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1 Introduction
Inequalities with power functions have many important applications. They can be
found in mathematical analysis and in other theories like ordinary differential equa-
tions, probability theory and statistics, chemistry, economics, mathematical physics, and
mathematical biology. Not long ago, the following problem (1) was published in the
AMM [2].

Problem 12024-02- M. Cucoanes, M. Dragan, and N. Stanciu (Romania).
Let x, y, and z be positive real numbers satisfying xyz = 1. Prove

(
x10 + y10 + z10)2 ≥ 3

(
x13 + y13 + z13). (1)

The aim of this paper is to prove a more general form of inequality (1). We also discuss
other forms of (1).

2 Methods
In this paper, methods of mathematical and numerical analysis are used. We use also the
software MATLAB for some computing.

3 Results and discussion
In this section we prove a more general form of (1).
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3.1 Lemmas and theorems
Lemma 1 Let

g(x1, . . . , xn) =

( n∑

i=1

xa
i

)m

– q

( n∑

i=1

xb
i

)

where n ∈ N ; n ≥ 3; m > 0;

q, a, b > 0; a �= b;
n∏

i=1

xi = 1; 0 < x1 < · · · < xn.

Then g has no local extremes in

W =

{

(x1, . . . , xn); 0 < x1 < 1, x1 < x2 < · · · < xn,
n∏

i=1

xi = 1

}

.

Proof Put

h =

( n–1∑

i=1

xa
i +

1
∏n–1

i=1 xa
i

)m

– q

( n–1∑

i=1

xb
i +

1
∏n–1

i=1 xb
i

)

.

We have

h′
xi

= ma

( n∑

i=1

xa
i

)m–1(
xa–1

i –
1

xi
∏n–1

i=1 xa
i

)
– qb

(
xb–1

i –
1

xi
∏n–1

i=1 xb
i

)

for i = 1, . . . , n – 1. If h′
xi

(x1, . . . , xn–1) = 0 for i = 1, . . . , n – 1 for some (x1, . . . , xn–1) ∈ W , then
we have

xa
i – xa

n

xb
i – xb

n
=

xa
j – xa

n

xb
j – xb

n
for i, j = 1, . . . , n – 1, i �= j.

It implies

( xi
xn

)a – 1

( xj
xn

)a – 1
=

( xi
xn

)b – 1

( xj
xn

)b – 1
for i, j = 1, . . . , n – 1, i �= j.

We show that

f (t) =
ta – 1
tb – 1

is a strictly monotonic function for t ∈ (0, 1) and a �= b, a, b > 0.
We have

f ′
t =

s(t)
(1 – tb)2 =

(a – b)ta+b–1 – ata–1 + btb–1

(1 – tb)2 .

If 0 < a < b, then s(t) < 0.
Really, from s(t) = ta–1w1(t) = ta–1((a – b)tb – a + btb–a). Because of w1(1) = 0 and w′

1t =
b(b – a)tb–a–1(1 – ta) > 0, we obtain f (t) is a strictly decreasing function on (0, 1).
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If 0 < b < a, then s(t) > 0.
Really, we have s(t) = ta–1w(t) = ta–1(–a + (a – b)tb + btb–a). Because of w1(1) = 0 and

w′
1t = b(b – a)tb–a–1(1 – ta) < 0, we obtain f (t) is a strictly increasing function on (0, 1). So

the proof of the lemma is complete. �

Lemma 2 Let 0 < xi for i = 1, . . . , n and
∏n

i=1 xi = 1, n ∈ N , m ≥ 1, k, a > 0. Then

( n∑

i=1

xa+k
i

)m

≥ nm–1

( n∑

i=1

xa
i

)

.

Proof Put

v(t) =

( n∑

i=1

xt
i

)m

, then v′
t(t) = m

( n∑

i=1

xt
i

)m–1

×
( n∑

i=1

xt
i ln(xi)

)

and

v′′
tt(t) = m(m – 1)

( n∑

i=1

xt
i

)m–2

×
( n∑

i=1

xt
i ln(xi)

)2

+ m

( n∑

i=1

xt
i

)m–1

×
( n∑

i=1

xt
i ln2(xi)

)

≥ 0.

