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Abstract
Let G be a connected graph of order n. The remoteness of G, denoted by ρ , is the
maximum average distance from a vertex to all other vertices. Let ∂1 ≥ · · · ≥ ∂n,
∂ L
1 ≥ · · · ≥ ∂ L

n and ∂Q
1 ≥ · · · ≥ ∂Q

n be the distance, distance Laplacian and distance
signless Laplacian eigenvalues of G, respectively. In this paper, we give lower bounds
on ρ + ∂1, ρ – ∂n, ρ + ∂ L

1 , ∂
L
1 – ρ , 2ρ + ∂Q

1 and ∂Q
1 – 2ρ and the corresponding

extremal graphs are also characterized.
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1 Introduction
In this paper, we consider simple, undirected and connected graphs. Let G be a graph with
vertex set V (G) and edge set E(G), where |V (G)| = n, |E(G)| = m. Let δ be the minimum
degree of the graph G. The distance between vertices vi and vj is the length of a shortest
path connecting them in G, denoted by dij. The diameter of a graph is the maximum dis-
tance between any two vertices of G, denoted by d. The transmission Tr(vi) of vertex vi

is defined to be the sum of distances from vi to all other vertices and G is transmission
regular if Tr(v1) = · · · = Tr(vn). The remoteness ρ of G is denoted by

ρ = ρ(G) = max
v∈V (G)

Tr(v)
n – 1

.

The distance matrix of G, denoted by D(G), is the symmetric real matrix with (i, j)-entry
being dij. Let Tr(G) = diag(Tr(v1), Tr(v2), . . . , Tr(vn)) be the diagonal matrix of the vertex
transmissions in G. The distance Laplacian matrix and the distance signless Laplacian
matrix of G are defined as DL(G) = Tr(G) – D(G) and DQ(G) = Tr(G) + D(G), respectively.
Let ∂1 ≥ · · · ≥ ∂n, ∂L

1 ≥ · · · ≥ ∂L
n and ∂

Q
1 ≥ · · · ≥ ∂

Q
n are the distance eigenvalues (see [1–3]),

distance Laplacian eigenvalues (see [4]) and distance signless Laplacian eigenvalues (see
[5]) of G, respectively. In particular, the eigenvalues ∂1, ∂L

1 and ∂
Q
1 are called the distance

spectral radius, the distance Laplacian spectral radius and the distance signless Laplacian
spectral radius of G, respectively.

Recently, remoteness, which is one of the most important distance graph parameters,
has attracted much attention of many graph theory researchers. In [6], Sedlar et al. proved
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two AutoGraphiX (a software package devoted to conjecture-making in graph theory)
conjectures on remoteness, vertex connectivity and algebraic connectivity. Sedlar [7] also
studied AutoGraphiX conjectures involving remoteness and other distance invariants.
Aouchiche and Hansen [8] gave Nordhaus–Gaddum-type inequalities for remoteness in
graphs and the extremal graphs were also characterized. Hua et al. [9, 10] solved several
conjectures related to remoteness and used remoteness to give a new sufficient condition
for a connected bipartite graph to be Hamiltonian. Aouchiche and Hansen [11] provided
the lower bounds on ∂1 – ρ and ρ + ∂2. Furthermore, they also proposed two conjectures.
Lin et al. [12] confirmed these two conjectures. They also gave lower bounds on ρ + ∂n

and ∂1 – ρ when G � Kn and the extremal graphs were characterized. Inspired by these
two papers, we continue to study the relations between remoteness and distance, distance
(signless) Laplacian eigenvalues. In particular, we give lower bounds on ρ + ∂1, ρ – ∂n,
ρ + ∂L

1 , ∂L
1 – ρ , 2ρ + ∂

Q
1 and ∂

Q
1 – 2ρ and the corresponding extremal graphs are character-

ized.

2 Preliminaries
Before giving the proof of our theorems, we introduce some fundamental lemmas and
properties in this section.

Lemma 2.1 ([12]) Let G be a connected graph of order n with diameter d and remoteness ρ .
Then

ρ >
d
2

.

Denote by Hn–d (n > d) a graph of order n – d such that V (Hn–d) = V (Kn–d) and
E(Hn–d) ⊇ E(Kn–d), where Kn–d is a null graph of order n – d. Let Hn,d be a graph of order
n with diameter d obtained by joining n – d edges between one end of the path Pd with
each vertex of Hn–d .

