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1 Introduction
We begin this paper with some notation first. For an m×n matrix A, the symbols M(A), A′,
A– and A+ denote the column space, the transpose, the generalized inverse and Moore–
Penrose inverse of A, respectively. For squared matrices B and C, B ≥ C means that B – C is
a symmetric nonnegative definite matrix and B – C ≥ 0. Let rk(A) be the rank of A and tr(A)
be the trace of A when A is a squared matrix. I is an identity matrix with an appropriate
order and R

n denotes the n dimensional vector set.
Consider the following generalized linear regression model:

y = Xβ + ε, E(ε) = 0, Cov(ε) = �, (1)

where y is the n × 1 observable vector of regressand, X is the n × p observable matrix of
regressor, β is a p × 1 unknown vector of regression coefficient, ε is the n × 1 vector of
disturbances and � ≥ 0. Suppose rk(X) ≤ p.

Given the matrix of regressor X0 (which is correlated with new observations), the rela-
tionship between the unobservable random vector y0 and X0 is

y0 = X0β + ε0, E(ε0) = 0, Cov(ε0) = �0, (2)

where y is the m × 1 vector of the regressand to be predicted, X0 is the m × p matrix of
prediction regressor, β is the same as that in model (1), ε0 is the m×1 vector of prediction
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disturbances and �0 ≥ 0. Assume y and y0 are correlated and Cov(ε0,ε′) = V . Suppose the
finite population is composed of y and y0. Thus, combining models of (1) and (2), we have

yT = XTβ + εT , (3)

where

yT =

(
y

y0

)
, XT =

(
X

X0

)
, εT =

(
ε

ε0

)
,

EεT = 0, CovεT = Cov

(
ε

ε0

)
=

(
� V ′

V �0

)
= �T .

For the prediction in model (3), [1] obtained the best linear unbiased predictor (BLUP)
of y0. [2] considered the optimal Stein-rule prediction. Reference [3] investigated the ad-
missibility of linear predictors with inequality constraints under the quadratic loss func-
tion. [4] reviewed the existing theory of minimum mean squared error (MSE) predictors
and made an extension based on the principle of equivariance. [5] derived the BLUP and
the admissible predictor under the matrix loss function. Under the MSE loss function, the
optimal predictor of y0 is the conditional expectation E(y0|X0) = X0β , which relates natu-
rally to the plug-in estimators of β . [6] proposed the simple projection predictor (SPP) of
X0β by plugging in the best linear unbiased estimator (BLUE) of β . The plug-in approach
spawned a large literature for the derivation of combined prediction; see [7, 8], etc.

Generally, predictions are investigated either for y0 or for Ey0 at a time. However, some-
times in the fields of medicine and economics, people would like to know the actual value
of y0 and its average value Ey0 simultaneously. For example, in the financial markets, some
investors may want to know the actual profit while others would be more interested in the
average profit. Therefore, in order to meet different requirements, the market manager
should acquire both the prediction of the actual profit and the prediction of the average
profit at the same time, and can assign different weights to each prediction to provide a
more comprehensive combined prediction of the profit. Under these circumstances, we
consider the following target function:

δ = λy0 + (1 – λ)Ey0,

where λ ∈ [0, 1] is a non-stochastic scalar representing the preference to the prediction of
the actual and average values of the studied variable. A prediction of δ is the simultaneous
prediction of the actual and average values of y0. Note that δ = y0 if λ = 1 and δ = Ey0 if
λ = 0, which means the studied δ is more sensitive and inclusive.

Studies on the simultaneous prediction of the actual and average values of the stud-
ied variable (namely prediction of δ) have been carried out in the literature from various
perspective. The properties of the predictors by plugging in Stein-rule estimators have
been concerned by [9] and [10]. [11] investigated the Stein-rule prediction for δ in linear
regression model when the error covariance matrix was positive definite yet unknown.
References [12, 13] and [14] considered predictors for δ in linear regression models with
stochastic or non-stochastic linear constraints on the regression coefficients. The issues
of simultaneous prediction in measurement error models have been addressed in [15] and
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[16]. [17] considered a matrix multiple of the classical forecast vector for the simultaneous
prediction of and discussed the performance properties.

This paper aims to study the admissibility of simultaneous prediction of actual and av-
erage values of the unobserved regressand in finite population under the quadratic loss
function. Admissibility is an interesting problem in statistical theory and received much
attention. [18, 19] and [20] discussed the admissibility of predictions of yT . [21, 22] and
[23] studied the admissibility of estimations of β . We discuss the admissible predictors of
δ in classes of homogeneous and nonhomogeneous linear predictors, respectively. Nec-
essary and sufficient conditions for the simultaneous prediction to be admissible are pro-
vided.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries.
In Sect. 3, we obtain the homogeneous linear admissible simultaneous predictors for the
actual and average values of the unobserved regressand. In Sect. 4, we derive the necessary
and sufficient conditions for linear simultaneous prediction to be admissible in class of
nonhomogeneous linear predictors. Concluding remarks are placed in Sect. 5.

2 Preliminaries
Suppose d is the predictor of δ and denote R(d;β) as the risk of d under the quadratic loss
function, then for model (3)

R(d;β) = E(d – δ)′(d – δ) = E
[
d – λy0 – (1 – λ)X0β

]′[d – λy0 – (1 – λ)X0β
]
.

