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1 Introduction
A one-dimensional simply supported beam suspended by hangers was modeled as a sus-
pension bridge in [1] by Lazer and McKenna, which described the vibration of the roadbed
in the vertical plane. In [1–3], the authors investigated the existence of periodic solu-
tions, the property of traveling wave solutions, and the numerical mountain pass solutions
for the suspension bridge equations. Ma and Zhong [4–6] showed the existence of both
weak and strong solutions as well as the global attractors for the singled and coupled au-
tonomous suspension bridge equations, respectively. For the non-autonomous case, Ma
et al. [7, 8] studied their uniform attractors and pullback attractors. Existence of global
attractors for the suspension bridge equations with nonlinear damping was achieved in
[9].

However, the above-mentioned models have a drawback, that is, the torsional oscil-
lations in suspension bridges were not described; see [10], for example, the collapse of
Tacoma narrow bridge. In the last several decades, the spectacular collapse of the Tacoma
narrow bridge has successfully attracted the attention of many engineers, physicists, and
mathematicians. They tried their best to explain such an amazing event, and their expla-
nations were mainly based on the aero elastic effects such as the frequency of the vortex
shedding, parametric resonance, and flutter theory, but none of their explanations was
universally accepted. In 2014, Arioli and Gazzola [11] gave a new explanation about this
phenomenon, i.e., the appearance of torsional oscillations during the collapse of Tacoma
narrow bridge led to the internal resonances, due to the bridge structure itself. Succes-
sively, Ferrero and Gazzola [12] suggested that one should regard a rectangular plate
Ω = (0,π ) × (–l, l) (l � π ) as a model of suspension bridges, and the plate was assumed
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to be hinged on its vertical edges

u(0, y, t) = ∂xxu(0, y, t) = u(π , y, t) = ∂xxu(π , y, t) = 0, y ∈ (–l, l), t > 0,

along with the free horizontal edges

uyy(x,±l, t) + σuxx(x,±l, t) = 0,

uyyy(x,±l, t) + (2 – σ )uxxy(x,±l, t) = 0, x ∈ (0,π ), t > 0,

where 0 < σ < 1
2 is the Poisson ratio. They introduced in [12] the following equation as the

model of the nonlinear suspension bridges:

utt(x, y, t) + δut(x, y, t) + �2u(x, y, t) + f (x, y, u) = g(x, y, t), (x, y) ∈ Ω , t > 0, (1.1)

where u(x, y, t) is the vertical displacement of the plate in the downward direction, ut(x, y, t)
is a damped term, δ is a positive constant, f (x, y, u) is a restoring force due to the hangers
of the suspension bridge, g(x, y, t) is the external force including both gravity and live as
well as dead loads. More works related to the suspension bridge equations can be referred
to [13–15]. For instance, Al-Gwaiz et al. [13] studied the bending and stretching energies
about the rectangular plate model suggested in [12]. Berchio et al. [14] investigated the
structural instability of nonlinear plate modeling suspension bridges. For more details on
these suspension bridge equations, we refer to the new book [15] published by Gazzola.
Besides, Messaoudi et al. [16] obtained the global attractor of nonlinear suspension bridges
equations.

Time delays arise usually in physical, chemical, biological, thermal phenomena and so
on. In recent years, the partial differential equations with time delay effects have become
an active area of research, see [17–28] and the references therein. For example, in [19], the
authors showed that a small delay in a boundary control could turn such a well-behaved
hyperbolic system into a wild one, so the delay was a source leading to instability of the
system. Nicasise and Pignotti in [20] studied the following wave equation with time delay
in an open bounded set Ω ⊂R

n:

utt(x, t) – �u(x, t) + a0ut(x, t) + a1ut(x, t – τ ) = 0, x ∈ Ω , t > 0,

and they proved, under the assumptions that the weight of the feedback is larger than the
weight of the delay (a1 < a0), that the energy is exponentially stable. However, they also
produced a sequence of delays, which led to the instability of the corresponding solution.
The same results were obtained for the case of boundary delay, see [21]. The time delay in
a Timoshenko-type system of the form

⎧
⎨

⎩

ρ2utt – K(ux + ψ)x = 0, in (0, L) × (0,∞),

ρ2ψtt – bψxx + K(ux + ψ) + μ1ψt + μ2ψt(x, t – τ ) = 0, in (0, L) × (0,∞),

was proposed by Said-Houari and Laskri in [22]. They arrived at an exponential decay
result under the assumption μ2 < μ1. The authors in [23] considered the well-posedness
and exponential stability of wave equation with a strong damping and a strong time delay.
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Recently, Park [24] considered the suspension bridge equations with time delay in a
bounded domain Ω ⊂R

2

utt(x, t) + �2u(x, t) + ku+ + a0ut(x, t) + a1ut(x, t – τ ) + f (u) = g(x), x ∈ Ω , t > 0,

and obtained the existence of the finite dimensional global attractors under the conditions
that 0 < |a1| < a0. Also, we would like to recommend many more literature sources such
as [25–28] and the references therein. In this paper, we consider the existence of uniform
attractors for the following nonlinear plate modeling suspension bridges with time delay
in Ω = (0,π ) × (–l, l):

∂ttu + �2u + γ1∂tu + γ2∂tu(x, y, t – h) + f
(
u(x, y, t)

)
= g(x, y, t),

(x, y) ∈ Ω , t ≥ τ , τ ∈R, (1.2)

with boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

u(0, y, t) = ∂xxu(0, y, t) = u(π , y, t) = ∂xxu(π , y, t) = 0, y ∈ (–l, l), t ≥ τ ,