Lemma 2.2 ([12]) Let G be a connected graph of order n with diameter d and remoteness ρ .
Then

ρ ≤ d –
d2 – d

2(n – 1)

with equality holding if and only if G ∼= Hn,d .

Lemma 2.3 ([12]) Let G be a connected graph of order n with diameter d ≥ 3. Then

∂1 > n – 2 + d.

Lemma 2.4 ([13]) Let G be a connected graph of order n with Wiener index W. Then

∂1 ≥ 2W
n

,

and the equality holds if and only if G is transmission regular.
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Lemma 2.5 ([14]) Let G = Kn1,...,nk be a complete k-partite graph, where
∑k

i=1 ni = n and
2 ≤ k ≤ n – 1. Then the characteristic polynomial of D(G) is

PD(λ) = (λ + 2)n–k

[ k∏

i=1

(λ – ni + 2) –
k∑

i=1

ni

k∏

j=1,j �=i

(λ – nj + 2)

]

.

Lemma 2.6 ([4]) Let G be a connected graph of order n. Then ∂L
1 ≥ n, with equality if and

only if G ∼= Kn.

Lemma 2.7 ([15]) Let G be a connected graph of order n. Then

∂L
1 ≥ D1 +

D1

n – 1
,

where D1 is the maximum transmission of G. Hence

∂L
1 ≥ D1 + 1,

and the equality holds if and only if G ∼= Kn.

Lemma 2.8 ([5]) Let G = Kn1,...,nk be a complete k-partite graph, where
∑k

i=1 ni = n and
2 ≤ k ≤ n – 1. Then the characteristic polynomial of DL(G) is

PDL (μ) = μ(μ – n)k–1
k∏

i=1

(μ – n + ni)ni–1.

Lemma 2.9 ([16]) If G is a connected graph on n ≥ 2 vertices. Then ∂
Q
1 ≥ 2n – 2 with

equality if and only if G ∼= Kn.

Lemma 2.10 ([5]) Let G be a connected graph of order n with diameter d ≥ 3. Then

∂
Q
1 > 2n – 4 + 2d.

Lemma 2.11 ([17]) Let G be a connected graph of order n with Wiener index W. Then

∂
Q
1 ≥ 4W

n
,

and the equality holds if and only if G is transmission regular.

Lemma 2.12 ([5]) Let G = Kn1,...,nk be a complete k-partite graph, where
∑k

i=1 ni = n and
2 ≤ k ≤ n – 1. Then the characteristic polynomial of DQ(G) is

PDQ (q) =
k∏

i=1

(q – n – ni + 4)ni–1

[ k∏

i=1

(q – n – 2ni + 4) –
k∑

i=1

ni

k∏

j=1,j �=i

(q – n – 2nj + 4)

]

.
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3 Remoteness and distance eigenvalues of a graph
Aouchiche et al. [11] and Lin et al. [12] obtained the following two results.

Theorem 3.1 ([11]) Let G be a connected graph on n ≥ 4 vertices with the distance spectral
radius ∂1 and remoteness ρ . Then

∂1 – ρ ≥ n – 2

with equality if and only if G ∼= Kn.

Theorem 3.2 ([12]) Let G (� Kn) be a connected graph on n ≥ 4 vertices with remoteness
ρ . Then

∂1 – ρ ≥ n – 1 +
√

(n – 1)2 + 8
2

–
n

n – 1

with equality holding if and only if G ∼= Kn – e, where e is an edge of G.

Naturally, we consider the bounds on ρ + ∂1 in this paper.

Theorem 3.3 Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

n ≤ ρ + ∂1 ≤ ρ(Pn) + ∂1(Pn)

with the left equality holding if and only if G ∼= Kn and the right equality holding if and only
if G ∼= Pn.

Proof By Lemma 2.1, ρ ≤ d – d2–d
2(n–1) = f (d). Note that f (d) is a strictly increasing function

on d, then ρ ≤ f (n – 1) = n
2 , and the equality holds if and only if G ∼= Hn,n–1 = Pn. Mean-

while, it was shown in [18] that ∂1(G) ≤ ∂1(Pn) with equality holding if and only if G ∼= Pn.
Hence the right side of the theorem holds.