Denote the classes of homogeneous and nonhomogeneous linear predictors, respectively,
by

LH = {Cy | C is an m × n matrix}, and

LN = {Cy + u | C is an m × n matrix and u is an m × 1

nonstochastic vector and u �= 0}.

The nonhomogeneous linear predictor is actually an adjustment of the homogeneous lin-
ear predictor. We study the admissibility of the prediction of δ in LH and LN . Before the
discussion begins, we first present some important preliminaries and basic results.

Definition 2.1 A predictor d is said to be admissible for δ under the quadratic loss func-
tion, denoted d ∼ δ, iff there exists no other predictor d∗ such that R[d∗;β] ≤ R[d;β]
with strict inequality holding at least at one value of β . d is called better than d∗ iff
R[d;β] ≤ R[d∗;β] with strict inequality holding at least at one value of β .

Definition 2.2 d is an unbiased predictor of δ if Ed = Eδ.

Lemma 2.1 ([24]) If Cy ∼ y0, then for, any l × m matrix L, LCy ∼ Ly0.

Lemma 2.2 ([25]) If the square matrix B is not symmetrical, then there exists an orthogonal
matrix P such that tr(PB) = tr(B).
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Lemma 2.3 Suppose Cy is an arbitrary predictor of δ in model (3). Let

C̃ = CX
(

X ′T+X
)–X ′T+ + λVT+[

I – X
(

X ′T+X
)–X ′T+]

,

where T = XX ′ + �. Then under the quadratic loss function

R(Cy;β) ≥ R(̃Cy;β)

for every β ∈ R
p and the equation holds if and only if either of the following two conditions

holds:
(1) C� = C̃�;
(2) M(�C′ – λV ′) ⊆ M(X).

Proof By direct calculation,

R(Cy;β)

= E
[

Cy – λy0 – (1 – λ)X0β
]′[Cy – λy0 – (1 – λ)X0β

]
= tr

(
C�C′ + λ2�0 – 2λCV ′) + β ′(CX – X0)′(CX – X0)β

= E
{
λ(Cy – y0)′(Cy – y0) + (1 – λ)(Cy – X0β)′(Cy – X0β)

}
+

(
λ2 – λ

)
tr�0

= E
{
λ(Cy – C̃y + C̃y – y0)′(Cy – C̃y + C̃y – y0)

+ (1 – λ)(Cy – C̃y + C̃y – X0β)′(Cy – C̃y + C̃y – X0β)
}

+
(
λ2 – λ

)
tr�0

= E
{

(Cy – C̃y)′(Cy – C̃y) + λ(̃Cy – y0)′ (̃Cy – y0) + (1 – λ)(̃Cy – X0β)′ (̃Cy – X0β)

+ 2λ(Cy – C̃y)′ (̃Cy – y0) + 2(1 – λ)(Cy – C̃y)′ (̃Cy – X0β)
}

+
(
λ2 – λ

)
tr�0

= E(Cy – C̃y)′(Cy – C̃y) + R(̃Cy)

+ E
{

2λ(Cy – C̃y)′ (̃Cy – y0) + 2(1 – λ)(Cy – C̃y)′ (̃Cy – X0β)
}

.

Note that

Eyy′ = � + Xββ ′X ′ = T – XX ′ + Xββ ′X ′,

Ey0y′ = V + X0ββ ′X ′,

(C – C̃)X =
(

C – λVT+)[
I – X

(
X ′T+X

)–X ′T+]
X = 0,

then

E
{

2λ(Cy – C̃y)′ (̃Cy – y0) + 2(1 – λ)(Cy – C̃y)′ (̃Cy – X0β)
}

= E
{

2(Cy – C̃y)′(Cy – y0) + 2(1 – λ)(Cy – C̃y)′(y0 – X0β)
}

= tr
{[

CX
(

X ′T+X
)–X ′ – λVT+(

X ′T+X
)–X ′ – CXX ′ + CXββ ′X ′ – X0ββ ′X ′](C – C̃)′

}
= tr

{[
CX

(
X ′T+X

)– – λVT+(
X ′T+X

)– – CX + CXββ ′ – X0ββ ′][(C – C̃)X
]′}

= 0.



Bai and Li Journal of Inequalities and Applications  (2018) 2018:117 Page 5 of 15

Thus, we have

R(Cy;β) = E(Cy – C̃y)′(Cy – C̃y) + R(̃Cy;β) ≥ R(̃Cy;β),

and the equation holds for every β ∈R
p if and only if

E(Cy – C̃y)′(Cy – C̃y) = 0.

Since

E(Cy – C̃y)′(Cy – C̃y) = 0

⇔ [
(C – C̃)Xβ

]′[(C – C̃)Xβ
]

+ tr(C – C̃)′�(C – C̃) = 0

⇔ (C – C̃)�
1
2 = 0

⇔ (C – C̃)� = 0,

the equation holds for every β ∈R
p if and only if

C� = C̃�.