∂yyu(x,±l, t) + σ∂xxu(x,±l, t) = 0, x ∈ (0,π ), t ≥ τ ,

∂yyyu(x,±l, t) + (2 – σ )∂xxyu(x,±l, t) = 0, x ∈ (0,π ), t ≥ τ ,

(1.3)

and initial conditions

⎧
⎨

⎩

∂tu(x, y, t – h) = φ0(x, y, t – h), (x, y) ∈ Ω , t ∈ [τ , h],

u(x, y, τ ) = uτ
0(x, y), ∂tu(x, y, τ ) = uτ

1(x, y), (x, y) ∈ Ω , τ ∈R,
(1.4)

where γ1 > 0 is the damped coefficient, γ2 ∈ R, ∂tu(x, y, t – h) is the delay term, and h > 0
represents the time delay. uτ

0 , uτ
1 , φ0 are given initial data belonging to suitable space. g

and f are external forces. Since we have in mind a long narrow rectangle, that is, l � π , it
is reasonable to assume that the forcing term does not depend on y, see [12]. So, we now
assume that g(x, y, t) = g(x, t) ∈ L2

loc(R+; L2(Ω)).
As introduced in [23–25], our equation can be regarded as a Kelvin–Voight linear model

for a viscoelastic material in the presence of a time delay response in connection with the
stress-strain. Besides, the action of any external force g(x, y, t) on the plate Ω is trans-
mitted through hangers to the sustaining cables, and this may yield certain delay, see, for
example, [25]. It is well known that the presence of delay may lead to instability of the
system, and hence it could affect the existence of compact attractors. For these purposes,
we will continue to focus on the well-posedness and existence of uniform attractors under
the suitable conditions. We extend the results of [25] from the autonomous case to the
non-autonomous case.

The paper is organized as follows. In Sect. 2, we present some fundamental and basic re-
sults. In Sect. 3, firstly, we show the well-posedness by using maximal monotone operator
theory. Secondly, we obtain a uniformly absorbing set. Finally, we establish the existence
of a uniform attractor for the process generated by the related problem to (1.2)–(1.4).
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2 Preliminaries
We first review some notations about functions spaces and give hypothesis for prob-
lem (1.2)–(1.4). From now on, let ci, i = 0, 1, 2, . . . , denote the different positive constants
throughout the paper.

As in [12], let us introduce the space

H2
∗ (Ω) =

{
w ∈ H2(Ω) : w(0, y) = w(π , y) = 0,∀y ∈ (–l, l)

}
,

equipped with the inner product and norm

(u, v)H2∗ =
∫

Ω

[�u�v + (1 – σ )(2∂xyu∂xyv – ∂xxu∂yyv – ∂yyu∂xxv)
]

dx dy,

‖u‖H2∗ =
[∫

Ω

[
(�u)2 + 2(1 – σ )

(
(∂xyu)2 – ∂xxu∂yyu

)]
dx dy

] 1
2

.

It was proven that ‖ · ‖H2∗ is a norm on H2∗ which is equivalent to the usual H2(Ω)-norm.
Moreover, H2∗ is a Hilbert space when endowed with the scalar product (·, ·)H2∗ .

We define the phase space

H = H2
∗ (Ω) × L2(Ω) × L2((0, 1) × Ω

)

equipped with the inner product and norm, respectively

(U , V )H = (u, ū)H2∗ (Ω) + (v, v̄)L2(Ω) + h|γ2|(z, z̄)L2((0,1)×Ω),

(U , U)H = ‖u‖2
H2∗ (Ω) + ‖v‖2

L2(Ω) + h|γ2|‖z‖2
L2((0,1)×Ω),

(2.1)

where

U = (u, v, z)T , V = (ū, v̄, z̄)T ∈H.

With regard to problem (1.2)–(1.4), we impose the following assumptions:
(H1) Nonlinear term f ∈ C1(R) satisfies

⎧
⎨

⎩

|f (s1) – f (s2)| ≤ c0(|s1|p + |s2|p)|s1 – s2|, ∀s1, s2 ∈R, p > 0,

–c1 ≤ F(s) ≤ sf (s), ∀s ∈R,

where F(s) =
∫ s

0 f (v) dv.
(H2) The coefficients γ1 and γ2 satisfy 0 < c|γ2| ≤ γ1, where c is a proper positive

constant.
As in [20], we introduce the function

z(ρ, x, y, t) = ∂tu(x, y, t – hρ), ρ ∈ (0, 1), (x, y) ∈ Ω , t ≥ τ , (2.2)

then differentiation with respect to t, we can see that

h∂tz(ρ, x, y, t) + ∂ρz(ρ, x, y, t) = 0, ρ ∈ (0, 1), (x, y) ∈ Ω , t ≥ τ .
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Thus, problem (1.2)–(1.4) is equivalent to
⎧
⎨

⎩

∂ttu + �2u + γ1∂tu + γ2z(1) + f (u) = g(x, y, t), Ω × (τ , +∞),

h∂tz(ρ, x, y, t) + ∂ρz(ρ, x, y, t) = 0, (0, 1) × Ω × (τ , +∞),
(2.3)

with boundary conditions
⎧
⎪⎪⎨

⎪⎪⎩

u(0, y, t) = ∂xxu(0, y, t) = u(π , y, t) = ∂xxu(π , y, t) = 0, y ∈ (–l, l), t ≥ τ ,

∂yyu(x,±l, t) + σ∂xxu(x,±l, t) = 0, x ∈ (0,π ), t ≥ τ ,

∂yyyu(x,±l, t) + (2 – σ )∂xxyu(x,±l, t) = 0, x ∈ (0,π ), t ≥ τ ,

(2.4)

and initial conditions
⎧
⎨

⎩

u(x, y, τ ) = uτ
0(x, y), ∂tu(x, y, τ ) = uτ

1(x, y), (x, y) ∈ Ω , τ ∈R,

z(ρ, x, y, τ ) = φ0(x, y, τ – ρh), (ρ, x, y) ∈ (0, 1) × Ω .
(2.5)

Lemma 2.1 ([12]) Let u ∈ H2∗ (Ω) and suppose 1 ≤ p < +∞. Then there exists a positive
constant cλ = cλ(Ω , p) such that

‖u‖Lp(Ω) ≤ cλ‖u‖H2∗ (Ω). (2.6)

To prove the existence of uniform attractors corresponding to (2.3)–(2.5), we also need
the following abstract results.

