
1

Γ (α)
uα–1e–u du (α > 0).
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It is not difficult to verify that mα(R+) = 1. For �(α) > 0 and �(β) > 0, we define

dμα,β (t) :=
Γ (α + β)
Γ (α)Γ (β)

tα–1(1 – t)β–1 dt, (2.8)

which is a particular case of the Dirichlet measure (see [5, p. 59]) and satisfies
μα,β ([0, 1]) = 1. Throughout this paper, we let

dΠ (t, u1, u2) := dμc,λ+iΦ (t) dmc+2λ–1(u1) dm1(u2). (2.9)

The following Lemma 2.2 is proved in [13] and is essential in the proof of Theorem 1.2.

Lemma 2.2 For c > 0, λ > 0, c + 2λ > 1, we have

Pλ
n(cos θ ; a, b, c) =

(c + 2λ)n

n!
einθ

×
∫

(0,1)×R
2
+

2F2

[
–n, c + λ + iΦ
c + 1, c + 2λ

; tu1 + u2
(
1 – e–2iθ)

]
dΠ (t, u1, u2),

(2.10)

where 2F2 is the generalized hypergeometric function defined by

2F2

[
a1, a2

b1, b2
; z

]
:=

∞∑

n=0

(a1)n(a2)n

(b1)n(b2)n

zn

n!
(z ∈C). (2.11)

In addition to this result, the proof of Theorem 1.2 heavily relies on the properties
of hypergeometric functions and Laguerre polynomials. The following lemma giving an
Eulerian-type integral representation for 2F2-function enables us to handle appropriately
the 2F2-function occurring in (2.10).

Lemma 2.3 ([16, p. 408, Eq. (16.5.2)]) For �(b2) > �(a2) > 0, we have

2F2

[
a1, a2

b1, b2
; z

]
=

Γ (b2)
Γ (a2)Γ (b2 – a2)

∫ 1

0
ta2–1(1 – t)b2–a2–1

1F1

[
a1

b1
; zt

]
dt, (2.12)

where 2F2 is defined by (2.11), and 1F1 is the confluent hypergeometric function (see, e.g.,
[18, p. 36, Eq. (3)]).

Also, we will frequently use the following version of the Chu–Vandermonde identity
(see, e.g., [18, p. 31]).

Lemma 2.4

(x + y)n =
n∑

�=0

(
n
�

)
(x)�(y)n–�. (2.13)

For the Laguerre polynomials defined by [16, p. 443, Eq. (18.5.12)]

L(α)
n (x) :=

(α + 1)n

n! 1F1

[
–n

α + 1
; x

]
, (2.14)



Luo and Raina Journal of Inequalities and Applications          (2020) 2020:9 Page 5 of 13

Eqs. (2.15) and (2.16) given further by Lemma 2.5 are known as the addition and multipli-
cation theorems for the Laguerre polynomials, respectively, and would be required in the
proof of our inequality (1.5).

Lemma 2.5 (see [16, p. 460, Eq. (18.18.12)] and [16, p. 461, Eq. (18.18.38)])

L(α+β+1)
n (x + y) =

n∑

�=0

L(α)
� (x)L(β)

n–�(y), (2.15)

L(α)
n (λx)

L(α)
n (0)

=
n∑

�=0

(
n
�

)
λ�(1 – λ)n–� L(α)

� (x)
L(α)

� (0)
. (2.16)

The Laguerre polynomials satisfy the following well-known important inequality (see
[1, p. 786, Eq. (22.14.13)]):

∣∣L(α)
n (x)

∣∣ ≤ (α + 1)n

n!
ex/2 (α ≥ 0, x ≥ 0), (2.17)

In 1997, Love [12] published several inequalities for the Laguerre polynomials L(α)
n (x)

(with complex α) and for the Laguerre functions L(μ)
ν (x) (with complex μ and ν).