So v′
t(t) is an increasing function in t. Because of v′

t(0) = 0, we obtain v(t) is an increasing
function in t ≥ 0. It implies

v(a + k) ≥ v(a) = (
∑n

i=1 xa
i )m. So it suffices to show

( n∑

i=1

xa
i

)m

≥ nm–1

( n∑

i=1

xa
i

)

,

which is evident. It follows from A–G inequality and from
∏n

i=1 xi = 1. �

Lemma 3 Let 0 < xi for i = 1, . . . , n and
∏n

i=1 xi = 1, n ∈ N , n ≥ 2, m ≥ 1, k, a > 0. Let

F =

( n∑

i=1

xa
i

)m

– nm–1

( n∑

i=1

xa(1+k)
i

)

.

Then F ′
k < 0.

Proof Denote yi = xa
i for i = 1, . . . , n. It is evident that

∏n
i=1 yi = 1. We can suppose 0 < yi <

yi+1. So we have 0 < y1 < 1 < yn. F can be rewritten as

F =

( n∑

i=1

yi

)m

– nm–1

( n∑

i=1

y(1+k)
i

)

.

It is evident that

F ′
k = –nm–1

( n∑

i=1

y(1+k)
i ln(yi)

)

.
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We show that F ′
k < 0 for k > 0. F ′

k < 0 is equivalent to

Sk =

( n∑

i=1

y(1+k)
i ln(yi)

)

> 0.

We have

S′
k =

( n∑

i=1

y(1+k)
i ln2(yi)

)

> 0.

The proof will be done if we show

Sk(k = 0) =

( n∑

i=1

yi ln(yi)

)

> 0. (2)

We use the mathematical induction. For n = 2, we get

S2 = y1 ln(y1) +
1
y1

ln

(
1
y1

)
=

ln(y1)(y2
1 – 1)

y1
> 0.

Suppose that inequality (2) is valid for all n ≥ 2. We prove that (2) is valid for n + 1. We
know that

∏n+1
i=1 yi = 1. It implies

y1yn+1 ln(y1yn+1) + y2 ln(y2) + · · · + yn ln(yn) > 0. (3)

The proof will be done if we show

D = y1yn+1 ln(y1) + y1yn+1 ln(yn+1) – y1 ln(y1) – yn+1 ln(yn+1) < 0. (4)

But it is evident because of

D = y1 ln(y1)(yn+1 – 1) + yn+1 ln(yn+1)(y1 – 1) < 0. (5)�

Lemma 4 Let 0 < xi for i = 1, . . . , n and
∏n

i=1 xi = 1, n ∈ N , m ≥ 1, k, a > 0. Then

( n∑

i=1

xa
i

)m

≤ nm–1

( n∑

i=1

xa(1+k)
i

)

for k ≥ m – 1. (6)

Proof Put again yi = xa
i for i = 1, . . . , n and

F =

( n∑

i=1

yi

)m

– nm–1

( n∑

i=1

y(1+k)
i

)

.

We show that (6) is valid for k = m – 1. From F ′
k < 0 (see previous lemma), we get (6) is

valid for all k ≥ m – 1. Rewriting (6) for k = m – 1, we obtain

∑n
i=1 yi

n
≤

(∑n
i=1 ym

i
n

)1/m

,
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which is evident because the power mean is an increasing function [1]. We note that k =
m – 1 is the best constant in (6). It follows from

lim
y1→0+

(
y1 + n – 2 +

1
y1

)m

– nm–1
(

y(1+k)
1 + n – 2 +

1
y(1+k)

1

)
≥ 0

for k < m – 1.
Really,

lim
y1→0+

(
y1 + n – 2 +

1
y1

)m

– nm–1
(

y(1+k)
1 + n – 2 +

1
y(1+k)

1

)

= lim
y1→0+

(1 – nm–1y(m–1–k)
1 )

ym
1

= +∞.