Now we prove conditions (1) and (2) are equivalent. First, as C� = C̃�,

�C′ = �C̃
′

= �T+X
(

X ′T+X
)–X ′C′ + λ�

[
I – X

(
X ′T+X

)–X ′T+]′T+V ′

=
(

T – XX ′)T+X
(

X ′T+X
)–X ′C′

+ λ
(

T – XX ′)[I – X
(

X ′T+X
)–X ′T+]′T+V ′

=
[

X
(

X ′T+X
)–X ′ – XX ′] + λV ′ – λX

(
X ′T+X

)–X ′T+V ′ ⇒
�C′ – λV ′ = X

[(
X ′T+X

)–X ′C′ – X ′C′ – λ
(

X ′T+X
)–X ′T+V ′],

which shows that M(�C′ – λV ′) ⊆ M(X).
Second, as M(�C′ – λV ′) ⊆ M(X), there exists a matrix H such that

�C′ – λV ′ = XH, or λV = C� + H′X ′.

Then

C̃� = CX
(

X ′T+X
)–X ′T+(

T – XX ′) + λVT+[
I – X

(
X ′T+X

)–X ′T+](
T – XX ′)

=
(

C� – H′X ′)T+[
I – X

(
X ′T+X

)–X ′T+](
T – XX ′)

+ CX
(

X ′T+X
)–X ′ – CXX ′

= CX
(

X ′T+X
)–X ′ – CXX ′ + C� – C

(
T – XX ′)T+X

(
X ′T+X

)–X ′

= C�.

Therefore, we complete the proof. �
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Lemma 2.4 If C� = C̃�, then the risk of Cy under the quadratic loss function is

R(Cy;β) = R(̃Cy;β) = tr
[

CXQX ′C′ + λ2�0 – 2λCX
(

X ′T+X
)–X ′T+V ′

– λ2V
(

T+ – T+X
(

X ′T+X
)–X ′T+)

V ′] + β ′(CX – X0)′(CX – X0)β ,

where Q = (X ′T+X)– – I = (X ′T+X)–X ′T+�T+X(X ′T+X)–.

Proof From Lemma 2.3, when C� = C̃�,

R(Cy;β) = R(̃Cy;β) = tr
(̃

C�C̃
′ + λ2�0 – 2λC̃V ′) + β ′ (̃CX – X0)′ (̃CX – X0)β .

Since C̃ = CX(X ′T+X)–X ′T+ + λVT+[I – X(X ′T+X)–X ′T+] and � = T – XX ′,

C̃�C̃
′ = CXQX ′C′ + λ2V

(
T+ – T+X

(
X ′T+X

)–X ′T+)
V ′,

Q =
(

X ′T+X
)– – I =

(
X ′T+X

)–X ′T+�T+X
(

X ′T+X
)–,

C̃V ′ = CX
(

X ′T+X
)–X ′T+V ′ + λVT+[

I – X
(

X ′T+X
)–X ′T+]

V ′,

C̃X = CX.

The lemma is easily proved by substitution of these equations. �

3 Admissibility of homogeneous linear predictors
In this section, we derive the necessary and sufficient conditions for the admissibility of
simultaneous prediction in class of the homogeneous linear predictors. The best linear
unbiased predictor of δ is obtained. Examples are presented to give some admissible pre-
dictors.

Theorem 3.1 Let l′ = q′C, where C is a matrix and l, q are vectors with appropriate di-
mensions. If Cy ∼ δ under the quadratic loss function, then

l′XQX ′l ≤ λ
(

l′X – q′X0
)(

X ′T+X
)–X ′T+V ′q + l′XQX ′

0q,

where Q = (X ′T+X)– – I = (X ′T+X)–X ′T+�T+X(X ′T+X)–.

Proof Since Cy ∼ δ and l′ = q′C, by Lemma 2.1, l′y ∼ q′δ for any 1 × m vector q. Suppose
k be a real constant and 0 < k < 1. Let

l′k =
[
kl′X + (1 – k)q′X0

](
X ′T+X

)–X ′T+ + λq′VT+[
I – X

(
X ′T+X

)–X ′T+]
.

The risk of l′ky is

R
(

l′ky;β
)

=
[
kl′X + (1 – k)q′X0

]
Q

[
kl′X + (1 – k)q′X0

]′ + λ2q′�0q

– 2λ
[
kl′X + (1 – k)q′X0

](
X ′T+X

)–X ′T+V ′q

– λ2q′VT+[
I – X

(
X ′T+X

)–X ′T+]
V ′q + k2[β ′(l′X – q′X0

)′]2.
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Since l′y ∼ q′y0 and by Lemma 2.3, Lemma 2.4 and l′ = q′C, the risk of l′y is

R
(

l′y;β
)

= l′XQX ′l + λ2q′�0q – 2λl′X
(

X ′T+X
)–X ′T+V ′q

– λ2q′V
(

T+ – T+X
(

X ′T+X
)–X ′T+)

V ′q +
[
β ′(l′X – q′X0

)′]2,

and for any k ∈ (0, 1), R(l′y;β) ≤ R(l′ky;β). It means that

R
(

l′y;β
)

– R
(

l′ky;β
)

=
(
1 – k2)l′XQX ′l – 2(1 – k)λl′X

(
X ′T+X

)–X ′T+V ′q

– 2k(1 – k)q′X0QX ′l – (1 – k)2q′X0QX ′
0q

+ 2(1 – k)λq′X0
(

X ′T+X
)–X ′T+V ′q ≤ 0.