Although inequality (2.17) is quite elegant, the involved exponential factor ex/2 can make
an integral to be divergent. The same exponential factor occurs in Love’s generalization of
(2.17) (see [12, p. 295, Theorem 1]). So we need a particular bound for Laguerre polyno-
mials. To remedy such a situation, we denote by σ

(α)
n the Cesáro mean defined by

σ (α)
n

( ∞∑

n=1

an

)
=

n!
(α + 1)n

n∑

k=0

(α + 1)n–k

(n – k)!
ak .

Lemma 2.6 ([11, p. 532, Eq. (10)]) For α ≥ – 1
2 , x ≥ 0, and n = 0, 1, . . . , we have

∣∣L(α)
n (x)

∣∣ ≤ (α + 1)n

n!
σ (α)

n
(
ex), (2.18)

where

σ (α)
n

(
ex) =

n!
(α + 1)n

n∑

k=0

(α + 1)n–k

(n – k)!
xk

k!
.

Estimate (2.18) is better than (2.17) for large x.

3 Proof of Theorem 1.1
In view of the range of the parameter λ, the proof is divided into two parts. We first prove
inequality (1.4) for 0 < λ < 1. We then consider the case λ ≥ 1.

When 0 < λ < 1, our aim is to show that the normalized associated Pollaczek polyno-
mials can be written as linear combinations of some normalized associated ultraspherical
polynomials with nonnegative coefficients. More precisely, we want to prove that

P̂λ
n(x; a, b, c) =

n∑

k=0

a(k, n)Ĉλ
n(x, c), where a(k, n) ≥ 0. (3.1)
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By comparing (2.1) with (2.6) we have

αn = 0 and βn =
(n + c)(n + 2λ + c – 1)

4(n + λ + c)(n + λ + c – 1)
,

where βn > 0 for n = 1, 2, . . . . Similarly, comparing (2.2) with (2.5) gives

γn = –
b

n + λ + a + c
and δn =

(n + c)(n + 2λ + c – 1)
4(n + λ + a + c)(n + λ + a + c – 1)

,

where δn > 0 for n = 1, 2, . . . . Obviously, we have βn ≥ δn because a ≥ 0. We also have

αk ≥ γn, k = 0, 1, . . . , n, n = 0, 1, . . . ,

since a, b, c ≥ 0 and 0 < λ < 1. So condition (2.3) of Lemma 2.1 is satisfied.
To prove that βk ≥ δn, k = 0, 1, . . . , n, n = 0, 1, . . . , we need to show that

f (x) :=
x(x + 2λ – 1)

4(x + λ)(x + λ – 1)

is a decreasing function on (1 – λ,∞). By taking the logarithmic derivative with respect to
x, we obtain

d
dx

log f (x) =
1
x

+
1

x + 2λ – 1
–

1
x + λ

–
1

x + λ – 1
.

The condition under which d
dx log f (x) < 0 is obtained by observing that

1
x

+
1

x + 2λ – 1
<

1
x + λ

+
1

x + λ – 1
⇔ (x + λ)(x + λ – 1) < x(x + 2λ – 1)

⇔ λ(λ – 1) < 0.

So f decreases on (1 – λ,∞) for 0 < λ < 1. Noting that βn = f (n + c) (c ≥ 0), we have

β1 ≥ β2 ≥ · · · ≥ βn ≥ δn,

which completes the verification of condition (2.4). Then expansion (3.1) follows from
Lemma 2.1.

Since a(k, n) ≥ 0, by inequality (2.7) we have

∣∣P̂λ
n(x; a, b, c)

∣∣ ≤
n∑

k=0

a(k, n)
∣∣Ĉλ

n (x, c)
∣∣ ≤

n∑

k=0

a(k, n)Ĉλ
n(1, c) = P̂λ

n(1; a, b, c).