The proof is complete. �

Note 1 For each a > 0 and xi > 0, i = 1, . . . , n,
∏n

i=1 xi = 1, n ∈ N , n ≥ 2, m ≥ 1, there is l ≥ 0
such that

( n∑

i=1

xa
i

)m

≥ nm–1

( n∑

i=1

xa(1+k)
i

)

(7)

for all 0 ≤ k ≤ l, and

( n∑

i=1

xa
i

)m

< nm–1

( n∑

i=1

xa(1+k)
i

)

(8)

for all k > l.
Denote, for each m ≥ 1, n ∈ N , n ≥ 2

k(n, m) = inf
xi>0,i=1,...,n,

∏n
i=1 xi=1

{l}.

Then 0 ≤ k(n, m) ≤ m – 1. Next, (7) is valid for all 0 ≤ k ≤ k(n, m) and for all xi > 0, i =
1, . . . , n,

∏n
i=1 xi = 1, and if k > m – 1 then (8) is valid for all xi > 0, i = 1, . . . , n,

∏n
i=1 xi = 1. If

k(n, m) < k < m – 1, then there are some xi > 0, i = 1, . . . , n,
∏n

i=1 xi = 1 such that (7) is valid
and there are some xi > 0, i = 1, . . . , n,

∏n
i=1 xi = 1 such that (8) is valid.

Lemma 5 Let
( n+1∑

i=1

xi

)m

≥ (n + 1)m–1

( n+1∑

i=1

x(1+k)
i

)

(9)

be valid for all 0 < xi i = 1, . . . , n + 1 such that
∏n+1

i=1 xi = 1, n ∈ N , m ≥ 1, n ≥ 2, k > 0. Then

( n∑

i=1

xi

)m

≥ nm–1

( n∑

i=1

x(1+k)
i

)

(10)

is also valid for all 0 < xi, i = 1, . . . , n, such that
∏n

i=1 xi = 1, n ∈ N , m ≥ 1, n ≥ 2, k > 0.



Matejíčka Journal of Inequalities and Applications  (2018) 2018:182 Page 6 of 13

Proof Let 0 < xi for i = 1, . . . , n and
∏n

i=1 xi = 1, xn+1 = 1. Then we get

( n∑

i=1

xi + 1

)m

≥ (n + 1)m–1

( n∑

i=1

x(1+k)
i + 1

)

,

which is

n∑

i=1

xi ≥ (n + 1)(m–1)/m

( n∑

i=1

x(1+k)
i + 1

)1/m

– 1.

If we show

(n + 1)(m–1)/m

( n∑

i=1

x(1+k)
i + 1

)1/m

– 1 ≥ n(m–1)/m

( n∑

i=1

x(1+k)
i

)1/m

,

then the proof will be done. Put

w(t) = (n + 1)(m–1)/m(1 + t)1/m – n(m–1)/mt1/m – 1, where t =
n∑

i=1

x(1+k)
i .

We have

w′(t) =
1
m

{(
1 + n
1 + t

)(m–1)/m

–
(

n
t

)(m–1)/m}
.

If t < n, then (1 + n)/(1 + t) < n/t so w′(t) < 0. If t > n, then (1 + n)/(1 + t) > n/t so w′(t) > 0. So
w(t) ≥ w(n) = (n + 1)m – (n)m – 1. Because of w(n) = nm(((n + 1)/n)m – 1 – 1/nm, it suffices
to show that s(x) = (1 + x)m – xm – 1 ≥ 0 for 0 ≤ x ≤ 1. But it follows from s(0) = 0 and
s′(x) = mxm–1((1 + x)/x)m–1 ≥ 0. The proof is complete. �

Note 2 We note that Lemma 5 implies k(n + 1, m) ≤ k(n, m) for m ≥ 1. Next put

h =
(∑n

i=1 xi

n

)m

.

Then we have

h′
m =

(∑n
i=1 xi

n

)m

ln

(∑n
i=1 xi

n

)
≥ 0.

