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1 Introduction
Let � be a smooth bounded domain in R

2, W 1,p(�) be the usual Sobolev space and
W 1,p

0 (�) be the closure of C∞
0 (�) in W 1,p(�). For 1 ≤ p < 2, the classical Sobolev theo-

rem says that

W 1,p
0 (�) ↪→ Lq(�) for any 1 < q ≤ 2p/(2 – p).

As the limit case of the Sobolev inequality, the famous Trudinger–Moser inequality [3, 4]
states

sup
u∈W 1,2

0 (�),‖∇u‖2≤1

∫
�

e4πu2
dx < ∞. (1.1)

This inequality is sharp in the sense that, for any p > 4π , there exists a sequence {uj} ⊂
W 1,2

0 (�) with ‖∇uj‖2 = 1 such that
∫
�

epu2
j dx → ∞ as j → ∞. Furthermore, let {uk} be

a sequence of function in W 1,2
0 (�) with ‖∇uk‖2 = 1 such that uk ⇀ u weakly in W 1,2

0 (�).
Lions [5] proved that, for any p < 1/(1 – ‖∇u‖2

2), we have

lim sup
k→∞

∫
�

e4πpu2
k dx < ∞. (1.2)

If u 	≡ 0, the inequality (1.2) gives more information than the Trudinger–Moser inequality
(1.1). If u ≡ 0, (1.2) is a consequence of (1.1). Motivated by this, Adimurthi and Druet [6]
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proved that, for any α, 0 ≤ α < λ1(�),

sup
u∈W 1,2

0 (�),‖∇u‖2≤1

∫
�

e4πu2(1+α‖u‖2
2) dx < ∞, (1.3)

where λ1(�) is the first eigenvalue of the Laplace operator with respect to Dirichlet bound-
ary condition. If α ≥ λ1(�), then the supremum in (1.3) is infinity. The inequality (1.3)
provides valuable supplementary information on (1.2). Note that if α = 0, (1.3) becomes
the classical Trudinger–Moser inequality. Adimurthi and Druet’s result was extended by
Yang to high dimensions [7] and compact Riemannian surfaces [8], and by Tintarev to a
stronger version [9].

Denote

‖u‖1,α =
(∫

�

|∇u|2 dx – α

∫
�

u2 dx
)1/2

(1.4)

for any u ∈ W 1,2
0 (�) with

∫
�

|∇u|2 dx – α
∫
�

u2 dx ≥ 0. In [1], Yang proved that, for any α,
0 ≤ α < λ1(�), we have

sup
u∈W 1,2

0 (�),‖u‖1,α≤1

∫
�

e4πu2
dx < ∞ (1.5)

and the supremum can be attained by some function u0 ∈ W 1,2
0 (�) ∩ C1(�) with

‖u0‖1,α = 1. Let λ1(�) < λ2(�) < · · · be all distinct eigenvalues of the Laplace operator with
respect to Dirichlet boundary condition and Eλj(�) be the eigenfunction space associated
to λj(�). Noting that W 1,2

0 (�) is a Hilbert space, for any positive integer l, we have

W 1,2
0 (�) = El ⊕ E⊥

l ,

where

El = Eλ1(�) ⊕ Eλ2(�) ⊕ · · · ⊕ Eλl(�) (1.6)

and

E⊥
l =

{
u ∈ W 1,2

0 (�) :
∫

�

uv dx = 0,∀v ∈ El

}
. (1.7)

It was also proved by Yang [1] that, for any α, 0 ≤ α < λl+1(�), we have

sup
u∈E⊥

l ,‖u‖1,α≤1

∫
�

e4πu2
dx < ∞ (1.8)

and the supremum can be attained by some u0 ∈ E⊥
l ∩C1(�) with ‖u0‖1,α = 1. The analogs

of (1.5) and (1.8) still hold on compact Riemannian surfaces.
Our first result is the following.
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Theorem 1 Let � be a smooth bounded domain in R
2, λ1(�) be the first eigenvalue of the

Laplace operator with Dirichlet boundary condition, and h be in C0(�) with h ≥ 0 and
h 	≡ 0. Then we have, for any 0 ≤ α < λ1(�), the supremum

sup
u∈W 1,2

0 (�),‖u‖1,α≤1

∫
�

he4πu2
dx

can be attained by some u0 ∈ W 1,2
0 (�)∩C1(�) satisfying ‖u0‖1,α = 1, where ‖·‖1,α is defined

as in (1.4).