By the definition of ρ , we have ρ ≥ 1 with the equality if and only if G ∼= Kn. As is well
known [18] ∂1(G) ≥ n – 1 with equality if and only if G ∼= Kn. So the lower bound is com-
pleted. �

Theorem 3.4 Let G (� Kn) be a connected graph of order n ≥ 4 with remoteness ρ . Then

ρ + ∂1 ≥ n
n – 1

+
n – 1 +

√
(n – 1)2 + 8
2

with equality holding if and only if G ∼= Kn – e.

Proof For G ∼= Kn – e, note that Kn – e is a complete multipartite graph, by Lemma 2.5,
then

ρ + ∂1 =
n

n – 1
+

n – 1 +
√

(n – 1)2 + 8
2

< 1 +
1

n – 1
+

2(n – 1) + 4
n–1

2
= n +

3
n – 1

.
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Let G be a connected graph with diameter d. If d ≥ 3, by Lemmas 2.1 and 2.3, then

ρ + ∂1 >
d
2

+ n – 2 + d =
3
2

d + n – 2 > n +
3

n – 1
> ρ(Kn – e) + ∂1(Kn – e).

If d = 2, we have

ρ =
δ + 2(n – 1 – δ)

n – 1
=

2(n – 1) – δ

n – 1
= 2 –

δ

n – 1
.

By Lemma 2.4, then

∂1 ≥ 2W
n

≥ n(n – 1) + 2(n – 1 – δ)
n

= n + 1 –
2(1 + δ)

n
.

Hence

ρ + ∂1 ≥ n + 3 –
2(1 + δ)

n
–

δ

n – 1
.

If δ ≤ n – 3, then

ρ + ∂1 ≥ n + 3 –
2(n – 2)

n
–

n – 3
n – 1

= n +
4
n

+
2

n – 1
> n +

3
n – 1

> ρ(Kn – e) + ∂1(Kn – e).

If δ = n – 2, we have ρ(G) = ρ(Kn – e) and ∂1(G) > ∂1(G + e), and thus ρ(G) + ∂1(G) ≥
ρ(Kn – e) + ∂1(Kn – e) with equality if and only if G ∼= Kn – e. The result follows. �

Theorem 3.5 Let G (� Kn, Kn – e) be a connected graph of order n ≥ 4 with remoteness ρ .
Then

ρ + ∂1 ≥ n
n – 1

+
n – 1 +

√
(n – 1)2 + 16
2

with equality holding if and only if G ∼= Kn – 2e, where 2e are two matching edges.

Proof For G ∼= Kn – 2e,

ρ + ∂1 =
n

n – 1
+

n – 1 +
√

(n – 1)2 + 16
2

<
n

n – 1
+

2(n – 1) + 8
n–1

2
= n +

5
n – 1

.

Let G be a connected graph with d. If d ≥ 3, then

ρ + ∂1 >
d
2

+ n – 2 + d =
3
2

d + n – 2 > n +
5

n – 1
> ρ(Kn – 2e) + ∂1(Kn – 2e).

If d = 2, similarly we have

ρ + ∂1 ≥ n + 3 –
2(1 + δ)

n
–

δ

n – 1
.

If δ ≤ n – 3, then

ρ + ∂1 ≥ n + 3 –
2(n – 2)

n
–

n – 3
n – 1

= n +
4
n

+
2

n – 1
≥ n +

5
n – 1

> ρ(Kn – 2e) + ∂1(Kn – 2e).
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If δ = n – 2, then ∂1(G) > ∂1(G + e) and ρ(G) = ρ(Kn – 2e), and hence ∂1(G) +ρ(G) ≥ ∂1(Kn –
2e) + ρ(Kn – 2e) with equality holding if and only if G ∼= Kn – 2e. �

In [11], Aouchiche and Hansen showed a lower bound on the sum of the remoteness and
the second largest distance eigenvalue, ρ + ∂2, of a graph with given number of vertices n.

Theorem 3.6 ([11]) Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

ρ + ∂2 ≥ 0,

with equality holding if and only if G ∼= Kn.

In fact, the bound in the above corollary is best possible among the bounds of the form
ρ + ∂k ≥ 0, with a fixed integer k, over the class of all connected graphs. First, we prove a
lower bound on ρ + ∂2 among all the complete bipartite graphs Ka,b.