Let X be a complete metric space and Σ be a parameter set.
The operators {Uσ (t, τ )}, σ ∈ Σ are said to be a family of processes in X with symbol

space Σ if, for any σ ∈ Σ ,

Uσ (t, s) ◦ Uσ (s, τ ) = Uσ (t, τ ), ∀t ≥ s ≥ τ , τ ∈R,

Uσ (τ , τ ) = Id (identity), ∀τ ∈R.
(2.7)

Let {T(r)|r ≥ 0} be the translation semigroup on Σ , we say that a family of processes
{Uσ (t, τ )},σ ∈ Σ satisfies the translation identity if

T(r)Σ = Σ , (2.8)

and

Uσ (t + r, τ + r) = UT(r)σ (t, τ ), ∀σ ∈ Σ , t ≥ τ , τ ∈R, r ≥ 0. (2.9)

By B(E) we denote the collection of all bounded subsets of E.

Definition 2.2 ([29, 30]) A bounded set B0 ∈ B(E) is said to be a bounded uniformly (w.r.t.
σ ∈ Σ ) absorbing set of {Uσ (t, τ )} (σ ∈ Σ , t ≥ τ , τ ∈R) if, for any τ ∈R and B ∈ B(E), there
exists a time T0 = T0(B, τ ) ≥ τ such that

⋃

σ∈Σ

Uσ (t, τ )B ⊆ B0

for all t ≥ T0.
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Definition 2.3 ([30, 31]) Let E be a Banach space and B ∈ B(E), Σ be a symbol space. We
call a function ψ(·, ·; ·, ·) defined on (E ×E)× (Σ ×Σ) to be a contractive function on B×B
if, for any sequence {xn}∞n=1 ⊂ B and any {σn} ⊂ Σ , there is a subsequence {xnk }∞k=1 ⊂ {xn}∞n=1

and {σnk }∞k=1 ⊂ {σn}∞n=1 such that

lim
k→∞

lim
l→∞

ψ(xnk , xnl ;σnk ,σnl ) = 0.

We denote the set of all contractive functions on B × B by Contr(B,Σ).

Lemma 2.4 ([32]) Let {Uσ (t, τ )} (σ ∈ Σ , t ≥ τ , τ ∈R) be a family of processes satisfying the
translation identity (2.8)–(2.9) on a Banach space E and having a bounded uniformly (w.r.t.
σ ∈ Σ ) absorbing set B0 ∈ B(E). Moreover, assume that for any ε > 0 there exist T = T(B0, ε)
and ψT ∈ Contr(B0,Σ) such that

∥
∥Uσ1 (T , τ )x – Uσ2 (T , τ )y

∥
∥ ≤ ε + ψ(x, y;σ1,σ2), ∀σ1,σ2 ∈ Σ , x, y ∈ B0.

Then {Uσ (t, τ )}, σ ∈ Σ is uniformly (w.r.t. σ ∈ Σ ) asymptotically compact in E.

Let X be a Banach space with spatial, the space L2
loc(R+; X) denotes all functions with spa-

tial values in Banach space X and time variable locally 2-power integrable in the Bochner
sense. L2

b(R+; X) is a set of all translation bound functions in L2
loc(R+; X) satisfying

‖σ‖L2
b(R+;X) = sup

t∈R+

∫ t+1

t

∥
∥σ (s)

∥
∥2

X ds < +∞

for all σ ∈ L2
b(R+; X).

Theorem 2.5 ([30, 32]) Let E be a complete metric space, {Uσ (t, τ )}, σ ∈ Σ be a family of
processes on E satisfying the translation identity (2.8)–(2.9). Then {Uσ (t, τ )}, σ ∈ Σ has a
compactly uniform attractor (w.r.t. σ ∈ Σ ) attractor AΣ in E and satisfies

AΣ = ω0,Σ (B0) = ωτ ,Σ (B0) =
⋃

B∈B(E)

ωτ ,Σ (B), ∀τ ∈ R,

if and only if {Uσ (t, τ )},σ ∈ Σ

(i) has a bounded uniformly (w.r.t. σ ∈ Σ ) absorbing set B0;
(ii) is uniformly (w.r.t. σ ∈ Σ ) asymptotically compact.

To describe the asymptotic behavior of the solutions to our problem, we set g0 ∈
L2

b(R+; L2(Ω)) and define the symbol space H(σ0), H(σ0) = H(g0) = [g0(x, s + r)|r ∈
R

+]L2,w
loc (R+;L2(Ω)), where [ ] denotes the closure of a set in a topological space L2,w

loc (R+; L2(Ω)),
and L2,w

loc (R+; L2(Ω)) denotes the space L2,w
loc (R+; L2(Ω)) endowed with local weak conver-

gence topology. Therefore, for any g(x, t) ∈H(g0), (2.3)–(2.5) with g0 instead of g possesses
a corresponding process {Ug(t, τ )} acting on H. The translation semigroup {T(r)|r ≥ 0}
satisfies (2.8), (2.9), that is, T(r)H(g0) = H(g0) and Ug(t +r, τ +r) = UT(r)g(t)(t, τ ), ∀g ∈H(g0),
t ≥ τ , τ ∈R, r ≥ 0.