When the high order eigenvalues are involved, we have a similar result.

Theorem 2 Let � be a smooth bounded domain in R
2, λl+1(�) be the (l + 1)th eigenvalue

of the Laplace operator with Dirichlet boundary condition, and h be in C0(�) with h ≥ 0
and h 	≡ 0. Then we see that, for any 0 ≤ α < λl+1(�), the supremum

sup
u∈E⊥

l ,‖u‖1,α≤1

∫
�

he4πu2
dx

can be attained by some u0 ∈ E⊥
l ∩ C1(�) satisfying ‖u0‖1,α = 1, where E⊥

l is defined as in
(1.7) and ‖ · ‖1,α defined as in (1.4).

Similar results hold on compact Riemannian surfaces. Denote by (�, g) a compact Rie-
mannian surface without boundary, by ∇g its gradient operator and by 	g the Laplace–
Beltrami operator, respectively. Let λ1(�) be the first eigenvalue of 	g . Denote

‖u‖1,α =
(∫

�

|∇gu|2 dx – α

∫
�

u2 dvg

)1/2

(1.9)

for all u ∈ W 1,2(�) with
∫
�

|∇gu|2 dx – α
∫
�

u2 dvg ≥ 0. Then we have the following theo-
rem.

Theorem 3 Let (�, g) be a compact Riemannian surface without boundary, h be in C0(�)
with h ≥ 0 and h 	≡ 0. Then, for any α, 0 ≤ α < λ1(�), the supremum

sup
u∈W 1,2(�),

∫
� u dvg =0,‖u‖1,α≤1

∫
�

he4πu2
dvg

can be attained by some u0 ∈ W 1,2(�) ∩ C1(�) satisfying ‖u0‖1,α = 1 and
∫
�

u0 dvg = 0.

Corollary 4 Let (�, g) be a compact Riemannian surface without boundary, h be in C0(�)
with h ≥ 0 and h 	≡ 0. For any α, 0 ≤ α < λ1(�), ∀u ∈ W 1,2(�) with

∫
�

u dvg = 0, define

J(u) =
1
2

(∫
�

|∇gu|2 dvg – α

∫
�

u2 dvg

)
– 8π log

∫
�

heu dvg .

Then we have the weak Trudinger–Moser inequality J(u) ≥ –C, where C is a positive con-
stant depending only on (�, g) and α.
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If h is strictly positive and J(u) has no minimizer on H = {u ∈ W 1,2(�) :
∫
�

u dvg = 0}, Yang
and Zhu [10] calculated the infimum of J(u) onH by using the method of blow-up analysis.
One may refer to [11] for earlier results on the functional

1
2

∫
�

|∇gu|2 dvg + 8π

∫
�

u dvg – 8π log
∫

�

heu dvg .

Let λ1(�) < λ2(�) < · · · be all distinct eigenvalues of 	g and Eλi(�) be the eigenfunction
space associated to λi(�). For any positive integer l, denote

El = Eλ1(�) ⊕ Eλ2(�) ⊕ · · · ⊕ Eλl(�)

and

E⊥
l =

{
u ∈ W 1,2(�) :

∫
�

uv dvg = 0,∀v ∈ El

}
.

Similar to Theorem 2, we obtain the following.

Theorem 5 Let (�, g) be a compact Riemannian surface without boundary, h be in C0(�)
with h ≥ 0 and h 	≡ 0. Then, for any α, 0 ≤ α < λl+1(�), the supremum

sup
u∈E⊥

l ,
∫
� u dvg =0,‖u‖1,α≤1

∫
�

he4πu2
dvg

can be attained by some u0 ∈ E⊥
l ∩ C1(�) satisfying ‖u0‖1,α = 1 and

∫
�

u0 dvg = 0.