Theorem 3.7 Let G be a complete bipartite graph of order n ≥ 4 with remoteness ρ . Then

ρ(Ka,b) + ∂2(Ka,b) ≥ n –
1

n – 1
–

√
n2 – 3n + 3

with equality holding if and only if G ∼= K1,n–1.

Proof For G ∼= Ka,b, where 1 ≤ a ≤ 	 n
2 
, we have

ρ(Ka,b) + ∂2(Ka,b) = n –
a

n – 1
–

√
3a2 – 3na + n2.

Let f (a) = n – a
n–1 –

√
3a2 – 3na + n2. By a direct calculation, f ′′(a) < 0, f ′(0) > 0 and

f ′( n
2 ) < 0. Then there exists a zero root a0 such that f ′(a0) = 0. So f (a) is an increasing

function of a on [0, a0] and is a decreasing function on [a0, 	 n
2 
]. Note that 1 < a0 and

f (1) < f (	 n
2 
). Hence ρ(Ka,b) + ∂2(Ka,b) ≥ f (1) = n – 1

n–1 –
√

n2 – 3n + 3, with equality hold-
ing if and only if G ∼= K1,n–1. �

Naturally, for a connected graph, we propose the following conjecture.

Conjecture 3.8 Let G (� Kn, Kn –e) be a connected graph of order n ≥ 4 with remoteness ρ .
Then

ρ + ∂2 ≥ n
n – 1

+
n – 1 –

√
(n – 1)2 + 8
2

,

with equality holding if and only if G ∼= Kn – 2e, where 2e are two matching edges.

Furthermore, Aouchiche [11] et al. proved the following result.

Theorem 3.9 ([11]) Let G be a connected graph on n ≥ 4 vertices with the least distance
eigenvalues ∂n and remoteness ρ . Then

ρ + ∂n ≤ 0

with equality if and only if G ∼= Kn.
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Lin [19] showed that ∂n ≤ –d with equality if and only if G is a complete multipartite
graph. Using this, we obtain the following result.

Theorem 3.10 Let G (� Kn) be a connected graph of order n ≥ 4 with remoteness ρ . Then

ρ + ∂n ≤ –
1

n – 1

with equality holding if and only if G ∼= K1,n–1.

Proof Let G be a connected graph with diameter d. Then 2 ≤ d ≤ n – 1. Clearly, by
Lemma 2.2, we know that ρ + ∂n ≤ – d2–d

2(n–1) = f (d). Note that f (d) is a strictly decreasing
function on d. Hence ρ + ∂n ≤ – d2–d

2(n–1) ≤ f (2) = – 1
n–1 , with the equality holding if and only

if G ∼= Hn,2 and G is a complete multipartite graph. Thus G ∼= K1,n–1. �

Next, we start to consider the lower bound on ρ – ∂n.

Theorem 3.11 Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

ρ – ∂n ≥ 2

with equality holding if and only if G ∼= Kn.

Proof Let G be a connected graph with d. If d ≥ 2, then ρ – ∂n > d
2 + d = 3

2 d ≥ 3. Note that
ρ(Kn) – ∂n(Kn) = 2, the result follows. �

Theorem 3.12 Let G (� Kn) be a connected graph of order n ≥ 4 with remoteness ρ . Then

ρ – ∂n ≥ 3 +
1

n – 1

with equality holding if and only if G ∼= Kn – me, where me denotes m matching edges.

Proof Note that ρ(Kn – me) – ∂n(Kn – me) = n
n–1 + 2 = 3 + 1

n–1 . Let G be a connected graph
with d. If d ≥ 3, then

ρ – ∂n >
d
2

+ d =
3
2

d ≥ 9
2

> 3 +
1

n – 1
.

If d = 2, then ρ = 2 – δ
n–1 , and hence ρ – ∂n ≥ 2 – δ

n–1 + d = 4 – δ
n–1 . If δ ≤ n – 3, we have

ρ – ∂n > 3 + 1
n–1 . If δ = n – 2, then G ∼= Kn – me, where me are m matching edges. This

completes the proof. �

4 Remoteness and distance Laplacian eigenvalues of a graph
In this section, we mainly investigate the relations between remoteness and the distance
Laplacian eigenvalues of a graph.

Theorem 4.1 Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

n + 1 ≤ ρ + ∂L
1 ≤ ρ(Pn) + ∂L

1 (Pn)
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with the left equality holding if and only if G ∼= Kn and the right equality holding if and only
if G ∼= Pn.