Divide both sides of the above inequality by 1 – k and then let k → 1, we have

l′XQX ′l ≤ λ
(

l′X – q′X0
)(

X ′T+X
)–X ′T+V ′q + l′XQX ′

0q. �

Theorem 3.2 For the model (3), Cy ∼ δ in LH under the quadratic loss function if and
only if

(1) C� = C̃� (equivalently M(�C′ – λV ′) ⊆ M(X)), and
(2) CXQX ′C′ ≤ λ(CX – X0)(X ′T+X)–X ′T+V ′ + CXQX ′

0, where
Q = (X ′T+X)– – I = (X ′T+X)–X ′T+�T+X(X ′T+X)–, and

(3) M(CX – X0) = M(G), where
G = (CX – X0)Q(CX – X0)′ + (CX – X0)[λ(X ′T+X)–X ′T+V ′ – QX ′C′].

Proof Necessity:
(i) The condition (1) is shown in Lemma 2.3;

(ii) Since Cy ∼ δ, then η′Cy ∼ η′δ for any η ∈R
m by Lemma 2.2. Let l′ = η′C and q′ = η′

in Theorem 3.1, we have

η′CXQX ′C′η ≤ λη′(CX – X0)
(

X ′T+X
)–X ′T+V ′η + η′CXQX ′

0η. (4)

To prove condition (2), we can only prove that λ(CX – X0)(X ′T+X)–X ′T+V ′ + CXQX ′
0 is

symmetric from (4). Using reduction to absurdity and suppose λ(CX –X0)(X ′T+X)–X ′T+V ′ +
CXQX ′

0 is not a symmetric matrix. With this assumption and the fact that CXQX ′C′ and
(CX – X0)Q(CX – X0)′ are both symmetric positive semi-definite matrices, we have

λ(CX – X0)
(

X ′T+X
)–X ′T+V ′ + CXQX ′

0 – CXQX ′C′

= –(CX – X0)QX ′
0 – (CX – X0)Q(CX – X0)′

+ λ(CX – X0)
(

X ′T+X
)–X ′T+V ′

is not symmetric and hence

–(CX – X0)QX ′
0 + λ(CX – X0)

(
X ′T+X

)–X ′T+V ′
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is not symmetric. By Lemma 2.2, there exists an orthogonal matrix P such that

tr
{

P
[
–(CX – X0)QX ′

0 + λ(CX – X0)
(

X ′T+X
)–X ′T+V ′]}

> tr
[
–(CX – X0)QX ′

0 + λ(CX – X0)
(

X ′T+X
)–X ′T+V ′]. (5)

Let

H = X0
(

X ′T+X
)–X ′T+ + λVT+[

I – X
(

X ′T+X
)–X ′T+]

– P
{

X0
(

X ′T+X
)–X ′T+ + λVT+[

I – X
(

X ′T+X
)–X ′T+]

– C
}

and

H̃ = HX
(

X ′T+X
)–X ′T+ + λVT+[

I – X
(

X ′T+X
)–X ′T+]

.

It is easy to prove that H� = H̃�. Then with Lemma 2.4 and (5), we have

R(Hy;β) = R(H̃y;β)

= tr
{

(CX – X0)Q(CX – X0)′ + 2P(CX – X0)QX ′
0 + X0QX ′

0

– 2λP(CX – X0)
(

X ′T+X
)–X ′T+V – 2λX0

(
X ′T+X

)–X ′T+V + λ2�0

– λ2VT+[
I – X

(
X ′T+X

)–X ′T+]}
+ β ′(CX – X0)′(CX – X0)β

< β ′(CX – X0)′(CX – X0)β + tr
{

CXQX ′C′ – 2λCX
(

X ′T+X
)–X ′T+V

– λ2VT+[
I – X

(
X ′T+X

)–X ′T+]
+ λ2�0

}
= R(Cy;β),

which contradicts the admissibility of Cy. Thus,

–(CX – X0)QX ′
0 + λ(CX – X0)

(
X ′T+X

)–X ′T+V ′

is symmetric and then

λ(CX – X0)
(

X ′T+X
)–X ′T+V ′ + CXQX ′

0

is symmetric. From (4), condition (2) is proved.
(iii) With the expression of G, it is obviously seen that

M(G) ⊆ M(CX – X0). (6)

If CX = X0, M(CX –X0) ⊆ M(G). If CX �= X0, we also use reduction to absurdity and suppose
that, for any nonzero vector η, η′Gη = 0, namely

η′(CX – X0)Q(CX – X0)′η + η′(CX – X0)
[
λ
(

X ′T+X
)–X ′T+V ′ – QX ′C′]η = 0.
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Since (CX – X0)[λ(X ′T+X)–X ′T+V ′ – QX ′C′] is symmetric and nonnegative definite by the
proof of condition (2), G ≥ 0 and

η′(CX – X0)Q(CX – X0)′η = 0,

η′(CX – X0)
[
λ
(

X ′T+X
)–X ′T+V ′ – QX ′C′]η = 0,

which are equivalent to

η′(CX – X0)Q = 0,

η′(CX – X0)[λ(X ′T+X)–X ′T+V ′] = 0.
(7)

Let ξ ′y be a predictor of η′y0, where

ξ ′ = η′{X0
(

X ′T+X
)–X ′T+ + λVT+[

I – X
(

X ′T+X
)–X ′T+]}

.

It can be verified by Lemma 2.1 that R(ξ ′y;β) ≥ R(η′Cy;β) since η′Cy ∼ η′y0. From
Lemma 2.4 and (7), we obtain

R
(
η′Cy;β

)
– R

(
ξ ′y;β

)
= η′{CXQX ′C′ – X0QX ′

0 – 2λ(CX – X0)
(

X ′T+X
)–X ′T+V

+ β ′(CX – X0)′(CX – X0)β
}
η

= η′β ′(CX – X0)′(CX – X0)βη ≥ 0.