This completes the proof of the case 0 < λ < 1.
Next, we consider the case λ ≥ 1. Note that for λ = 1 in (2.6), it becomes

xĈ1
n(x, c) = Ĉ1

n+1(x, c) +
1
4

Ĉ1
n–1(x, c),
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which still defines a set of (particular) associated ultraspherical polynomials. Let us
demonstrate that

P̂λ
n(x; a, b, c) =

n∑

k=0

ā(k, n)Ĉ1
n(x, c), where ā(k, n) ≥ 0. (3.2)

As mentioned before, condition (2.3) is straightforwardly satisfied. To show that 1
4 = βk ≥

δn, we only need to require that

1
4

≥ (n + c)(n + 2λ + c – 1)
4(n + λ + c)(n + λ + c – 1)

(≥ δn).

After little computation, the just mentioned inequality can be simplified to to λ(λ– 1) ≥ 0,
which suggests the condition λ ≥ 1. This validates expansion (3.2).

Finally, we have

∣∣P̂λ
n(x; a, b, c)

∣∣ ≤
n∑

k=0

ā(k, n)
∣∣Ĉ1

n(x, c)
∣∣ ≤

n∑

k=0

ā(k, n)Ĉ1
n(1, c) = P̂λ

n(1; a, b, c).

4 Proof of Theorem 1.2
To establish inequality (1.5), we first let a1 = –n, a2 = c + λ + iΦ , b1 = c + 1, and b2 = c + 2λ

in (2.12), and then in view of the defining expression (2.14) of the Laguerre polynomials,
we obtain

2F2

[
–n, c + λ + iΦ
c + 1, c + 2λ

; z

]
=

n!
(c + 1)n

Γ (c + 2λ)
Γ (c + λ + iΦ)Γ (λ – iΦ)

×
∫ 1

0
tc+λ+iΦ–1(1 – t)λ–iΦ–1L(c)

n (zt) dt

for c > 0 and λ > 0. Substituting this expression of 2F2 into (2.10) and simplifying the re-
sulting equation by using (2.8), we obtain

Pλ
n(cos θ ; a, b, c)

=
(c + 2λ)n

(c + 1)n
einθ

×
∫

(0,1)×R
2
+

[∫ 1

0
L(c)

n
(
tu1u3 + u2u3

(
1 – e–2iθ))dμc+λ+iΦ ,λ–iΦ(u3)

]
dΠ (t, u1, u2),

(4.1)

where dΠ (t, u1, u2) is given by (2.9). This assertion means that the associated Pollaczek
polynomials can alternatively be obtained by integrating the Laguerre polynomials.

Next, we choose α = c, λ = u3, and x = tu1 + u2(1 – e–2iθ ) in (2.16), so that the Laguerre
polynomials involved in (4.1) can be rewritten as

L(c)
n

(
tu1u3 + u2u3

(
1 – e–2iθ)) =

n∑

�=0

(
n
�

)
u�

3(1 – u3)n–� L(c)
n (0)

L(c)
� (0)

× L(c)
�

(
tu1 + u2

(
1 – e–2iθ)). (4.2)
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Let us assume that c = c1 + c2 + 1 (c2 > 0, c1 + 1 > 0) for convenience. Then by using (2.15)
we get

L(c)
�

(
tu1 + u2

(
1 – e–2iθ)) = L(c2+c1+1)

�

(
u2

(
1 – e–2iθ) + tu1

)

=
�∑

m=0

L(c2)
m

(
u2

(
1 – e–2iθ))L(c1)

�–m(tu1). (4.3)

Further, applying (2.16) to L(c2)
m (u2(1 – e–2iθ )), we have

L(c2)
m

(
u2

(
1 – e–2iθ)) =

m∑

k=0

(
m
k

)(
1 – e–2iθ)ke–2i(m–k)θ L(c2)

m (0)
L(c2)

k (0)
L(c2)

k (u2), (4.4)

and hence combining equations (4.2), (4.3), and (4.4) suitably, we obtain

L(c)
n

(
tu1u3 + u2u3

(
1 – e–2iθ))

=
n∑

�=0

(
n
�

)
u�

3(1 – u3)n–� L(c)
n (0)

L(c)
� (0)