So hm is an increasing function for m. From this we have: if

( n∑

i=1

xi

)m1

≥ nm1–1

( n∑

i=1

x(1+k)
i

)

for some m1 ≥ 1, then
( n∑

i=1

xi

)m2

≥ nm2–1

( n∑

i=1

x(1+k)
i

)

for m2 ≥ m1. Especially, it implies k(n, m) ≤ k(n, m + 1).
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Now we prove two theorems: the first one for n = 2 and the second one for n = 3.

Theorem 1 Let m ≥ 2. Then there is 0 < k(2, m) < m – 1 such that
1. If 0 ≤ k ≤ k(2, m), then

(
xa

1 + xa
2
)m ≥ 2m–1(xa(1+k)

1 + xa(1+k)
2

)
(11)

for all a ≥ 0 and 0 < x1, x2 such that x1x2 = 1;
2. If k ≥ m – 1, then

(
xa

1 + xa
2
)2 ≤ 2m–1(xa(1+k)

1 + xa(1+k)
2

)
(12)

for all a ≥ 0 and 0 < x1, x2 such that x1x2 = 1;
3. If k(2, m) < k < m – 1, then for each a ≥ 0 there are 0 < x1, x2, 0 < y1, y2 such that

x1x2 = 1, y1y2 = 1 and

(
xa

1 + xa
2
)m ≥ 2m–1(xa(1+k)

1 + xa(1+k)
2

)
, (13)

(
ya

1 + ya
2
)m ≤ 2m–1(ya(1+k)

1 + ya(1+k)
2

)
, (14)

4. k(2, m) =
√

m – 1 for m ≥ 2.

Proof Put y = xa
1 and m = 2 in F (see Lemma 3). We can suppose that 0 < y ≤ 1. Denote

s(y) = y4 + 2y2 + 1 – 2y1+k – 2y–(1+k), (15)

where 0 ≤ k <
√

2 – 1. First we show s(y) ≥ 0 for 0 < y ≤ 1 and 0 ≤ k <
√

2 – 1. We have
s(1) = 0. If we show s′(y) ≤ 0, then s(y) ≥ 0. We get

s′(y) = 4y3 + 4y – 2(3 + k)y2+k – 2(1 – k)y–k . (16)

s′(y) ≤ 0 is equivalent to

s1 = 4y3+k + 4y1+k – 2(3 + k)y2+2k – 2(1 – k) ≤ 0. (17)

Because of s1(1) = 0, it suffices to show that s′
1(t) ≥ 0. We have

s′
1 = 4(3 + k)y2+k + 4(1 + k)yk – 2(3 + k)(2 + 2k)y1+2k . (18)

s′
1(y) ≥ 0 is equivalent to

s2 = 2(3 + k)y2 + 2(1 + k) – (3 + k)(2 + 2k)y1+k ≥ 0. (19)

From s2(1) = 2 – (1 + k)2 we have k ≤ √
2 – 1. We get also s2(0) = 2(1 + k) > 0.

Lemma 3 gives that (19) can be proved only for k =
√

2 – 1. So it suffices to show

sa = (1 +
√

2)y2 + 1 – (2 +
√

2)y
√

2 ≥ 0. (20)
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We have

s′
a = 2(1 +

√
2)y + 1 – (2 +

√
2)

√
2y

√
2–1. (21)

It implies s′
a = 0 only if y = 0 or y = 1. Because of s′

a(0.5) = –0.2092, we deduce s′
a(y) ≤ 0 for

0 < y < 1. Because of sa(1) = 0, the proof for m = 2 is complete. Put

sm(y) =
(

1 + y2

2y

)m2

–
1
2
(
ym + y–m)

. (22)

We have sm(y) ≥ 0 is equivalent to

vm(y) = m2 ln

(
1 + y2

2y

)
– ln

(
ym + y–m)

+ ln(2) ≥ 0. (23)

It is evident that vm(1) ≥ 0. Next computation gives

v′
m(y) = 2m ln

(
1 + y2

2y

)
+ ln(y)

(
1 – y2m

1 + y2m

)
. (24)

We have

v′
m(y, m = 1) = 2 ln

(
1 + y2

2y

)
+ ln(y)

(
1 – y2

1 + y2

)
. (25)