Existence of extremal functions for Trudinger–Moser inequality can be traced back to
Carleson and Chang [12], where the unit ball case was treated. Later contributions in
this direction include M. Struwe [13], Flucher [14], Lin [15], Ding–Jost–Li–Wang [11],
Adimurthi–Struwe [16], Li [17], Adimurthi–Druet [6], and so on. In our proof, we use the
blow-up method. Compared with [1], there are some different key points. First, we derive
the different Euler–Lagrange equation on which the analysis is performed. Then we prove
that h must be positive at the blow-up point. Hence we use the different scaling when
define the maximizing sequences of functions. We also obtain the different upper bound
of the subcritical functionals. Finally, when proving the existence of the extremal func-
tion, we obtain the different lower bounds for the integrals of test functions constructed
in Sects. 2–5. It should be remarked that our analysis on the weight h is essentially differ-
ent from that of Yang and Zhu [2], where a weak version of Trudinger–Moser inequality
was studied.

The rest of the paper is arranged as follows. In Sects. 2 and 3, we prove the main results
in the Euclidean case (Theorems 1 and 2). In Sects. 4 and 5, we prove the main results in
the Riemannian surface case (Theorems 3 and 5).

2 Proof of Theorem 1
2.1 The subcritical functionals
In this subsection, using the method in the calculus of variations, we prove the existence
of maximizers for the subcritical functionals.
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Lemma 6 For any 0 < ε < 4π , any 0 ≤ α < λ1(�), there exists some uε ∈ W 1,2
0 (�) ∩ C1(�)

with ‖uε‖1,α = 1 such that

∫
�

he(4π–ε)u2
ε dx = sup

u∈W 1,2
0 (�),‖u‖1,α≤1

∫
�

he(4π–ε)u2
dx, (2.1)

where ‖ · ‖1,α is defined as in (1.4).

Proof For 0 < ε < 4π , we choose a function sequence uj ∈ W 1,2
0 (�) such that

∫
�

|∇uj|2 dx – α

∫
�

u2
j dx ≤ 1

and
∫

�

he(4π–ε)u2
j dx → sup

u∈W 1,2
0 (�),‖u‖1,α≤1

∫
�

he(4π–ε)u2
dx (2.2)

as j → ∞. Then there exists some uε ∈ W 1,2
0 (�) such that up to a subsequence,

uj ⇀ uε weakly in W 1,2
0 (�),

uj → uε strongly in Lp(�),∀p ≥ 1,

uj → uε a.e. in �.

Using a similar argument in the spirit of the one in [1], we find that he(4π–ε)u2
j is bounded in

Lq(�) for some q > 1. Then we get he(4π–ε)u2
j → he(4π–ε)u2

ε strongly in L1(�). This together
with (2.2) immediately yields (2.1). We claim that ‖uε‖1,α = 1. Otherwise ‖uε‖1,α < 1. It
follows that

sup
u∈W 1,2

0 (�),‖u‖1,α≤1

∫
�

he(4π–ε)u2
dx ≥

∫
�

he
(4π–ε) u2

ε

‖uε‖2
1,α dx

>
∫

�

he(4π–ε)u2
ε dx. (2.3)

There is a contradiction between in (2.1) and (2.3). Hence ‖uε‖1,α = 1. �

Moreover, the Euler–Lagrange equation for uε is

⎧⎪⎪⎨
⎪⎪⎩

–	uε – αuε = 1
λε

huεe(4π–ε)u2
ε in �,

uε > 0 in �,

λε =
∫
�

hu2
εe(4π–ε)u2

ε dx.

(2.4)

Using elliptic estimates, we get uε ∈ C1(�). Let cε = uε(xε) = max� uε . If cε is bounded, the
existence of the extremal function is trivial by standard elliptic estimates. Thus we assume
that cε → ∞ and xε → x0 ∈ �. A result of Gidas, Ni and Nirenberg on page 223 of [18]
implies x0 /∈ ∂�.
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Using the same argument as the one in step 2 of [1], we get the energy concentration. For
the function sequence uε , we have uε ⇀ 0 weakly in W 1,2

0 (�), uε → 0 strongly in Lq(�)
for any q > 1, and |∇uε |2 dx ⇀ δx0 in the sense of measure as ε → 0, where δx0 denotes the
Dirac measure centered at x0.