Proof By Lemma 2.6, we have ρ + ∂L
1 ≥ ρ + n ≥ n + 1, with the left equality holding if and

only if G ∼= Kn.
Similar to the proof of Theorem 3.3, we have ρ(G) ≤ ρ(Pn) with the equality if and only

if G ∼= Pn. Meanwhile, it was shown in [20] that ∂L
1 (G) ≤ ∂L

1 (Pn) with equality holding if
and only if G ∼= Pn. Hence the right side of the theorem holds. �

Theorem 4.2 Let G (� Kn) be a connected graph of order n ≥ 4 with remoteness ρ . Then

ρ + ∂L
1 ≥ n +

1
n – 1

+ 3

with equality holding if and only if G ∼= Kn – me, where me denotes m matching edges.

Proof For G ∼= Kn – me, note that Kn – me is a complete multipartite graph, by Lemma 2.8,
then ρ + ∂L

1 = n
n–1 + n + 2 = n + 1

n–1 + 3. Let G be a connected graph with d. If d ≥ 3, by
Lemma 2.7, we obtain

ρ + ∂L
1 ≥ ρ + D1 +

D1

n – 1
= (n + 1)ρ >

d
2

(n + 1) ≥ 3
2

(n + 1) > n +
1

n – 1
+ 3.

If d = 2, then ρ + ∂L
1 ≥ (n + 1)ρ = (n + 1)(2 – δ

n–1 ). If δ ≤ n – 3, then

ρ + ∂L
1 ≥ (n + 1)

(

2 –
n – 3
n – 1

)

= n +
4

n – 1
+ 3 > n +

1
n – 1

+ 3.

If δ = n – 2, then G ∼= Kn – me. The result follows. �

Theorem 4.3 Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

∂L
1 – ρ ≥ n – 1

with equality holding if and only if G ∼= Kn.

Proof By Lemma 2.7, we have

∂L
1 – ρ ≥ D1 + 1 – ρ = (n – 2)ρ + 1 ≥ n – 1,

with equality holding if and only if G ∼= Kn. �

Theorem 4.4 Let G (� Kn) be a connected graph of order n ≥ 5 with remoteness ρ . Then

∂L
1 – ρ ≥ n + 1 –

1
n – 1

with equality if and only if G ∼= Kn – me, where 1 ≤ m ≤ 	 n
2 
.
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Proof If G ∼= Kn – me, then ∂L
1 – ρ = n + 2 – n

n–1 = n + 1 – 1
n–1 . Let G be a connected graph

with d. If d ≥ 3, then

∂L
1 – ρ ≥ D1 +

D1

n – 1
– ρ = (n – 1)ρ >

3
2

(n – 1) > n + 1 –
1

n – 1
.

If d = 2, then ∂L
1 –ρ ≥ (n – 1)ρ = (n – 1)(2 – δ

n–1 ). If δ ≤ n – 3, then ∂L
1 –ρ ≥ (n – 1)(2 – n–3

n–1 ) =
n + 1 > n + 1 – 1

n–1 . If δ = n – 2, then G ∼= Kn – me. This completes the proof. �

5 Remoteness and distance signless Laplacian eigenvalues of a graph
First, we consider the bounds on 2ρ + ∂

Q
1 .

Theorem 5.1 Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

2n ≤ 2ρ + ∂
Q
1 ≤ 2ρ(Pn) + ∂

Q
1 (Pn)

with the left equality holding if and only if G ∼= Kn and the right equality holding if and only
if G ∼= Pn.

Proof For G ∼= Kn, then 2ρ + ∂
Q
1 = 2n – 2 + 2 = 2n.

If d ≥ 3, we know that ∂
Q
1 (G) > 2n – 4 + 2d ≥ 2n + 2, thus ∂

Q
1 (G) + 2ρ > 2n.

If d = 2, we know that ρ = 2 – δ
n–1 and ∂

Q
1 ≥ 4W

n ≥ 2(n + 1) – 4(1+δ)
n . Then ∂

Q
1 (G) + 2ρ =

2n + 2 – 4(1+δ)
n + 4 – 2δ

n–1 = 2n + 6 – 4(1+δ)
n – 2δ

n–1 > 2n.
It was shown in [20] that ∂

Q
1 (G) ≤ ∂

Q
1 (Pn) with equality holding if and only if G ∼= Pn.