Proposition 2.6 ([29]) If E is a reflexive separable Banach space, then
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(1) for all g ∈H(g0), ‖g‖L2
b(R+;L2(Ω)) ≤ ‖g0‖L2

b(R+;L2(Ω)),
(2) the translation group T(t) is weakly continuous on H(g0),
(3) T(t)H(g0) = H(g0) for all t ∈R.

3 Uniform attractors in H
Firstly, we establish the well-posedness of problem (2.3)–(2.5).

Set U = (u, v, z)T , where v = ∂tu, initial data Uτ = (uτ
0, uτ

1 ,φ0)T , then problem (2.3)–(2.5)
is given by

⎧
⎨

⎩

Ut + AU = F ,

U(τ ) = Uτ ,
(3.1)

where

AU =

⎛

⎜
⎝

–v
�2u + γ1v + γ2z(1, ·)

1
hρz

⎞

⎟
⎠ , F(U) =

⎛

⎜
⎝

0
–f (u) + g(t)

0

⎞

⎟
⎠ , Uτ =

⎛

⎜
⎝

uτ
0

uτ
1

φ0

⎞

⎟
⎠ .

The domain of the operator A is defined as follows:

D(A) =
{

(u, v, z) ∈H|u ∈ H4(Ω), v ∈ H2
∗ (Ω), z(0, ·) = v,

zρ ∈ L2((0, 1) × Ω
)
, and (3.2) holds

}
,

where (3.2) is the following boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

∂xxu(0, y) = ∂xxu(π , y) = 0,

∂yyu(x,±l) + σ∂xxu(x,±l) = 0,

∂yyyu(x,±l) + (2 – σ )∂xxyu(x,±l) = 0.

(3.2)

For convenience, we denote dθ = dx dy.

Lemma 3.1 ([33]) Suppose that 0 < |γ2| ≤ γ1, the operator A : D(A) ⊂H →H is monotone
and maximal.

By the semigroup theory, see [33], we have the following result.

Theorem 3.2 Assume that condition (H1) holds and g ∈ L2
b(Rτ ; L2(Ω)). Let Uτ ∈ H be

given and assume that γ1 > 3
2 |γ2|, then problem (3.1) has a unique global solution U =

(u, ∂tu,φ) ∈ C(Rτ ;H), where Rτ = {t ∈R, t ≥ τ }.

Proof Thanks to Lemma 3.1 and F satisfying locally Lipschitz, we can apply the Hille–
Yosida theorem to get the existence of a unique weak local solution for problem (3.1),

U = (u, ∂tu,φ) ∈ C
(
[τ , Tm],H

)
, ∀Tm > 0.

In order to prove that the solution is global and U ∈ C([τ ,∞],H), namely we need to prove
that ‖U(t)‖H is uniformly bounded with respect to time.
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Multiplying (2.3)1 by ∂tu and integrating over Ω , we obtain

d
dt

(
1
2
‖∂tu‖2

L2(Ω) +
1
2
‖u‖2

H2∗ (Ω) +
∫

Ω

F(u) dθ

)

+ γ1‖∂tu‖2
L2(Ω) + γ2

(
∂tu, z(1)

)
=

(
g(t), ∂tu

)
. (3.3)

Multiplying (2.3)2 by |γ2|z and integrating over (0, 1) × Ω , we get

h|γ2|
∫ 1

0

∫

Ω

∂tzz dθ dρ + |γ2|
∫ 1

0

∫

Ω

∂ρzz dθ dρ = 0. (3.4)

Thus

d
dt

(
h|γ2|

2

∫ 1

0

∫

Ω

|z|2 dθ dρ

)

+
|γ2|

2

∫

Ω

∫ 1

0

d
dρ

|z|2 dρ dθ = 0.

Furthermore, we have

d
dt

(
h|γ2|

2

∫ 1

0

∫

Ω

|z|2 dθ dρ

)

+
|γ2|

2

∫

Ω

∣
∣z(1)

∣
∣2 dθ –

|γ2|
2

∫

Ω

|∂tu|2 dθ = 0. (3.5)

Set

E1(t) =
1
2
∥
∥∂tu(t)

∥
∥2

L2(Ω) +
1
2
∥
∥u(t)

∥
∥2

H2∗ (Ω) +
∫

Ω

F
(
u(t)

)
dθ +

1
2
∥
∥z(t)

∥
∥2

L2((0,1)×Ω). (3.6)

Combining (3.3)–(3.5), we get that

d
dt

E1(t) = –γ1‖∂tu‖2
L2(Ω) – γ2

(
∂tu, z(1)

)
–

|γ2|
2

∥
∥z(1)

∥
∥2

L2(Ω)

+ |γ2|‖∂tu‖2
L2(Ω) +

1
2|γ2|

∥
∥g(t)

∥
∥2

L2(Ω). (3.7)

Exploiting Young’s inequality, we obtain

–γ2
(
∂tu, z(1)

) ≤ |γ2|
2

∥
∥z(1)

∥
∥2

L2(Ω) +
|γ2|

2
‖∂tu‖2

L2(Ω). (3.8)

Substituting (3.8) into (3.7), we find that

d
dt

E1(t) ≤ –
(

γ1 –
3
2
|γ2|

)

‖∂tu‖2
L2(Ω) +

1
2|γ2|

∥
∥g(t)

∥
∥2

L2(Ω). (3.9)

Integrating (3.9) over [τ , t], γ1 > 3
2 |γ2|, we can deduce that

E1(t) ≤ E1(τ ) +
1

2|γ2|
∫ t

τ

∥
∥g(s)

∥
∥2

L2(Ω) ds, ∀t ≥ τ .