Next we prove that h is positive at the blow-up point x0. This property plays an important
part in our analysis.

Lemma 7 There holds h(x0) > 0.

Proof We prove it by contradiction. Suppose that h(x0) = 0. Note that up to a sequence

lim
ε→0

∫
�

h
(
e(4π–ε)u2

ε – 1
)

dx = sup
u∈W 1,2

0 (�),‖u‖1,α≤1

∫
�

h
(
e4πu2

– 1
)

dx ≥ η,

where η is a positive constant. Let ε be sufficiently small such that

∫
�

h
(
e(4π–ε)u2

ε – 1
)

dx >
η

2
. (2.5)

Choose r > 0 such that Br(x0) ⊂ �. Then

∫
�

h
(
e(4π–ε)u2

ε – 1
)

dx

=
∫

Br(x0)
h
(
e(4π–ε)u2

ε – 1
)

dx +
∫

�\Br (x0)
h
(
e(4π–ε)u2

ε – 1
)

dx

= or(1)
∫

Br (x0)

(
e(4π–ε)u2

ε – 1
)

dx +
∫

�\Br (x0)
h
(
e(4π–ε)u2

ε – 1
)

dx, (2.6)

where or(1) → 0 as r → 0.
Choose r sufficiently small such that

or(1)
∫

Br(x0)

(
e(4π–ε)u2

ε – 1
)

dx ≤ or(1)
∫

�

(
e4πu2

ε – 1
)

dx ≤ η

4
. (2.7)

Here we have used the Trudinger–Moser inequality (1.5).
Applying elliptic estimates to the Euler–Lagrange equation (2.4), we obtain uε → 0 in

C1
loc(� \ {x0}). Hence

∫
�\Br (x0)

h
(
e(4π–ε)u2

ε – 1
)

dx = o(ε). (2.8)

Combining (2.6), (2.7) and (2.8), we find that if ε is sufficiently small,

∫
�

h
(
e(4π–ε)u2

ε – 1
)

dx <
η

2
. (2.9)

There is a contradiction between (2.5) and (2.9). Hence h(x0) > 0. �
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2.2 Blow-up analysis
We shall analyze the behavior of the maximizers by using a blow-up analysis. Let

rε =
√

λε

[
h(x0)

]–1/2c–1
ε e–(2π–ε/2)c2

ε .

Using the Hölder inequality and the classical Trudinger–Moser inequality, we have

∫
�

hu2
εe(4π–ε)u2

ε dx ≤ eδc2
ε

∫
�

hu2
εe(4π–ε–δ)u2

ε dx ≤ Ceδc2
ε ,

where 0 < δ < 4π , C depends only on h and δ. Thus we get

r2
ε ≤ C

[
h(x0)

]–1c–2
ε e–(4π–ε–δ)c2

ε → 0

as ε → 0.
Set

�ε =
{

x ∈R
2 : xε + rεx ∈ �

}
.

We define two sequences of functions on �ε :

ψε(x) = c–1
ε uε(xε + rεx), ϕε(x) = cε

(
uε(xε + rεx) – cε

)
.

They satisfy the following equation:

–	ψε = αr2
εψε +

ψεhe(4π–ε)(u2
ε–c2

ε )

c2
εh(x0)

in �ε ,

–	ϕε = αr2
ε c2

εψε +
ψεhe(4π–ε)(1+ψε )ϕε

h(x0)
in �ε .

It is clear that �ε → R
2 as ε → 0. Noting that |ψε | ≤ 1 and 	ψε → 0 uniformly in �ε as

ε → 0 and using the elliptic estimates, we get ψε → ψ in C1
loc(R2), where ψ is a bounded

harmonic function in R
2. Since ψ(0) = limε→0 ψε(0) = 1, we have by the Liouville theorem

ψε → 1 in C1
loc

(
R

2).