Hence the right side of the theorem holds. �

Theorem 5.2 Let G (� Kn) be a connected graph of order n ≥ 4 with remoteness ρ . Then

2ρ + ∂
Q
1 ≥ 3n – 2 +

√
(n – 2)2 + 16
2

+
2n

n – 1

with equality holding if and only if G ∼= Kn – e.

Proof For G ∼= Kn – e, by Lemma 2.12, then

2ρ + ∂
Q
1 =

3n – 2 +
√

(n – 2)2 + 16
2

+
2n

n – 1
<

3n – 2 + n – 2 + 8
n–2

2
+

2n
n – 1

= 2n +
4

n – 2
+

2
n – 1

.

Let G be a connected graph with d. If d ≥ 3, by Lemma 2.10, then

2ρ + ∂
Q
1 > 2n – 4 + 2d + d ≥ 2n + 5 > 2n +

4
n – 2

+
2

n – 1
.

If d = 2, then ρ = 2 – δ
n–1 . By Lemma 2.11, ∂Q

1 ≥ 4W
n ≥ 2n + 2 – 4(1+δ)

n . Thus

2ρ + ∂
Q
1 ≥ 2n + 2 –

4(1 + δ)
n

+ 4 –
2δ

n – 1
= 2n + 6 –

4(1 + δ)
n

–
2δ

n – 1
.
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If δ ≤ n – 3, then 2ρ + ∂
Q
1 ≥ 2n + 6 – 4(n–2)

n – 2(n–3)
n–1 = 2n + 8

n + 4
n–1 > 2n + 4

n–2 + 2
n–1 . If

δ = n – 2, we know that ρ(G) = ρ(Kn – e) and ∂
Q
1 (G) > ∂

Q
1 (G + e), thus 2ρ(G) + ∂

Q
1 (G) ≥

2ρ(Kn – e) + ∂
Q
1 (Kn – e) with equality if and only if G ∼= Kn – e. �

Theorem 5.3 Let G (� Kn, Kn – e) be a connected graph of order n ≥ 4 with remoteness ρ .
Then

2ρ + ∂
Q
1 ≥ 3n – 2 +

√
(n – 2)2 + 32
2

+
2n

n – 1

with equality holding if and only if G ∼= Kn – 2e, where 2e are two matching edges.

Proof For G ∼= Kn – 2e, then

2ρ + ∂
Q
1 =

3n – 2 +
√

(n – 2)2 + 32
2

+
2n

n – 1

<
3n – 2 + n – 2 + 16

n–2
2

+
2n

n – 1

= 2n +
8

n – 2
+

2
n – 1

.

Let G be a connected graph with d. If d ≥ 3, then

2ρ + ∂
Q
1 (G) > 2n – 4 + 2d + d ≥ 2n + 5 > 2n +

8
n – 2

+
2

n – 1
.

If d = 2, then ρ = 2 – δ
n–1 , ∂Q

1 (G) ≥ 2n + 2 – 4(1+δ)
n , and thus

∂
Q
1 (G) + 2ρ ≥ 2n + 2 –

4(1 + δ)
n

+ 4 –
2δ

n – 1
= 2n + 6 –

4(1 + δ)
n

–
2δ

n – 1
.

If δ ≤ n – 3, then ∂
Q
1 (G) + 2ρ ≥ 2n + 6 – 4(n–2)

n – 2(n–3)
n–1 = 2n + 8

n + 4
n–1 > 2n + 8

n–2 + 2
n–1 . If

δ = n – 2, we have ρ(G) = ρ(Kn – 2e) and ∂
Q
1 (G) > ∂

Q
1 (G + e), thus ∂

Q
1 (G) + 2ρ(G) ≥ ∂

Q
1 (Kn –

2e) + 2ρ(Kn – 2e) with equality holding if and only if G ∼= Kn – 2e. This completes the
proof. �

Next, we prove the lower bound on ∂
Q
1 – 2ρ .

Theorem 5.4 Let G be a connected graph of order n ≥ 4 with remoteness ρ . Then

∂
Q
1 – 2ρ ≥ 2n – 4

with equality holding if and only if G ∼= Kn.