By Proposition 2.6, we know that ‖g‖2
L2

b(Rτ ;L2(Ω)) ≤ ‖g0‖2
L2

b(Rτ ;L2(Ω)), one sees that

E1(t) ≤ E1(τ ) +
1

2|γ2| ‖g0‖2
L2

b(Rτ ;L2(Ω)). (3.10)
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Applying (H1), E1(t) satisfies

E1(t) ≥ 1
2
∥
∥∂tu(t)

∥
∥2

L2(Ω) +
1
2
∥
∥u(t)

∥
∥2

H2∗ (Ω) +
1
2
∥
∥z(t)

∥
∥2

L2((0,1)×Ω) – c1|Ω|,

namely

E1(t) ≥ c2‖(u(t), ∂tu(t), z(t)‖2
H – c3, ∀t ≥ τ . (3.11)

Using (3.10) and (3.11), it yields that

∥
∥
(
u(t), ∂tu(t), z(t)

)∥
∥2
H ≤ 1

c2

(

E1(τ ) +
1

2|γ2| ‖g0‖2
L2

b(Rτ ;L2(Ω)) + c3

)

≤ c4, ∀t ≥ τ . (3.12)
�

Owing to Theorem 3.2, we know that (2.3)–(2.5) is well-posed for all g(s) ∈ H(g0) and
generates a family of processes {Ug(t, τ )}, g ∈H(g0) given by Ug(t, τ )Uτ = U(t), where U(t)
is the solution of (2.3)–(2.5), and {Ug(t, τ )}, g ∈H(g0) satisfies (2.7).

In what follows, we denote by {Ug(t, τ )}, g ∈ H(g0) the family of processes generated by
(2.3)–(2.5).

Secondly, we prove the existence of a uniformly absorbing set in H. We introduce a
Lyapunov functional

L1(t) = ME1(t) + NΨ1(t) + Φ1(t),

where M, N > 0 are constants which will be determined later, and

Ψ1(t) = (∂tu, u), Φ1(t) = h
∫

Ω

∫ 1

0
|z|2e–ρh dρ dθ .

Lemma 3.3 Assume that N is small enough and M is large enough, there exist δ1, δ2 > 0
such that

δ1
∥
∥(u, ∂tu, z)

∥
∥2
H – c5 ≤ L1(t) ≤ δ2

∥
∥(u, ∂tu, z)

∥
∥2
H + Mc6. (3.13)

Proof On the one hand, by (H1)2 and the above-mentioned functionals, choosing M large
enough and N small enough such that M–N

2 > 0, M–Ncλ
2 > 0, we can deduce that

L1(t) ≥ M
2

‖u‖2
H2∗ (Ω) +

M
2

‖∂tu‖2
L2(Ω) +

Mh|γ2|
2

∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ – c1|Ω|M

–
Ncλ

2
‖u‖2

H2∗ (Ω) –
N
2

‖∂tu‖2
L2(Ω) + h

∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ

≥
(

M – Ncλ

2

)

‖u‖2
H2∗ (Ω) +

(
M – N

2

)

‖∂tu‖2
L2(Ω)

+
(

(M|γ2| + 2)h
2

)∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ – c1|Ω|M

≥ δ1
(‖u‖2

H2∗ (Ω) + ‖∂tu‖2
L2(Ω) + ‖z‖2

L2((0,1)×Ω)
)

– c5.
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On the other hand, according to (H1)1, we have

∫

Ω

F
(
u(t)

)
dθ ≤

∫

Ω

|u|∣∣f (u)
∣
∣dθ ≤

∫

Ω

|u|∣∣f (u) – f (0)
∣
∣dθ +

∫

Ω

|u|∣∣f (0)
∣
∣dθ

≤ c0

∫

Ω

|u|2|u|p dθ +
1
2

∫

Ω

|u|2 dθ +
1
2
|Ω|∣∣f (0)

∣
∣

≤ c0cλ

(‖u‖p
L∞(Ω) + 1

)‖u‖2
H2∗ (Ω) + c6. (3.14)

Exploiting Young’s inequality, Sobolev’s embedding Theorem, and (3.14), we can get that

L1(t) ≤ M
2

‖u‖2
H2∗ (Ω) +

M
2

‖∂tu‖2
L2(Ω) +

Mh|γ2|
2

∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ

+ M
∫

Ω

F
(
u(t)

)
dθ +

N
2

‖∂tu‖2
L2(Ω) +

Ncλ

2
‖u‖2

H2∗ (Ω) + h
∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ

≤
(

M + N
2

)

‖∂tu‖2
L2(Ω) +

(
M + Ncλ

2

)

‖u‖2
H2∗ (Ω)

+
(

(M|γ2| + 2)h
2

)∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ + M

∫

Ω

|u|∣∣f (u)
∣
∣dθ

≤
(

M + N
2

)

‖∂tu‖2
L2(Ω) +

(M + (N + 2Mc0[‖u‖p
L∞(Ω) + 1])cλ

2

)

‖u‖2
H2∗ (Ω)

+
(

(M|γ2| + 2)h
2

)∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2e–ρh dρ dθ

≤ δ2
(‖u‖2

H2∗ (Ω) + ‖∂tu‖2
L2(Ω) + ‖z‖2

L2((0,1)×Ω)
)

+ Mc6. �

Lemma 3.4 The function Ψ1(t) = (∂tu, u) satisfies

Ψ ′
1(t) ≤

(

1 +
γ1

2ξ

)

‖∂tu‖2
L2(Ω) +

[
(
γ1ξ + |γ2|ξ + |γ2|

)cλ

2
– 1

]

‖u‖2
H2∗ (Ω)

+
|γ2|
2ξ

∥
∥z(1)

∥
∥2

L2(Ω) +
1

2|γ2|
∥
∥g(t)

∥
∥2

L2(Ω) + c1|Ω|, ∀ξ > 0. (3.15)