We show v′
m(y, m = 1) ≥ 0. Put x = y + 1/y in ln(x) ≥ (x2 – 1)/(2x), then we obtain

ln

(
1 + y2

2y

)
≥ (1 – y2)2

4y(1 + y2)
.

v′
m(y, m = 1) ≥ 0 will be done if we prove

2
(1 – y2)2

4y(1 + y2)
+ ln(y)

(
1 – y2

1 + y2

)
≥ 0. (26)

It is equivalent to ln(y) ≥ ( y2–1
2y ) ≥ 0, which is a known formula. Next computation gives

v′′
m(y) = 2 ln

(
1 + y2

2y

)
–

4y2m ln2(y)
(1 + y2m)2 . (27)

We show again that v′′
m(y, m = 1) ≥ 0. We have

v′′
m(m = 1) = 2 ln

(
1 + y2

2y

)
–

4y2 ln2(y)
(1 + y2)2 ≥ w(y) =

(1 – y2)2

2y
–

4y2 ln2(y)
1 + y2 ≥ 0. (28)

But w(y) ≥ 0 is evident because this is equivalent to (1 – t)2 ≥ 0. Next we get

v′′′
m(y) = –

8 ln3(y)y2m(1 – y4m)
(1 + y2m)4 ≥ 0. (29)
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So v′′
m is an increasing function. Because of v′′

m(m = 1) ≥ 0, we obtain v′′
m ≥ 0 for each

0 < y < 1. So v′
m is an increasing function. Because of v′

m(m = 1) ≥ 0, we obtain v′
m ≥ 0 for

each 0 < y < 1. So sm is an increasing function. Because of sm(m = 1) ≥ 0, we obtain sm ≥ 0
for each 0 < y < 1 and m ≥ 1. So we proved (11).

Next we show that k =
√

m – 1 is the best constant. We have

s′′
m(y) = 4m(m – 1)

(
1 + y2)m–2y + 2m

(
1 + y2)m–1 – 2m–1 (30)

× (m + 1 + k)(m + k)ym+k–1 – 2m–1(m – 1 – k)(m – 2 – k)ym–3–k . (31)

We get

s′′
m(1) = 2m–1(m – (1 + k)2). (32)

It implies that, for each m ≥ 2 and k >
√

m – 1, the function sm(y) is a strictly concave
function in some neighborhood Om(1) of 1. So sm(y) < 0 for some y < 1 and y ∈ Om(1). It
follows from sm(1) = 0, s′

m(1) = 0.
Next assertions follow from the previous lemmas and from limy→0+ sm(y) = +∞ for 0 ≤

k < m – 1. �

Note 3 We note that Theorem 1 implies limm→+∞ k(2, m) = +∞.

Theorem 2 There is 0 < k(3, 2) < 1 such that
1. If 0 ≤ k < k(3, 2), then

(
xa

1 + xa
2 + xa

3
)2 ≥ 3

(
xa(1+k)

1 + xa(1+k)
2 + xa(1+k)

3
)

(33)

for all a ≥ 0 and 0 < x1, x2, x3 such that x1x2x3 = 1;
2. If k ≥ 1, then

(
xa

1 + xa
2 + xa

3
)2 ≤ 3

(
xa(1+k)

1 + xa(1+k)
2 + xa(1+k)

3
)

(34)

for all a ≥ 0 and 0 < x1, x2, x3 such that x1x2x3 = 1;
3. If k(3, 2) < k < 1, then for each a ≥ 0 there are 0 < x1, x2, x3, 0 < y1, y2, y3 such that

x1x2x3 = 1, y1y2y3 = 1 and

(
xa

1 + xa
2 + xa

3
)2 ≥ 3

(
xa(1+k)

1 + xa(1+k)
2 + xa(1+k)

3
)
, (35)

(
ya

1 + ya
2 + ya

3
)2 ≤ 3

(
ya(1+k)

1 + ya(1+k)
2 + ya(1+k)

3
)
; (36)

4. 0.40 < k(3, 2) < 0.4048.