As CX �= X0, there at least exists one β0 ∈R
p such that R(η′Cy;β0) – R(ξ ′y;β0) = η′β ′

0(CX –
X0)′(CX – X0)β0η > 0, which is contradicted to the admissibility of η′Cy. Therefore, if CX �=
X0, then η′Gη �= 0. Equivalently, if η′Gη = 0, then CX = X0. Because η′Gη = 0 ⇔ η′G = 0,
then if η′G = 0, η′(CX – X0) = 0, namely M(CX – X0) ⊆ M(G). Together with (6), M(CX –
X0) = M(G).

Sufficiency: Let My be an arbitrary predictor of y0, by Lemma 2.3, we only need to prove
that if M� = M̃�, where M̃ = MX(X ′T+X)–X ′T+ + λVT+[I – X(X ′T+X)–X ′T+], then My can-
not be better than Cy. Or, we can only prove that there exists at least one β∗ such that
R(My;β∗) > R(Cy;β∗). We divide the issue into two circumstances:

(i) CX = X0:
If MX �= X0, it is obviously that My cannot be better than Cy by computing their

risks;
If MX = X0, R(My;β) = R(Cy;β).

(ii) CX �= X0. There are two cases to be discussed:
(a) MX = X0. By condition (2),

R(My; 0) – R(Cy; 0) – tr(G)

= tr
[

X0QX ′
0 – CXQX ′

0 + λ(CX – X0)
(

X ′T+X
)–X ′T+V ′]

≥ tr
(

X0QX ′
0 – CXQX ′

0 + CXQX ′C′ – CXQX ′
0
)

= tr
[
(CX – X0)Q(CX – X0)′

] ≥ 0.

Since CX �= X0 and by condition (3), rk(G) = rk(CX – X0) ≥ 1, and tr(G) > 0. Thus,
R(My; 0) > R(Cy; 0) and My cannot be better than Cy.
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(b) MX �= X0. If MX = CX , then R(My;β) = R(Cy;β). So we only need to discuss this
issue on the case that MX �= CX . By Lemma 2.4 and for any β , we only need to
consider the admissibility under this circumstance that

β ′(MX – X0)′(MX – X0)β ≤ β ′(CX – X0)′(CX – X0)β ,

namely

(MX – X0)′(MX – X0) ≤ (CX – X0)′(CX – X0). (8)

It can be shown from (6) that M[(MX – X0)′] ⊂ M[(CX – X0)′], then

(MX – X0)′ = (CX – X0)′Z, (9)

where

Z =
[
(CX – X0)(CX – X0)′

]+(CX – X0)(MX – X0)′.

By (8), ZZ′ ≤ [(CX – X0)(CX – X0)′]+(CX – X0)(CX – X0)′ ≤ I. By (9) and
condition (2), we have

R(My; 0) – R(Cy; 0)

= tr
[
(MX – X0)Q(MX – X0)′ – 2λ(MX – X0)X ′T+X)–X ′T+V ′

+ 2X0Q(MX – X0)′ – (CX – X0)Q(CX – X0)′

+ 2λ(CX – X0)X ′T+X)–X ′T+V ′ – 2X0Q(CX – X0)′
]

= tr
[
(I – Z)(I – Z)′X0QX ′

0 + 2Z(I – Z)′X0QX ′C′

+ 2λ(I – Z)′(CX – X0)
(

X ′T+X
)–X ′T+V ′ –

(
I – ZZ′)CXQX ′C′]

≥ tr
[
(I – Z)(I – Z)′X0QX ′

0 + 2Z(I – Z)′X0QX ′C′

+ 2λ(I – Z)′(CX – X0)
(

X ′T+X
)–X ′T+V ′

– λ
(

I – ZZ′)(CX – X0)
(

X ′T+X
)–X ′T+V ′ –

(
I – ZZ′)X0QX ′C′]

= tr
[
(I – Z)(I – Z)′X0QX ′

0 – 2(I – Z)
(

I – Z′)X0QX ′C′

+ λ
(

I – 2Z′ + ZZ′)(CX – X0)
(

X ′T+X
)–X ′T+V ′ + X0QX ′C′]

= tr
[
(I – Z)(I – Z)′X0QX ′

0 – 2(I – Z)
(

I – Z′)X0QX ′C′

+ λ
(

I – Z – Z′ + ZZ′)(CX – X0)
(

X ′T+X
)–X ′T+V ′ + X0QX ′C′]

= tr
[
(I – Z)′G(I – Z)

]
.

Notice that (CX – X0)′(I – Z) = (CX – X0)′ – (MX – X0)′ = CX – MX �= 0 and
together with condition (3), G(I – Z) �= 0. Moreover, as G ≥ 0, then

R(My; 0) – R(Cy; 0) ≥ tr
[
(I – Z)′G(I – Z)

]
> 0,

which means My cannot be better than Cy.
In summary, the proof is complected. �
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Corollary 3.1 For the model (3), if � > 0, then Cy ∼ δ under the quadratic loss function if
and only if

(1) C = CX(X ′�–1X)–X ′�–1 + λV�–1[I – X(X ′�–1X)–X ′�–1], and
(2) CXQX ′C′ ≤ λ(CX – X0)(X ′�–1X)–X ′�–1V ′ + CXQX ′

0.