Proof According to (2.3)1, we can see that

Ψ ′
1(t) = (∂ttu, u) + ‖∂tu‖2

L2(Ω)

= ‖∂tu‖2
L2(Ω) – ‖u‖2

H2∗ (Ω) – γ1(∂tu, u) – γ2
(
u, z(1)

)

–
(
f (u), u

)
+

(
g(t), u

)
. (3.16)

Using Young’s inequality, Hölder’s inequality, and (2.6), for any ξ > 0, we can obtain that

–γ1(∂tu, u) ≤ γ1ξ

2
‖u‖2

L2(Ω) +
γ1

2ξ
‖∂tu‖2

L2(Ω) ≤ cλ

γ1ξ

2
‖u‖2

H2∗ (Ω) +
γ1

2ξ
‖∂tu‖2

L2(Ω),

–γ2
(
u, z(1)

) ≤ |γ2|ξ
2

‖u‖2
L2(Ω) +

|γ2|
2ξ

∥
∥z(1)

∥
∥2

L2(Ω) ≤ cλ

|γ2|ξ
2

‖u‖2
H2∗ (Ω) +

|γ2|
2ξ

∥
∥z(1)

∥
∥2

L2(Ω),

(
g(t), u

) ≤ 1
2|γ2|

∥
∥g(t)

∥
∥2

L2(Ω) +
cλ|γ2|

2
‖u‖2

H2∗ (Ω).



Wang and Ma Journal of Inequalities and Applications        (2019) 2019:180 Page 11 of 17

By assumption (H1), we have

–
(
f (u), u

) ≤ c1|Ω|.

Substituting the above inequalities into (3.16), we get (3.15). �

Lemma 3.5 The functional Φ1(t) = h
∫

Ω

∫ 1
0 |z|2e–ρh dρ dθ satisfies

Φ ′
1(t) ≤ –e–h

(
∥
∥z(1)

∥
∥2

L2(Ω) + h
∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2 dρ dθ

)

+ ‖∂tu‖2
L2(Ω). (3.17)

Proof Direct differentiation (2.3)2 leads to

Φ ′
1(t) = 2h

∫

Ω

∫ 1

0
∂tzze–ρh dρ dθ = –2

∫

Ω

∫ 1

0
∂ρzze–ρh dρ dθ

= –
∫

Ω

∫ 1

0

d
dρ

(|z|2e–ρh)dρ dθ – h
∫ 1

0

∫

Ω

|z|2e–ρh dθ dρ

= –e–h∥∥z(1)
∥
∥2

L2(Ω) + ‖∂tu‖2
L2(Ω) – h

∫ 1

0

∫

Ω

|z|2e–ρh dθ dρ

≤ –e–h
(

∥
∥z(1)

∥
∥2

L2(Ω) + h
∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2 dρ dθ

)

+ ‖∂tu‖2
L2(Ω). (3.18)

�

Theorem 3.6 (Uniformly (w.r.t. g ∈ H(g0)) absorbing set) Under the assumption of The-
orem 3.2, the family of processes {Ug(t, τ )}, g ∈ H(g0) of system (2.3)–(2.5) possesses a
bounded uniformly (w.r.t. g ∈H(g0)) absorbing set B in H.

Proof Exploiting (3.9), (3.15), (3.17), Lemma 3.4, and Lemma 3.5, direct computation
yields

L′
1(t) = ME′

1(t) + NΨ ′
1(t) + Φ ′

1(t)

≤ –N
(

1 –
(
γ1ξ + |γ2|ξ + |γ2|

) cλ

2

)

‖u‖2
H2∗ (Ω)

–
(

M
(

γ1 –
3
2
|γ2|

)

– N –
γ1N
2ξ

– 1
)

‖∂tu‖2
L2(Ω)

–
(

e–h –
N |γ2|

2ξ

)
∥
∥z(1)

∥
∥2

L2(Ω) – e–hh‖z‖2
L2((0,1)×Ω)

+
(M + N)

2|γ2|
∥
∥g(t)

∥
∥2

L2(Ω) + Nc1|Ω|. (3.19)

Choosing ξ and N small enough, M large enough such that

1 –
(
γ1ξ + |γ2|ξ + |γ2|

) cλ

2
> 0, e–h –

N |γ2|
2ξ

> 0,

M
(

γ1 –
3
2
|γ2|

)

– N –
γ1N
2ξ

– 1 > 0.
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Thus, there exist positive constants β1, β2, β3, β4, β5, β such that

dL1(t)
dt

≤ –β1‖u‖2
H2∗ (Ω) – β2‖∂tu‖2

L2(Ω) – β3‖z‖2
L2((0,1)×Ω) + β4

∥
∥g(t)

∥
∥2

L2(Ω) + β5

≤ –β
(‖u‖2

H2∗ (Ω) + ‖∂tu‖2
L2(Ω) + ‖z‖2

L2((0,1)×Ω)
)

+ β4
∥
∥g(t)

∥
∥2

L2(Ω) + β5. (3.20)

Applying Lemma 3.3, we can get

dL1(t)
dt

+ νL1(t) ≤ c7
∥
∥g(t)

∥
∥2

L2(Ω) + c8, (3.21)

where ν = β

δ2
. Integrating (3.21) over [τ , t] and using (3.20), we can see that

L1(t) ≤ L1(τ )e–ν(t–τ ) + c7

∫ t

τ

e–ν(t–s)∥∥g(s)
∥
∥2

L2(Ω) ds + c8

∫ t

τ

e–ν(t–s) ds

≤ L1(τ )e–ν(t–τ ) +
c7

1 – e–ν
sup
t≥τ

∫ t+1

t

∥
∥g(s)

∥
∥2 ds + c9

≤ L1(τ )e–ν(t–τ ) +
c10

1 – e–ν
‖g0‖L2

b(Rτ ;L2(Ω)) + c9. (3.22)