Similarly, we have by the elliptic estimates

ϕε → ϕ in C1
loc

(
R

2),

where ϕ satisfies

–	ϕ = e8πϕ in R
2

and

ϕ(0) = 0.
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We calculate
∫
BR(0)

e8πϕ dx ≤ lim sup
ε→0

∫
BR(0)

e(4π–ε)(1+ψε )ϕε dx

≤ lim sup
ε→0

λ–1
ε

∫
BRrε (xε )

h(x0)c2
εe(4π–ε)u2

ε (y) dy

≤ lim sup
ε→0

λ–1
ε

∫
BRrε (xε )

h(y)u2
ε (y)e(4π–ε)u2

ε (y) dy

≤ 1.

A result of Chen and Li [19] implies that

ϕ(x) = –
1

4π
log

(
1 + π |x|2)

and
∫
R2

e8πϕ dx = 1.

For the convergence behavior away from x0, we have cεuε ⇀ G weakly in W 1,p
0 (�) for any

1 < p < 2, strongly in Lq(�) for any q ≥ 1 and in C1
loc(�\{x0}), where G is a Green function

satisfying
⎧⎨
⎩

–	G – αG = δx0 in �,

G = 0 on ∂�,

where δx0 is the Dirac measure centered at x0.
G can be represented by

G = –
1

2π
log |x – x0| + A0 + �(x),

where A0 is a constant depending on x0 and α, � ∈ C1(�) with �(x0) = 0.

2.3 Upper bound estimates
Let δ be small such that Bδ(x0) ⊂ �. Let sε = sup∂Bδ (x0) uε and ūε = (uε – sε)+. Then ū ∈
W 1,2

0 (Bδ(x0)). Let τε = 1 – 1
c2
ε

( 1
2π

log 1
δ

+ A0 + oδ(1) + oε(1)). Then, by the calculation in step 4
of Sect. 3 in [1], we get

lim sup
ε→0

∫
Bδ (x0)

(
e4π ū2

ε /τε – 1
)

dx ≤ πδ2e (2.10)

and

(4π – ε)u2
ε ≤ 4π ū2

ε/τε – 2 log δ + 4πA0 + o(1).

Hence
∫

BRrε (xε )
he(4π–ε)u2

ε dx ≤ δ–2e4πA0+o(1)
∫

BRrε (xε )
he4π ū2

ε /τε dx
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= δ–2e4πA0+o(1)
∫

BRrε (xε )
h
(
e4π ū2

ε /τε – 1
)

dx + o(1)

≤ δ–2e4πA0+o(1)h(x0)
∫

Bδ (x0)

(
e4π ū2

ε /τε – 1
)

dx.

This together with (2.10) leads to

lim sup
ε→0

∫
BRrε (xε )

he(4π–ε)u2
ε dx ≤ πh(x0)e1+4πA0 .

The argument in the proof of Lemma 3.3 in [20] yields

lim
ε→0

∫
�

he(4π–ε)u2
ε dx ≤ γ + lim

R→+∞ lim sup
ε→0

∫
BRrε (xε )

he(4π–ε)u2
ε dx

≤ γ + πh(x0)e1+4πA0 ,

where γ =
∫
�

h dx. This implies that

sup
u∈W 1,2

0 (�),‖u‖1,α≤1

∫
�

he4πu2
dx ≤ γ + πh(x0)e1+4πA0 . (2.11)

2.4 Existence of extremal functions
Let r(x) = |x – x0|. Define

φε(x) =

⎧⎪⎪⎨
⎪⎪⎩

c + 1
c (– 1

4π
log(1 + π r2

ε2 ) + B) for x ≤ Rε,
G–η�

c for Rε ≤ r ≤ 2Rε,
G
c for r > 2Rε,

(2.12)

as in [1], where c and B are constants, R = – log ε, η ∈ C∞
0 (B2Rε(x0)) with η = 1 on BRε(x0)

and ‖∇η‖L∞ = O( 1
Rε

). Choose

c =
(– log ε – 2πB + 2πA0 + 1

2 logπ + O( 1
R2 )

2π

)1/2

,

B =
1

4π
+ O

(
1

R2

)
+ O

(
Rε log(Rε)

)
,

as in [1] such that φε ∈ W 1,2
0 (�) and ‖φε‖1,α = 1. Then we get

∫
BRε (x0)

he4πφ2
ε dx ≥ πh(x0)e1+4πA0 + O

(
1

R2

)

and

∫
�\BRε (x0)

he4πφ2
ε dx ≥

∫
�\2BRε (x0)

h
(
1 + 4πφ2

ε

)
dx ≥ γ + 4π

‖√hG‖2
2

c2 + o
(

1
c2

)
.