Proof By Lemma 2.11, we have

∂
Q
1 ≥ 4W (G)

n
=

2
∑

v∈V (G) Tr(v)
n

=
2(2(n – 1)ρ +

∑
2≤i,j≤n dij)

n

≥ 4(n – 1)ρ + 2(n – 1)(n – 2)
n



Jia and Song Journal of Inequalities and Applications  (2018) 2018:69 Page 11 of 12

=
2nρ + 2(n – 2)ρ + 2n(n – 2) – 2(n – 2)

n

= 2ρ + 2(n – 2) +
2(n – 2)(ρ – 1)

n
≥ 2ρ + 2n – 4.

Thus ∂
Q
1 – 2ρ ≥ 2n – 4 with equality if and only if G ∼= Kn. �

Theorem 5.5 Let G (� Kn) be a connected graph of order n ≥ 4 with remoteness ρ . Then

∂
Q
1 – 2ρ ≥ 3n – 2 +

√
(n – 2)2 + 16
2

–
2n

n – 1

with equality holding if and only if G ∼= Kn – e.

Proof For G ∼= Kn – e, then we have

∂
Q
1 – 2ρ =

3n – 2 +
√

(n – 2)2 + 16
2

–
2n

n – 1
< 2n – 4 +

4
n – 2

–
2

n – 1
.

Let G be a connected graph with d. If d ≥ 3, by Lemmas 2.2 and 2.10, then

∂
Q
1 – 2ρ > 2n – 4 + 2d – 2d +

d2 – d
n – 1

≥ 2n – 4 +
6

n – 1
> 2n – 4 +

4
n – 2

–
2

n – 1
.

If d = 2, then

∂
Q
1 – 2ρ ≥ 2n – 2 –

4(1 + δ)
n

+
2δ

n – 1
= 2n – 2 –

4
n

–
(

4
n

–
2

n – 1

)

δ.

If δ ≤ n – 3, then

∂
Q
1 – 2ρ ≥ 2n – 2 –

4
n

–
(

4
n

–
2

n – 1

)

(n – 3) > 2n – 4 +
4

n – 2
–

2
n – 1

.

If δ = n – 2, we know that ρ(G) = ρ(Kn – e) and ∂
Q
1 (G) > ∂

Q
1 (G + e), thus ∂

Q
1 (G) – 2ρ(G) ≥

∂
Q
1 (Kn – e) – 2ρ(Kn – e) with equality holding if and only if G ∼= Kn – e. This completes the

proof. �

6 Conclusions
We give lower bounds on ρ + ∂1, ρ – ∂n, ρ + ∂L

1 , ∂L
1 – ρ , 2ρ + ∂

Q
1 and ∂

Q
1 – 2ρ and the corre-

sponding extremal graphs are characterized. Considering the distance, distance Laplacian
and distance signless Laplacian eigenvalues of a graph is still an interesting and important
problem.

Acknowledgements
This project is supported by NSF of China (Nos. 11701148), Natural Science Foundation of Education Ministry of Henan
Province (18B110005), the China Postdoctoral Science Foundation (No. 2017M612410).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HCJ carried out the proofs of main results in the manuscript. HCJ and HYS participated in the design of the study and
drafted the manuscripts. All the authors read and approved the final manuscripts.



Jia and Song Journal of Inequalities and Applications  (2018) 2018:69 Page 12 of 12

Author details
1College of Science, Henan Institute of Engineering, Zhengzhou, P.R. China. 2Department of Mathematics, School of
Information, Renmin University of China, Beijing, P.R. China. 3School of General Education, Beijing International Studies
University, Beijing, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 January 2018 Accepted: 17 March 2018

References
1. Liu, R., Xue, J., Guo, L.: On the second largest distance eigenvalue of a graph. Linear Algebra Appl. 65, 1011–1021

(2017)
2. Liu, R., Xue, J.: Graphs with small diameter determined by their D-spectra. Czechoslov. Math. J. (2018).

https://doi.org/10.21136/CMJ.2018.0505-15
3. Xue, J., Liu, R., Jia, H.: On the distance spectrum of trees. Filomat 30, 1559–1565 (2016)
4. Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439, 21–33 (2013)
5. Xue, J., Lin, H., Das, K., Shu, J.: More results on the distance (signless) Laplacian eigenvalues of graphs (21 May 2017)

arXiv:1705.07419v1 [math.CO]
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