Proof Put again yi = xa
i . From Lemma 1 we have that

F(y1, y2, y3) = (y1 + y2 + y3)2 – 3
(
y(1+k)

1 + y(1+k)
2 + y(1+k)

3
)

has extreme values only on W , where

W =
{

(y1, y2); 0 < y1 ≤ 1, y1 ≤ y2, y2 ≤ 1
y1, y2

}
.
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We prove that
1. limy1→0+ F = +∞;
2. α(y) = (2y + 1

y2 )2 – 3(2y1+k + 1
y2+2k ) ≥ 0 for 0 < y ≤ 1 and for 0 ≤ k ≤ k(3, 2);

3. β(y) = (y2 + 2
y )2 – 3(y2+2k + 2

y1+k ) ≥ 0 for 0 < y ≤ 1 and for 0 ≤ k ≤ k(3, 2),
where 0.40 < k(3, 2) < 0.4048 and our proof will be done.

Rewriting F we obtain

F =
1

(y1y2)2

[(
y2

1y2 + y2
2y1 + 1

)2 – 3(y1y2)(1–k)((y2
1y2

)(1+k) +
(
y2

2y1
)(1+k) + 1

)]
,

which implies limy1→0+ F = +∞ for 0 ≤ k < 1. Now we show α(y) ≥ 0 for k = 0.40. We have

α(y) =
(

2y +
1
y2

)2

– 3
(

2y1.4 +
1

y2.8

)
≥ 0

is equivalent to

α1(y) = 4y6 + 4y3 + 1 – 6y5.4 – 3y1.2 ≥ 0.

Put y = u5/3, we get

α1(u) = 4u10 + 4u5 + 1 – 6u9 – 3u2 ≥ 0.

From α1(1) = 0 it suffices to show

α′
1(u) = 40u9 + 20u4 – 54u8 – 6u ≤ 0.

We have

1
2
α′

1(u) ≤ α2(u) – 7u9 + 10u3 – 6.

We used u9 ≤ u8 ≤ u7. Put u = v1/3, we get

α2(v) = –7v3 + 10v – 6.

Cardano’s formula gives that there are no real roots of α2(v) = 0 in (0, 1). Because of
α2(0.5) = –15/8, we get α2(v) ≤ 0. So α(y) ≥ 0 for y ∈ (0, 1). Now we show β(y) ≥ 0 for
k = 0.41. We have

β(y) =
(

y2 +
2
y

)2

– 3
(

y2+2k +
2

y1+k

)
,

which is equivalent to

β1(y) = y6 + 4y3 + 4 – 3y4.82 – 6y0.58 ≥ 0.

Put y = u5, we get

β1(u) = u30 + 4u15 + 4 – 3u24.1 – 6u2.9 ≥ 0.



Matejíčka Journal of Inequalities and Applications  (2018) 2018:182 Page 11 of 13

From β1(1) = 0 it suffices to show

β ′
1(u) = 30u29 + 30u14 – 72.3u23.2 – 17.4u1.9 ≤ 0.

We have

1
u

β ′
1(u) = 30u27.1 + 30u12.1 – 72.3u21.2 – 17.4

≤ β2(u) = 30u27 + 30u12 – 72.3u21.3 – 17.4.

We used u12.1 ≤ u12 and u27.1 ≤ u27 and u21.3 ≤ u21.2. Put u = v1/3, we get

β2(v) = 30v9 + 30v4 – 72.3v7.1 – 17.4 ≤ β3(v) = –42.3v8 + 30v4 – 17.4.

We used v9 ≤ v8 ≤ v7.1. Put q = v4, we get

β3(q) = –42.3q2 + 30q – 17.4.