×
�∑

m=0

L(c1)
�–m(tu1)

m∑

k=0

(
m
k

)(
1 – e–2iθ)ke–2i(m–k)θ L(c2)

m (0)
L(c2)

k (0)
L(c2)

k (u2). (4.5)

From (4.5) we have

∫ 1

0
L(c)

n
(
tu1u3 + u2u3

(
1 – e–2iθ))dμc+λ+iΦ ,λ–iΦ(u3)

=
n∑

�=0

(
n
�

)∫ 1

0
u�

3(1 – u3)n–� dμc+λ+iΦ ,λ–iΦ(u3)
L(c)

n (0)
L(c)

� (0)

×
�∑

m=0

L(c1)
�–m(tu1)

m∑

k=0

(
m
k

)(
1 – e–2iθ)ke–2i(m–k)θ L(c2)

m (0)
L(c2)

k (0)
L(c2)

k (u2)

=
(c + 1)n

(c + 2λ)nn!

n∑

�=0

(
n
�

)
(c + λ + iΦ)�(λ – iΦ)n–�

L(c)
� (0)

×
�∑

m=0

L(c1)
�–m(tu1)

m∑

k=0

(
m
k

)(
1 – e–2iθ)ke–2i(m–k)θ L(c2)

m (0)
L(c2)

k (0)
L(c2)

k (u2).

Thus

Pλ
n(cos θ ; a, b, c)

=
einθ

n!

n∑

�=0

(
n
�

)
(c + λ + iΦ)�(λ – iΦ)n–�

L(c)
� (0)

×
∫

(0,1)×R
2
+

[
�∑

m=0

L(c1)
�–m(tu1)

×
m∑

k=0

(
m
k

)(
1 – e–2iθ)ke–2i(m–k)θ L(c2)

m (0)
L(c2)

k (0)
L(c2)

k (u2)

]
dΠ (t, u1, u2).
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Now we need to carry out some evaluations to obtain a more accurate estimate for the
associated Pollaczek polynomials. It is easy to observe from [8, p. 810, Eq. (11)] that

∫

R+

L(c2)
k (u2) dm1(u2) =

∫

R+

e–u2 L(c2)
k (u2) du2 =

(c2)k

k!
.

Then we have

Pλ
n(cos θ ; a, b, c) =

einθ

n!

n∑

�=0

(
n
�

)
(c + λ + iΦ)�(λ – iΦ)n–�

L(c)
� (0)

×
�∑

m=0

(c2 + 1)m

m!

∫

(0,1)×R+

L(c1)
�–m(tu1) dμc,λ+iΦ (t) dmc+2λ–1(u1)

×
m∑

k=0

(
m
k

)(
1 – e–2iθ)ke–2i(m–k)θ (c2)k

(c2 + 1)k
.

Therefore it follows that

∣∣Pλ
n(cos θ ; a, b, c)

∣∣

≤ 1
n!

n∑

�=0

(
n
�

) |(c + λ + iΦ)�||(λ – iΦ)n–�|
L(c)

� (0)

×
�∑

m=0

(c2 + 1)m

m!

∣∣∣∣
∫

(0,1)×R+

L(c1)
�–m(tu1) dμc,λ+iΦ (t) dmc+2λ–1(u1)

∣∣∣∣

×
m∑

k=0

(
m
k

)
(2 sin θ )k (c2)k

(c2 + 1)k

≤ 1
n!

n∑

�=0

(
n
�

) |(c + λ + iΦ)�||(λ – iΦ)n–�|
L(c)

� (0)

�∑

m=0

(c2 + 1)m

m!
(1 + 2 sin θ )m

×
∣∣∣∣
∫

(0,1)×R+

L(c1)
�–m(tu1) dμc,λ+iΦ (t) dmc+2λ–1(u1)

∣∣∣∣.