Finally, we obtain
∫

�

he4πφ2
ε dx > γ + πh(x0)e1+4πA0 .
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This contradicts (2.11). Hence cε must be bounded and the elliptic estimates imply the
existence of extremal functions. This completes the proof of Theorem 1.

3 Proof of Theorem 1
Let l be a positive integer and 0 ≤ α < λl+1(�). Following the same steps as in the proof
of Theorem 1, we see that, for any ε, 0 < ε < 4π , there exists some uε ∈ E⊥

l ∩ C1(�) with
‖uε‖1,α = 1 such that

∫
�

he(4π–ε)u2
ε dx = sup

u∈E⊥
l ,‖u‖1,α≤1

∫
�

he(4π–ε)u2
dx,

where ‖ · ‖1,α is defined as in (1.4). Moreover, the Euler–Lagrange equation for uε is

⎧⎪⎪⎨
⎪⎪⎩

–	uε – αuε = 1
λε

huεe(4π–ε)u2
ε in �,

uε ∈ E⊥
l ∩ C1(�),

λε =
∫
�

hu2
εe(4π–ε)u2

ε dx.

Let cε = |uε(xε)| = max� |uε |. We assume that cε → ∞ and xε → x0 ∈ �. Similar to (2.11),
we obtain

sup
u∈E⊥

l ,‖u‖1,α≤1

∫
�

he4πu2
dx ≤ γ + πh(x0)e1+4πA0 , (3.1)

where γ =
∫
�

h dx.
Let r(x) = |x – x0|. Define the same function

φε(x) =

⎧⎪⎪⎨
⎪⎪⎩

c + 1
c (– 1

4π
log(1 + π r2

ε2 ) + B) for x ≤ Rε,
G–η�

c for Rε ≤ r ≤ 2Rε,
G
c for r > 2Rε,

as in (2.12). Set

φ̃ε = φε –
l∑

i=1

ni∑
j=1

(φε , eij)eij,

where (eij) (1 ≤ i ≤ l, 1 ≤ j ≤ ni) is the basis of El . Then, by (75) and (76) of [1], we have

φ̃ε = φε + o
(

1
log2 ε

)

and

‖φ̃ε‖2
1,α = 1 + o

(
1

log2 ε

)
.

Thus

∫
�

he
4π

φ̃2
ε

‖φ̃ε‖2
1,α dx =

∫
�

he4πφ2
ε +o( 1

log ε
) dx
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≥
(

1 + o
(

1
log ε

))(
γ + πh(x0)e1+4πA0 + 4π

‖√hG‖2
2

c2 + o
(

1
c2

))

≥ γ + πh(x0)e1+4πA0 + 4π
‖√hG‖2

2
c2 + o

(
1
c2

)
.

Set φ̂ε = φ̃ε

‖φ̃‖1,α
. Then

∫
�

he4πφ̂2
ε dx > γ + πh(x0)e1+4πA0 . This contradicts (3.1). Hence cε

must be bounded and the extremal function exists. We finish the proof of Theorem 2.

4 Proof of Theorem 3
First, we prove that, for any 0 < ε < 4π , there exists some uε ∈ C1(�) such that

∫
�

he(4π–ε)u2
ε dvg = sup

u∈W 1,2(�),
∫
� u dvg =0,‖u‖1,α≤1

∫
�

he(4π–ε)u2
dvg (4.1)

with ‖uε‖1,α = 1 and
∫
�

uε dvg = 0.
The main procedure of the proof is as follows. Since 0 ≤ α < λ1(�), we may choose a

bounded sequence uj in W 1,2(�) such that

∫
�

he(4π–ε)u2
j dvg → sup

u∈W 1,2(�),
∫
� u dvg =0,‖u‖1,α≤1

∫
�

he(4π–ε)u2
dvg .