Now, for any bounded set B ⊆H and for any (uτ
0, uτ

1 ,φ0) ∈ B, there exists a constant CB > 0
such that L1(τ ) ≤ CB, then for any t ≥ t0, we have

L1(t) ≤ CBe–ν(t–τ ) +
c10

1 – e–ν
‖g0‖L2

b(Rτ ;L2(Ω)) + c9. (3.23)

From (3.23), it is easy to see that

∥
∥
(
u(t), ∂tu(t), z(t)

)∥
∥2
H ≤ L1(t) = r2,

that is, B = B(0, r) = {(u(t), ∂tu(t), z(t)) ∈ H : ‖(u(t), ∂tu(t), z(t))‖2
H ≤ r2} ⊆H is a uniformly

absorbing ball for any g ∈H(g0). The proof is complete. �

Next, we will verify that the family of processes {Ug(t, τ )}, g ∈ H(g0) corresponding to
(2.3)–(2.5) is uniformly (w.r.t. g ∈H(g0)) asymptotically compact in H.

Theorem 3.7 Assume that condition (H1) holds and g ∈ H(g0). Let γ1 > 2|γ2|, then the
family of processes {Ug(t, τ )}, g ∈H(g0) corresponding to (2.3)–(2.5) is uniformly (w.r.t. g ∈
H(g0)) asymptotically compact in H.

Proof We consider two symbols g1, g2 ∈ H(g0), and let (ui, ∂tui, zi) be solutions of (2.3)
corresponding to the initial data (ui

0, ui
1,φi

0) and the symbols g1, g2, respectively.
Let u = u1 – u2, z = z1 – z2, uτ

0 = u1τ
0 – u2τ

0 , uτ
1 = u1τ

1 – u2τ
1 , φ0 = φ1

0 – φ2
0 . Therefore, (u, z)

satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂ttu + �2u + γ1∂tu + γ2z(1) + f (u1) – f (u2)

= g1(t) – g2(t), Ω × (τ , +∞),

h∂tz(ρ, x, y, t) + ∂ρz(ρ, x, y, t) = 0, (0, 1) × Ω × (τ , +∞),

(3.24)
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with boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(0, y, t) = ∂xxu(0, y, t) = u(π , y, t) = ∂xxu(π , y, t) = 0, y ∈ (–l, l), t ≥ τ ,

∂yyu(x,±l, t) + σ∂xxu(x,±l, t) = 0, x ∈ (0,π ), t ≥ τ ,

∂yyyu(x,±l, t) + (2 – σ )∂xxyu(x,±l, t) = 0, x ∈ (0,π ), t ≥ τ .

We introduce the function

E2(t) =
1
2
∥
∥∂tu(t)

∥
∥2

L2(Ω) +
1
2
∥
∥u(t)

∥
∥2

H2∗ (Ω) +
1
2
∥
∥z(t)

∥
∥2

L2((0,1)×Ω), (3.25)

and

L2(t) = ME2(t) + NΨ2(t) + Φ2(t),

where Ψ2(t) = (∂tu, u), Φ2(t) = h
∫

Ω

∫ 1
0 |z|2e–ρh dρ dθ .

It is easy to see that L2(t) and E2(t) are equivalent, so there exist two positive constants
λ1 and λ2 depending on M, N such that

λ1E2(t) ≤ L2(t) ≤ λ2E2(t), (3.26)

where M > 0 large enough and N > 0 small enough.
Multiplying (3.24)1 by ∂tu and (3.24)2 by |γ2|z, then integrating over Ω and (0, 1) × Ω ,

respectively, we obtain that

d
dt

E2(t) ≤ –γ1‖∂tu‖2
L2(Ω) +

|γ2|
2

∥
∥z(1)

∥
∥2

L2(Ω) +
|γ2|

2
‖∂tu‖2

L2(Ω)

–
|γ2|

2
∥
∥z(1)

∥
∥2

L2(Ω) +
|γ2|

2
‖∂tu‖2

L2(Ω) –
∫

Ω

(
f
(
u1(t)

)
– f

(
u2(t)

))
∂tu dθ

+
∫

Ω

(
g1(t) – g2(t)

)
∂tu dθ

≤ cγ2

∫

Ω

∣
∣f

(
u1(t)

)
– f

(
u2(t)

)∣
∣2 dθ –

(

γ1 –
3|γ2|

2

)

‖∂tu‖2
L2(Ω)

+
∫

Ω

(
g1(t) – g2(t)

)
∂tu dθ . (3.27)

Using (H1)1, we find that

∫

Ω

∣
∣f

(
u1(t)

)
– f

(
u2(t)

)∣
∣2 dθ ≤ c0

∫

Ω

(∣
∣u1∣∣2p +

∣
∣u2∣∣2p)|u|2 dθ ≤ cB

∥
∥u(·, t)

∥
∥2

L2(Ω), (3.28)
∫

Ω

(
g1(t) – g2(t)

)
∂tu dθ ≤ cγ2

∥
∥g1(t) – g2(t)

∥
∥2

L2(Ω) +
|γ2|

2
‖∂tu‖2

L2(Ω), (3.29)

where cB, cγ2 are positive constants.
Substituting (3.28), (3.29) into (3.27), we get

d
dt

E2(t) ≤ cB
∥
∥u(·, t)

∥
∥2

L2(Ω) –
(
γ1 – 2|γ2|

)‖∂tu‖2
L2(Ω) + cδ2

∥
∥g1(t) – g2(t)

∥
∥2

L2(Ω). (3.30)



Wang and Ma Journal of Inequalities and Applications        (2019) 2019:180 Page 14 of 17