But β3(q) ≤ 0. It follows from the following Cardano’s formula which gives that there are
no real roots of β3(q) = 0 in (0, 1). Because of β3(0) = –17.4, we get β3(q) ≤ 0. So β(y) ≥ 0
for y ∈ (0, 1). This completes our proof. �

Now we give the table of bounds of coefficients k(3, m) for m = 2, . . . , 20. Upper bounds
are mathematically proved. It follows from table’s points t in which (11) is not valid (value
of g(t) = F). The inequality 0.40 ≤ k(3, 2) is proved in Theorem 2. The other lower bounds
for k(3, m) for m = 3, . . . , 20 (Table 1) are obtained by MATLAB, so they are not mathemat-
ically proved. We made a regression analysis of lower bounds of k(3, m) for m = 2, . . . , 20
obtained by MATLAB, and our result is described in Fig. 1. We obtained a function
k = 0.966624319951710

√
m – 0.959268923482591 which is a very good approximation of

Table 1 Bounds for coefficients k(3,m) form = 2, . . . , 20

m lower bound upper bound point t value of g(t)

2 0.4047. . . 0.4048. . . 0.8151. . . –0.000000075 . . .
3 0.7139. . . 0.7140. . . 0.8404. . . –0.000000041 . . .
4 0.9740. . . 0.9741. . . 0.8529. . . –0.000002048 . . .
5 1.2028. . . 1.2029. . . 0.8632. . . –0.000001261 . . .
6 1.4095. . . 1.4096. . . 0.8683. . . –0.000009898 . . .
7 1.5993. . . 1.5994. . . 0.8781. . . –0.000037845 . . .
8 1.7760. . . 1.7761. . . 0.8806. . . –0.000233373 . . .
9 1.9418. . . 1.9419. . . 0.8855. . . –0.000334923 . . .
10 2.0895. . . 2.0896. . . 0.8911. . . –0.001123737 . . .
11 2.2475. . . 2.2476. . . 0.8966. . . –0.001114119 . . .
12 2.3899. . . 2.3900. . . 0.8982. . . –0.006785876 . . .
13 2.5264. . . 2.5265. . . 0.9015. . . –0.028610151 . . .
14 2.6577. . . 2.6578. . . 0.9051. . . –0.023721377 . . .
15 2.7844. . . 2.7845. . . 0.9069. . . –0.091720248 . . .
16 2.9069. . . 2.9070. . . 0.9094. . . –0.137691738 . . .
17 3.0257. . . 3.0258. . . 0.9098. . . –2.510912627 . . .
18 3.1409. . . 3.1410. . . 0.9127. . . –4.365058865 . . .
19 3.2530. . . 3.2531. . . 0.9142. . . –15.43949475 . . .
20 3.3622. . . 3.3623. . . 0.9153. . . –47.82516340 . . .
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Figure 1 Lower bounds for n = 3

the obtained lower bounds of k(3, m) for m = 2, . . . , 20. From our lemmas it is evident that
0 ≤ k(n + 1, m) ≤ k(n, m) and that ϕ(m) = k(n, m) is an increasing function for each fixed
n ∈ N , n ≥ 2. It is also clear that k(n, m) ≤ √

m – 1.

4 Conclusion
In this paper, we made a discussion about a more general inequality than inequality (1).
We showed the existence of a function k(n, m) for n ≥ 2, n ∈ N , m ≥ 1 with the following
properties:

• If 0 ≤ k ≤ k(n, m), then F ≥ 0 is valid for all positive x1, . . . , xn such that x1 . . . xn = 1;
• If k(2, m) < k < m – 1, then there are 0 < x1, . . . , xn such that x1 . . . xn = 1 and F ≥ 0 is

valid, and there are 0 < y1, . . . , yn such that y1 . . . yn = 1 and F ≤ 0 is valid;
• If k > m – 1, then F ≤ 0 is valid for all positive x1, . . . , xn such that x1 . . . xn = 1.
We also solved the problem 12024-02 published in AMM [2]. Really, if we put a = 10

and k = 0.3 in Theorem 2, we obtain inequality (1).
Using Theorem 2 we can get other inequalities which are valid for all positive x1, x2, x3

such that x1x2x3 = 1. For example, we can put a = 10 and k = 0.4 and we have

(
x10 + y10 + z10)2 ≥ 3

(
x14 + y14 + z14), (37)

or a = 4 and k = 0.25 and we get

(
x4 + y4 + z4)2 ≥ 3

(
x5 + y5 + z5) (38)

and so on.
We note that there is an interesting problem: What is equal to limn→∞ k(n, m) for each

fixed m > 1?
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