To estimate
∣∣∣∣
∫

(0,1)×R+

L(c1)
�–m(tu1) dμc,λ+iΦ (t) dmc+2λ–1(u1)

∣∣∣∣,

we first define

H(t) :=
∫

R+

L(c1)
�–m(tu1) dmc+2λ–1(u1)

and observe that

∣∣H(t)
∣∣ =

∣∣∣∣
∫

R+

L(c1)
�–m(tu1) dmc+2λ–1(u1)

∣∣∣∣

≤ 1
Γ (c + 2λ – 1)

∫

R+

uc+2λ–2
1 e–u1

∣∣L(c1)
�–m(tu1)

∣∣du1.
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Using (2.18), we have

∣∣H(t)
∣∣ ≤ 1

Γ (c + 2λ – 1)

∫

R+

uc+2λ–2
1 e–u1

�–m∑

k=0

(c1 + 1)�–m–k

(� – m – k)!
(tu1)k

k!
du1

=
�–m∑

k=0

(c1 + 1)�–m–k(c + 2λ – 1)k

(� – m – k)!
tk

k!
.

Then
∣∣∣∣
∫

(0,1)×R+

L(c1)
�–m(tu1) dμc,λ+iΦ (t) dmc+2λ–1(u1)

∣∣∣∣

=
∣∣∣∣
∫ 1

0
H(t) dμc,λ+iΦ (t)

∣∣∣∣

≤
∣∣∣∣

Γ (c + λ + iΦ)
Γ (c)Γ (λ + iΦ)

∣∣∣∣
∫ 1

0

∣∣H(t)
∣∣tc–1(1 – t)λ–1 dt

≤
∣∣∣∣

Γ (c + λ + iΦ)
Γ (c)Γ (λ + iΦ)

∣∣∣∣
�–m∑

k=0

(c1 + 1)�–m–k(c + 2λ – 1)k

(� – m – k)!k!

∫ 1

0
tc+k–1(1 – t)λ–1 dt

=
Γ (λ)

Γ (c + λ)

∣∣∣∣
Γ (c + λ + iΦ)

Γ (λ + iΦ)

∣∣∣∣
�–m∑

k=0

(c1 + 1)�–m–k(c + 2λ – 1)k

(� – m – k)!k!
(c)k

(c + λ)k

≤ Γ (λ)
Γ (c + λ)

∣∣∣∣
Γ (c + λ + iΦ)

Γ (λ + iΦ)

∣∣∣∣
1

(� – m)!

�–m∑

k=0

(
� – m

k

)
(c1 + 1)�–m–k(c + 2λ – 1)k

=
Γ (λ)

Γ (c + λ)

∣∣∣∣
Γ (c + λ + iΦ)

Γ (λ + iΦ)

∣∣∣∣
(c + 2λ + c1)�–m

(� – m)!
,

where we have used the Chu–Vandermonde identity (2.13) to get the last equality.
Therefore we have

∣∣Pλ
n(cos θ ; a, b, c)

∣∣

≤ Γ (λ)
Γ (c + λ)

∣∣∣∣
Γ (c + λ + iΦ)

Γ (λ + iΦ)

∣∣∣∣
1
n!

n∑

�=0

(
n
�

) |(c + λ + iΦ)�||(λ – iΦ)n–�|
L(c)

� (0)

×
�∑

m=0

(c2 + 1)m

m!
(c + 2λ + c1)�–m

(� – m)!
(1 + 2 sin θ )m

≤ Γ (λ)Γ (λ)
|Γ (λ + iΦ)Γ (λ – iΦ)|

1
n!

n∑

�=0

(
n
�

)
(c + λ)�(λ)n–�

L(c)
� (0)

×
�∑

m=0

(c2 + 1)m

m!
(c + 2λ + c1)�–m

(� – m)!
(1 + 2 sin θ )m

≤ Γ (λ)Γ (λ)
|Γ (λ + iΦ)|2

1
n!

n∑

�=0

(
n
�

)
(c + λ)�(λ)n–�

(c + 1)�
(1 + 2 sin θ )�

×
�∑

m=0

(
�

m

)
(c2 + 1)m(c + 2λ + c1)�–m
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≤ Γ (λ)Γ (λ)
|Γ (λ + iΦ)|2

1
n!