Similar to the proof of (3.15) and (3.17), we have

Ψ ′
2(t) ≤

(

1 +
γ1

2ξ

)

‖∂tu‖2
L2(Ω) +

(
(
γ1ξ + |γ2|ξ + 3|γ2|

)cλ

2
– 1

)

‖u‖2
H2∗ (Ω)

+
|γ2|
2ξ

∥
∥z(1)

∥
∥2

L2(Ω) + cγ2

∥
∥g1(t) – g2(t)

∥
∥2

L2(Ω) + cB
∥
∥u(·, t)

∥
∥2

L2(Ω), (3.31)

and

Φ ′
2(t) ≤ –e–h

(
∥
∥z(1)

∥
∥2

L2(Ω) + h
∫

Ω

∫ 1

0

∣
∣z(t)

∣
∣2 dρ dθ

)

+ ‖∂tu‖2
L2(Ω). (3.32)

Using (3.30)–(3.32), direct computation

L′
2(t) = ME′

2(t) + NΨ ′
2(t) + Φ ′

2(t)

≤ –N
(

1 –
(
γ1ξ + |γ2|ξ + 3|γ2|

)cλ

2

)

‖u‖2
H2∗ (Ω)

–
(

M
(
γ1 – 2|γ2|

)
– N –

γ1N
2ξ

– 1
)

‖∂tu‖2
L2(Ω)

–
(

e–h –
N |γ2|

2ξ

)
∥
∥z(1)

∥
∥2

L2(Ω) – e–hh‖z‖2
L2((0,1)×Ω)

+ (M + N)cγ2

∥
∥g1(t) – g2(t)

∥
∥2

L2(Ω) + (M + N)cB
∥
∥u(·, t)

∥
∥2

L2(Ω). (3.33)

Choose ξ and N small enough, M large enough such that

1 –
(
γ1ξ + |γ2|ξ + 3|γ2|

)cλ

2
) > 0, e–h –

N |γ2|
2ξ

> 0,

M
(
γ1 – 2|γ2|

)
– N –

γ1N
2ξ

– 1 > 0.

Then there exists � > 0 such that

dL2(t)
dt

≤ –�E2(t) + (M + N)cγ2

∥
∥g1(t) – g2(t)

∥
∥2

L2(Ω)

+ (M + N)cB
∥
∥u(·, t)

∥
∥2

L2(Ω). (3.34)

Exploiting (3.26), from (3.34), we obtain

dL2(t)
dt

+ �L2(t) ≤ (M + N)cγ2

∥
∥g1(t) – g2(t)

∥
∥2

L2(Ω) + (M + N)ccB

∥
∥u(·, t)

∥
∥2

L2(Ω), (3.35)

where � = �
λ2

. Integrating (3.35) over [τ , t], we can deduce that

L2(t) ≤ L2(τ )e–�(t–τ ) + (M + N)cγ2

∫ t

τ

e–�(t–s)∥∥g1(s) – g2(s)
∥
∥2

L2(Ω) ds

+ (M + N)cB

∫ t

τ

e–�(t–s)∥∥u(·, s)
∥
∥2

L2(Ω) ds. (3.36)
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Let T > τ large enough such that

L2(τ )e–�(T–τ ) ≤ ε. (3.37)

Together with (3.26), (3.36), and (3.37), it yields

E2(t) ≤ ε + c11

∫ t

τ

∥
∥g1(s) – g2(s)

∥
∥2

L2(Ω) ds + c12

∫ t

τ

∥
∥u(·, s)

∥
∥2

L2(Ω) ds

:= ε + ψT
((

u1τ
0 , u1τ

1 ,φ1
0
)
,
(
u2τ

0 , u2τ
1 ,φ2

0
)
; g1, g2).

Subsequently, we will show ψT (·, ·; ·, ·) ∈ Contr(B,H(g0)) for every fixed T > τ . Because of
the existence of a uniformly absorbing set, we can obtain that, for any fixed T > τ and any
bounded set B depending on T ,

⋃

g∈H(g0)

⋃

t∈[τ ,T]

Ug(t, τ )B

is bounded in H. Let the sequence (uτ
0n, uτ

1n,φ0n) ∈ B, gn ∈ H(g0), n = 1, 2, . . . . Since B is
bounded, the corresponding sequence of solutions (un(t), ∂tun(t), zn(t)) of system (2.3)–
(2.5) is uniformly bounded in H. Hence, (un, ∂tun, zn) is bounded in C([τ , T];H), which
implies that un is bounded in C([τ , T]; H2(Ω)).

It follows that from the compact embedding of C([τ , T]; H2(Ω)) ∩ C1([τ , T]; L2(Ω))
into C([τ , T]; L2(Ω)), there exists a subsequence {unk } that converges in C([τ , T]; L2(Ω)),
∀T > τ . So

lim
j→∞ lim

k→∞
sup
t≥τ

∫ t

τ

∥
∥unj (s) – unk (s)

∥
∥2 ds = 0. (3.38)

On the other hand, by gn, gm ∈H(g0), we arrive at

∫ t

τ

∥
∥gn(s) – gm(s)

∥
∥2

L2(Ω) ds → 0, m, n → +∞. (3.39)

Hence, combining with (3.38)–(3.39), we get that ψT ∈ Contr(B,H(g0)), and then this com-
pletes the proof of Theorem 3.7. �

Theorem 3.8 (Uniform attractor) Assume that conditions (H1)–(H2) hold and g ∈H(g0).
Then the family of processes {Ug(t, τ )}, g ∈ H(g0) corresponding to (2.3)–(2.5) has a com-
pactly uniform attractor (w.r.t. g ∈H(g0)) AΣ in H.

Proof From Theorem 3.6 and Theorem 3.7 we know that the conditions of Theorem 2.5
are all satisfied. �
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