Proof If � > 0, then T > 0 and

T+ = T–1 = �–1 – �–1X
(

I + X ′�–1X
)–1X ′�–1,

X ′�–1X
(

I + X ′�–1X
)–1X ′�–1 = I –

(
I + X ′�–1X

)–1X ′�–1.
(10)

Therefore,

X ′T–1 =
(

I + X ′�–1X
)–1X ′�–1 (11)

and

X
(

X ′T–1X
)–X ′T–1 = X

[(
I + X ′�–1X

)–1X ′�–1X
]–(

I + X ′�–1X
)–1X ′�–1

= X
(

X ′�–1X
)–X ′�–1. (12)

By (10), (11) and (12), conditions (1), (2) in Corollary 3.1 hold and condition (3) in Theo-
rem 3.2 holds naturally since rk(CX – X0) = rk(G). �

Remark 3.1 As δ = y0 when λ = 1 and δ = Ey0 when λ = 0, it is convenient to obtain the
sufficient and necessary conditions for the predictors of y0 and Ey0 to be admissible from
Theorem 3.2 and Corollary 3.1.

Corollary 3.2 For model (3) and under the quadratic loss function, the best linear unbi-
ased predictors of δ, y0 and Ey0 are

δ̂BLUP = Cy = X0
(

X ′T+X
)–X ′T+y + λVT+[

y – X
(

X ′T+X
)–X ′T+y

]
,

ŷ0BLUP
= X0

(
X ′T+X

)–X ′T+y + VT+[
y – X

(
X ′T+X

)–X ′T+y
]
,

Êy0BLUP
= X0

(
X ′T+X

)–X ′T+y.

Proof Let Cy +u be the linear unbiased predictor of δ. E(Cy +u) = Eδ gives that CX = X0 and
u = 0. Let C = X0(X ′T+X)–X ′T+ + λVT+[I – X(X ′T+X)–X ′T+], the corollary is easily proved
by verifying the conditions in Theorem 3.2. �

We give some admissible predictors in the following examples.

Example 3.1 Suppose � > 0, the best linear unbiased predictor of y0 in [1] is ŷ0BLUP
=

X0(X ′�–1X)–X ′�–1y + V�–1[I – X(X ′�–1X)–X ′�–1]y. Let β̂BLUE = (X ′�–1X)–1X ′�–1y.
ŷ0SPP

= X0β̂BLUE is the simple projective predictor of y0 in [6]. Note that Eŷ0BLUP
= Eδ =

Ey0SPP
, which means ŷ0BLUP

and ŷ0SPP
are also unbiased predictors of δ. If λ = 1, then by

Corollary 3.1, ŷ0BLUP
∼ y0, and therefore ŷ0BLUP

� δ if λ �= 1. If λ = 0, then by Corollary 3.1,
ŷ0SPP

∼ Ey0, which means if λ �= 0, ŷ0SPP
� δ.
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Remark 3.2 Example 3.1 indicates that the unbiased predictors of δ are also the unbiased
predictors of y0 and Ey0, and the unbiased predictors of y0 and Ey0 are also the unbiased
predictors of δ since Eδ = Ey0 = E(Ey0) = X0β . However, admissibility of those predictors
for each studied variables are different.

Example 3.2 Suppose V = 0, � > 0 and rk(X) < p in model (3). Suppose tmax be the maxi-
mum eigenvalue of X ′X , non-stochastic scalars k > 0 and θ = tmax+k

tmax
. Let

D = B – B
[

In – θX
(

X ′X + kIp
)–1X ′]–[

In – θX
(

X ′X + kIp
)–1X ′],

where B is an m × n arbitrary matrix. If X0 = θDX , then by Corollary 3.1 without tedious
calculations, X0(X ′X + kIp)–1X ′y ∼ δ.

Remark 3.3 Denote β̂ridge as the ridge estimator of β in model (1) when � > 0 and
rk(X) < p. Example 3.2 indicates that in particular linear regression model, if X0 and X
have some relations, we can use the ridge predictor X0β̂ridge as the admissible predictor
for δ, especially for y0 and Ey0.

4 Admissibility of nonhomogeneous linear predictors
In this section, we investigate the admissibility of simultaneous prediction in class of non-
homogeneous linear predictors, and we obtain the necessary and sufficient conditions.
Studies show the admissibility of simultaneous prediction in the class of nonhomogeneous
linear predictors is based on the admissibility of simultaneous prediction in the class of
homogeneous linear predictors.

Theorem 4.1 For the model (3), Cy + u ∼ δ in LN under the quadratic loss function if
and only if

(1) Cy ∼ δ in LH , and
(2) u ∈ M(CX – X0).