(1 + 2 sin θ )n
n∑

�=0

(
n
�

)
(c + λ)�(λ)n–�

(c + 1)�
(2c + 2λ)�

≤ Γ (λ)Γ (λ)
|Γ (λ + iΦ)|2

(2c + 2λ)n

(c + 1)nn!
(1 + 2 sin θ )n

n∑

�=0

(
n
�

)
(c + λ)�(λ)n–�. (4.6)

To verify the last inequality in (4.6), we prove that the sequence {(2c + 2λ)�/(c + 1)�} is
increasing for � = 0, 1, . . . , n. Consider the function

f (x) := log
Γ (2c + 2λ + x)
Γ (c + 1 + x)

, x ∈ [0,∞).

Taking the derivative with respect to x, we obtain

f ′(x) := ψ(2c + 2λ + x) – ψ(c + 1 + x),

where ψ(z) denotes the psi function (or digamma function). Since c + 2λ > 1, from the
monotonicity of the psi function we have that f ′(x) > 0. Thus

Γ (2c + 2λ + x)
Γ (c + 1 + x)

,

as a function of x, is increasing on [0,∞). So the sequence

(2c + 2λ)�
(c + 1)�

=
Γ (c + 1)

Γ (2c + 2λ)
Γ (2c + 2λ + �)
Γ (c + 1 + �)

also increases on {0, 1, . . . , n}.
The result (1.5) finally follows by the Chu–Vandermonde identity (2.13).

5 Remarks and observations
By letting c = 0 in Theorem 1.1 we obtain the following result:

Corollary 5.1 ([20, p. 4]) For a, b ≥ 0, λ > 0, and x ∈ [–1, 1], we have

∣∣Pλ
n(x; a, b)

∣∣ ≤ Pλ
n(1; a, b). (5.1)

Note that Yadav’s inequality (5.1) generalizes Askey’s inequalities obtained in [2] and
[3].

(i) Note that inequality (5.1) can be equivalently written as

∣∣Pλ
n(x; a, b)

∣∣ ≤ L(2λ–1)
n

(
–2(a + b)

)
,

since Pλ
n(1; a, b) = L(2λ–1)

n (–2(a + b)), where L(α)
n (x) denotes the Laguerre polynomials

defined by (2.14). For the associated Pollaczek polynomials, we have ([19, p. 305])

Pλ
n(1; a, b, c) = L(2λ–1)

n
(
–2(a + b); c

)
,
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where L(α)
n (x; c) are the associated Laguerre polynomials (see, e.g., [4] and [19]).

Therefore inequality (1.4) can be also expressed as

∣∣Pλ
n(x; a, b, c)

∣∣ ≤ L(2λ–1)
n

(
–2(a + b); c

)
. (5.2)

Although these inequalities are quite elegant, they are actually somewhat difficult to
use directly, especially for (5.2). The asymptotic behavior of L(α)

n (x; c) for fixed x > 0,
although not applicable to our case, can be found in [4, p. 24, Eq. (2.16)].

(ii) Note that the associated ultraspherical (Gegenbauer) polynomials can be
represented in terms of the associated Pollaczek polynomials as
Cλ

n(cos θ ; c) = Pλ
n(cos θ ; 0, 0, c). Hence Theorem 1.1 gives

∣∣Cλ
n (cos θ ; c)

∣∣ ≤ (c + 2λ)n(2c + 2λ)n

(c + 1)nn!
(1 + 2 sin θ )n,

which seems to be a new inequality for the associated ultraspherical polynomials.
(iii) Finally, we may mention that a more accurate (and much involved) upper bound

than (2.18) for the Laguerre polynomials L(α)
n (x) with n ≥ 2 can be found in [15,

p. 491, Theorem 1]. It is possible to obtain an improvement of Theorem 1.1, which
may be not easy by using this inequality [15, p. 491, Theorem 1] because
derivations would be quite complicated. However, we do not pursue it here but
leave it as a worthwhile problem for the interested reader.
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