There exists some uε ∈ W 1,2(�) such that up to a subsequence,

uj ⇀ uε weakly in W 1,2(�),

uj → uε strongly in L2(�),

uj → uε a.e. in �.

Using the same argument as in the proof of Theorem 3 in [1], we get he(4π–ε)u2
j is bounded

in Lq for some q > 1. Hence he(4π–ε)u2
j → he(4π–ε)u2

ε strongly in L1(�). Hence (4.1) holds.
The fact that

∫
�

uj dvg = 0 implies
∫
�

uε dvg = 0. We also have ‖uε‖1,α = 1 by contradiction
as in the proof of Lemma 6.

Moreover, uε satisfies the Euler–Lagrange equation

⎧⎪⎪⎨
⎪⎪⎩

	guε – αuε = 1
λε

huεe(4π–ε)u2
ε – με

λε
,

λε =
∫
�

hu2
εe(4π–ε)u2

ε dvg ,

με = 1
Volg (�)

∫
�

huεe(4π–ε)u2
ε dvg ,

where 	g denotes the Laplace–Beltrami operator.
Denote cε = |uε(xε)| = max� |uε |. If cε is bounded, the existence of the extremal function

follows from the elliptic estimates. We assume that cε → +∞ and xε → p ∈ �. Similar to
Lemma 7, we have h(p) > 0. Choosing an isothermal coordinate system (U ,φ) near p such
that the metric g can be written as g = ef (dx2

1 + dx2
2), where f ∈ C1(φ(U),R) and f (0) = 0.

Denote � = φ(U), ũε = uε ◦ φ–1 and x̃ε = φ(xε). Let

rε =
√

λε

[
h(p)

]–1/2c–1
ε e–(2π–ε/2)c2

ε .
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Define

ψε(x) = c–1
ε ũε (̃xε + rεx)

and

ϕε(x) = cε

(̃
u(̃xε + rεx) – cε

)

for x ∈ �ε = {x ∈ R
2 : x̃ε + rεx ∈ �}. Then we get

–	R2ψε = ef (̃xε+rεx)
(

αr2
εψε +

hψεe(4π–ε)(̃u2
ε–c2

ε )

c2
εh(p)

–
με

c3
εe(4π–ε)c2

ε h(p)

)
,

–	R2ϕε = ef (̃xε+rεx)
(

αr2
ε c2

εψε +
hψεe(4π–ε)(1+ψε )ϕε

h(p)
–

με

cεe(4π–ε)c2
ε h(p)

)
,

where –	R2 is the usual Laplace operator in R
2. By the same argument as in Sect. 2.2, we

obtain

ψε → 1 in C1
loc

(
R

2)

and

ϕε → ϕ in C1
loc

(
R

2),

where

ϕ(x) = –
1

4π
log

(
1 + π |x|2)

and
∫
R2

e8πϕ dx = 1.

We also have cεuε ⇀ G weakly in W 1,q(�) for all 1 < q < 2, and cεuε → G in C1
loc(�\{p}) ∩

L2(�), where G is Green function satisfying

	gG – αG = δp –
1

Volg(�)
in �

and
∫
�

G dvg = 0. As before, G can be represented by

G = –
1

2π
log r + Ap + �p,

where r is the geodesic distance from p, Ap is a constant and �p ∈ C1(�) with �p(p) = 0.
Similar to (2.11), we can get

sup
u∈W 1,2(�),

∫
� u dvg =0,‖u‖1,α≤1

∫
�

he4πu2
dvg ≤ γ1 + πh(p)e1+4πAp , (4.2)

where γ1 =
∫
�

h dvg .
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For the extremal function, define

φε(x) =

⎧⎪⎪⎨
⎪⎪⎩

c + 1
c (– 1

4π
log(1 + π r2

ε2 ) + B) for x ≤ Rε,
G–η�p

c for Rε ≤ r ≤ 2Rε,
G
c for r > 2Rε,

(4.3)

as in [1], where c and B are constants, R = – log ε, η ∈ C∞
0 (B2Rε(p)) with η = 1 on BRε(p)

and ‖∇gη‖L∞ = O( 1
Rε

). Choose

c =
(– log ε – 2πB + 2πAp + 1

2 logπ + O( 1
R2 )

2π

)1/2

,

B =
1

4π
+ O

(
1

R2

)
+ O

(
Rε log(Rε)

)
,

as in [1] such that φε ∈ W 1,2(�) and ‖φε – φ̄ε‖1,α = 1, where

φε =
1

Volg(�)

∫
�

φε dvg .