Proof Necessity: Suppose by contradiction that u /∈ M(CX – X0) and P = (CX – X0)[(CX –
X0)′(CX – X0)]–(CX – X0)′, then (I – P)u �= 0 and

R(Cy + u;β) = E
[(

Cy + u – λy0 – (1 – λ)X0β
)′(Cy + u – λy0 – (1 – λ)X0β

)]
= tr

[
C�C′) + λ2�0 – 2λ

(
CV ′)] + β ′(CX – X0)′(CX – X0)β

+ u′u + 2u′(CX – X0)β

= tr
[

C�C′) + λ2�0 – 2λ
(

CV ′)] + β ′(CX – X0)′(CX – X0)β

+ u′Pu + u′(I – P)u + 2u′(CX – X0)β

≥ tr
[

C�C′) + λ2�0 – 2λ
(

CV ′)] + β ′(CX – X0)′(CX – X0)β

+ u′Pu + 2u′P(CX – X0)β

= R(Cy + Pu;β). (13)

This contradicts the fact that Cy + u ∼ δ, and therefore u ∈ M(CX – X0).
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Now suppose u ∈ M(CX – X0) while Cy is not admissible, then there exists a predictor
Hy ∈ LH of y0 such that R(Hy;β) ≤ R(Cy;β) for any β and the inequality holds at least at
some β0. As u ∈ M(CX – X0), there exists some vector p such that u = (CX – X0)p. Then,
similar to the derivation of (13),

R
[

Hy + (HX – X0)p;β
]

= tr
[

H�H′) + λ2�0 – 2λ
(

HV ′)] + β ′(HX – X0)′(HX – X0)β

+ p′(HX – X0)′(HX – X0)p + 2p′(HX – X0)′(HX – X0)β

= tr
[

H�H′) + λ2�0 – 2λ
(

HV ′)] + (β + p)′(HX – X0)′(HX – X0)(β + p)

= R(Hy;β + p)

≤ R(Cy;β + p)

= tr
[

C�C′) + λ2�0 – 2λ
(

CV ′)] + (β + p)′(CX – X0)′(CX – X0)(β + p)

= R(Cy + p;β)

at any β and the inequality holds at β = β0 – p, which contradicts Cy + u ∼ δ. Therefore,
Cy is admissible.

Sufficiency: Suppose Ny + v is a predictor of y0 and for any β ∈R
p, R(Ny + v;β) ≤ R(Cy +

u;β). Let Pv and Pu be the orthogonal projection matrices onto M(NX – X0) and M(CX –
X0) respectively. Since u ∈ M(CX – X0), there exist βv and βu in R

p such that

Pvv = (NX – X0)βv,

u = Puu = (CX – X0)βu.

According to the derivation of (13), we have

R(Ny + Pvv;β) ≤ R(Ny + v;β) ≤ R(Cy + u;β) = R(Cy + Puu;β). (14)

Equation (14) holds for any β so that

(NX – X0)′(NX – X0) ≤ (CX – X0)′(CX – X0), (15)

R(Ny + Pvv;β) = R(Ny;β + βv) ≤ R(Cy;β + βu) = R(Cy + Puu;β). (16)

Let β = –βu in (16), we have

R(Ny; 0) ≤ R(Hy;βv – βu) ≤ R(Cy; 0), (17)

and by (15) and (17),

R(Ny;β) = R(Ny; 0) + β ′(NX – X0)′(NX – X0)β

≤ R(Cy; 0) + β ′(CX – X0)′(CX – X0)β = R(Cy;β).
(18)
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Since Cy ∼ δ and β is arbitrary, (18), (17) and (15) successively gives

R(Ny;β) = R(Cy;β),

R(Ny; 0) = R(Hy;βv – βu) = R(Cy; 0), (19)

(NX – X0)′(NX – X0) = (CX – X0)′(CX – X0). (20)

By (19), we have

(βv – βu)′(NX – X0)′(NX – X0)(βv – βu) = 0,

namely (NX – X0)(βv – βu) = 0. In addition, by (20),

R(Ny;β + βv) = R(Ny; 0) + (β + βv)′(NX – X0)′(NX – X0)(β + βv)

= R(Ny; 0) + (β + βu)′(NX – X0)′(NX – X0)(β + βu)

= R(Cy; 0) + (β + βu)′(CX – X0)′(CX – X0)(β + βu)

= R(Cy;β + βu),

and hence (16) ⇔ R(Ny;β + βv) = R(Cy;β + βu) ⇔ R(Ny + Pvv;β) = R(Cy + Puu;β). Con-
sequently, (14) means that, for any β ∈ R

p and any predictor Ny + v ∈ LN of y0, if
R(Ny + v;β) ≤ R(Cy + u;β), then R(Ny + v;β) = R(Cy + u;β), namely Cy + u ∼ δ. �

Remark 4.1 Theorem 4.1 shows the relation between the admissible homogeneous and
nonhomogeneous linear predictors, and indicates that the admissibility of the homoge-
neous linear predictor is more significant. To derive an admissible predictor Cy + u in
LN , we can derive the admissible predictor Cy in LH beforehand.

5 Concluding remarks
In this paper, we investigate the admissibility of linear prediction in the generalized linear
regression model under the quadratic loss function. Predictions are based on a compos-
ite target function that allows one to predict actual and average values of the unobserved
regressand simultaneously, according to some practical needs. Necessary and sufficient
conditions for the simultaneous prediction to be admissible are obtained in classes of ho-
mogeneous and nonhomogeneous linear predictors, respectively. Although the unbiased
predictors of the composite target function are the unbiased predictors of the actual and
average values of the unobserved regressand and vise versa, yet the admissibility of these
predictors for each studied variables are different. Under some circumstances, the ridge
predictor is admissible although it is biased. However, whether the admissible linear pre-
diction is minimax under quadratic loss function is unclear. Further research on the min-
imaxity of admissible simultaneous prediction is in progress.

Acknowledgements
The authors are grateful to the responsible editor and the anonymous reviewers for their valuable comments and
suggestions, which have greatly improved this paper. This research is supported by the Scientific Research Fund of Hunan
Provincial Education Department (13C1139), the Youth Scientific Research Foundation of Central South University of
Forestry and Technology of China (QJ2012013A) and the Natural Science Foundation of Hunan Province (2015JJ4090).



Bai and Li Journal of Inequalities and Applications  (2018) 2018:117 Page 15 of 15

Abbreviations
BLUP, Best linear unbiased predictor; MSE, Mean squared error; SPP, Simple projection predictor; BLUE, Best linear
unbiased estimation.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 January 2018 Accepted: 25 April 2018

References
1. Goldberger, A.S.: Best linear unbiased prediction in the generalized linear regression model. J. Am. Stat. Assoc. 57,

369–375 (1962)
2. Gotway, C.A., Cressie, N.: Improved multivariate prediction under a general linear model. J. Multivar. Anal. 45, 56–72

(1993)
3. Xu, L.W.: Admissible linear predictors in the superpopulation model with respect to inequality constraints. Commun.

Stat., Theory Methods 38, 2528–2540 (2009)
4. Teunissen, P.J.G.: Best prediction in linear models with mixed integer/real unknowns: theory and application. J. Geod.

81(12), 759–780 (2007)
5. Xu, L.W., Lu, M., Jiang, C.F.: Optimal prediction in finite populations under matrix loss. J. Stat. Plan. Inference 141,

2503–2512 (2011)
6. Bolfarine, H., Rodrigues, J.: On the simple projection predictor in finite populations. Aust. J. Stat. 30(3), 338–341 (1988)
7. Hendry, D.F., Clements, M.P.: Pooling of forecasts. Econom. J. 5, 1–26 (2002)
8. Timmermann, A.: Forecast combinations. In: Elliott, G., Granger, C.W.J., Timmermann, A. (eds.) Handbook of Economic

Forecasting, vol. 1, pp. 135–196. Elsevier, North Holland (2006)
9. Chaturvedi, A., Singh, S.P.: Stein rule prediction of the composite target function in a general linear regression model.

Stat. Pap. 41(3), 359–367 (2000)
10. Chaturvedi, A., Kesarwani, S., Chandra, R.: Simultaneous prediction based on shrinkage estimator. In: Shalabh

Heumann, C. (ed.) Recent Advances in Linear Models and Related Areas, pp. 181–204. Springer, New York (2008)
11. Chaturvedi, A., Wan, A.T.K., Singh, S.P.: Improved multivariate prediction in a general linear model with an unknown

error covariance matrix. J. Multivar. Anal. 83(1), 166–182 (2002)
12. Toutenburg, H., Shalabh: Predictive performance of the methods of restricted and mixed regression estimators. Biom.

J. 38(8), 951–959 (1996)
13. Shalabh, H.T.: Improved predictions in linear regression models with stochastic linear constraints. Biom. J. 42(1),

71–86 (2000)
14. Manocha, M.D.V.: Simultaneous prediction in restricted regression models. J. Appl. Statist. Sc. 11(4), 277–288 (2002)
15. Shalabh Heumann, C.: Simultaneous prediction of actual and average values of response variable in replicated

measurement error models. In: Shalabh Heumann, C. (ed.) Recent Advances in Linear Models and Related Areas,
pp. 105–133. Springer, New York (2008)

16. Garg, G., Shalabh: Simultaneous predictions under exact restrictions in ultrastructural model. Journal of Statistical
Research 45(2), 139–154 (2011)

17. Shalabh: A revisit to efficient forecasting in linear regression models. J. Multivar. Anal. 114, 161–170 (2013)
18. Yu, S.H.: Admissibility of linear predictor in multivariate linear model with arbitrary rank. Sankhya, Ser. B 66, 621–633

(2004)
19. He, D.J., Xu, X.Z.: Admissibility of linear predictors in the superpopulation model with respect to inequality constraints

under matrix loss function. Commun. Stat., Theory Methods 21, 3789–3799 (2011)
20. Xu, L.W., Yu, S.H.: Admissible prediction in superpopulation models with random regression coefficients under matrix

loss function. J. Multivar. Anal. 103, 68–76 (2012)
21. Hu, G.K., Peng, P.: Admissibility for linear estimators of regression coefficient in a general Gauss markoff model under

balanced loss function. J. Stat. Plan. Inference 140, 3365–3375 (2010)
22. Hu, G.K., Peng, P.: All admissible linear estimators of a regression coefficient under a balanced loss function. J. Multivar.

Anal. 102, 1217–1224 (2011)
23. Zhang, S.L., Gui, W.H.: Admissibility in general linear model with respect to an inequality constraint under balanced

loss. J. Inequal. Appl. 2014, 70 (2014)
24. Rao, C.R.: Estimation of parameters in a linear model. Ann. Stat. 4(6), 1023–1037 (1976)
25. Chen, X.R.: An Introduction of Mathematical Statistics. Science Press, Beijing (1981)


	Admissibility of simultaneous prediction for actual and average values in ﬁnite population
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Admissibility of homogeneous linear predictors
	Admissibility of nonhomogeneous linear predictors
	Concluding remarks
	Acknowledgements
	Abbreviations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