Then we have on BRε(p)

4π (φε – φε)2 ≥ 4πc2 – 2 log

(
1 + π

r2

ε2

)
+ 8πB + O

(
Rε log(Rε)

)
.

It follows that

∫
BRε (p)

he4π (φε–φε )2
dvg ≥ πh(p)e1+4πAp + O

(
1

(log ε)2

)
(4.4)

and

∫
�\BRε (p)

he4π (φε–φε )2
dvg ≥

∫
�\B2Rε (p)

(
1 + 4πφ2

ε

)
dvg + O

(
Rε log(Rε)

)

≥ γ1 + 4π
‖√hG‖2

2
c2 + o

(
1
c2

)
. (4.5)

Combining (4.4) and (4.5), we find a contradiction with (4.2). Hence cε must be bounded.
Using the elliptic estimates, we have the existence of the extremal function.

5 Proof of Theorem 5
Let l be a positive integer and 0 ≤ α < λl+1(�). First, by the same arguments, we obtain for
any ε, 0 < ε < 4π , there exists some uε ∈ E⊥

l ∩ C1(�) satisfying ‖uε‖1,α = 1 and

∫
�

he(4π–ε)u2
ε dvg = sup

u∈E⊥
l ,‖u‖1,α≤1

∫
�

he(4π–ε)u2
dvg . (5.1)
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Moreover, uε satisfies the Euler–Lagrange equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

	guε – αuε = 1
λε

huεe(4π–ε)u2
ε – με

λε
,

uε ∈ E⊥
l ∩ C1(�),

λε =
∫
�

hu2
εe(4π–ε)u2

ε dvg ,

με = 1
Volg (�)

∫
�

huεe(4π–ε)u2
ε dvg .

Let cε = max� |uε |. We assume that cε = |uε(xε)| → +∞ and xε → p ∈ �. We also get the
upper bound estimate

sup
u∈E⊥

l ,
∫
� u dvg =0,‖u‖1,α≤1

∫
�

he4πu2
dvg ≤ γ1 + πh(p)e1+4πAp , (5.2)

where γ1 =
∫
�

h dvg .
For the existence of the extremal function, we define φε as in (4.3). Then we have

∫
�

he4π (φε–φε )2
dvg ≥ γ1 + πh(p)e1+4πAp + 4π

‖√hG‖2
2

c2 + o
(

1
c2

)
.

Set

φ̃ε = φε – φε –
l∑

i=1

ni∑
j=1

(φε – φε , eij)eij,

where

φε =
1

Volg(�)

∫
�

φε dvg

and (eij) (1 ≤ i ≤ l, 1 ≤ j ≤ ni) is the basis of El .
Then, by (102) and (103) in [1], we have

φ̃ε = φε – φε + o
(

1
log2 ε

)

and

‖φ̃ε‖2
1,α = 1 + o

(
1

log2 ε

)
.

Thus

∫
�

he
4π

φ̃2
ε

‖φ̃ε‖2
1,α dvg =

∫
�

he4π (φε–φε )2+o( 1
log ε

) dvg

≥
(

1 + o
(

1
log ε

))(
γ1 + πh(p)e1+4πAp + 4π

‖√hG‖2
2

c2 + o
(

1
c2

))

≥ γ1 + πh(p)e1+4πAp + 4π
‖√hG‖2

2
c2 + o

(
1
c2

)
.
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Set φ̂ε = φ̃ε

‖φ̃ε‖1,α
. We have

∫
�

heφ̂2
ε dvg > γ1 + πh(p)e1+4πAp .

This contradicts (5.2). Hence cε must be bounded and the extremal function exists. We
finish the proof.
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