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Abstract
The notion of statistical weighted B-summability was introduced very recently (Kadak
et al. in Appl. Math. Comput. 302:80–96, 2017). In the paper, we study the concept of
statistical deferred weighted B-summability and deferred weighted B-statistical
convergence and then establish an inclusion relation between them. In particular,
based on our proposed methods, we establish a new Korovkin-type approximation
theorem for the functions of two variables defined on a Banach space CB(D) and then
present an illustrative example to show that our result is a non-trivial extension of
some traditional and statistical versions of Korovkin-type approximation theorems
which were demonstrated in the earlier works. Furthermore, we establish another
result for the rate of deferred weighted B-statistical convergence for the same set of
functions via modulus of continuity. Finally, we consider a number of interesting
special cases and illustrative examples in support of our findings of this paper.
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1 Introduction, preliminaries and motivation
In the interpretation of sequence spaces, the well-established traditional convergence has
got innumerable applications where the convergence of a sequence demands that almost
all elements are to assure the convergence condition, that is, every element of the sequence
is required to be in some neighborhood of the limit. Nevertheless, there is such limitation
in statistical convergence, where a set having a few elements that are not in the neighbor-
hood of the limit is discarded. The preliminary idea of statistical convergence was pre-
sented and considered by Fast [2] and Steinhaus [3]. In the past few decades, statistical
convergence has been an energetic area of research due essentially to the aspect that it
is broader than customary (classical) convergence, and such hypothesis is talked about in
the investigation in the fields of (for instance) Fourier analysis, functional analysis, num-
ber theory, and theory of approximation. In fact, see the current works [4–18], and [19]
for detailed study.
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Let the set of natural numbers be N and suppose that K ⊆N. Also, consider

Kn = {k : k � n and k ∈ K}

and suppose that |Kn| is the cardinality of Kn. Then the natural density of K is defined by

d(K) = lim
n→∞

1
n

∣
∣{k : k � n and k ∈ K}∣∣

such that the limit exists.
A sequence (xn) is statistically convergent (or stat-convergent) to L if, for every ε > 0,

Kε =
{

k : k ∈N and |xk – L|� ε
}

has zero natural (asymptotic) density (see [2, 3]). That is, for every ε > 0,

d(Kε) = lim
n→∞

1
n

∣
∣
{

k : k � n and |xk – L|� ε
}∣
∣ = 0.

We write it as

stat – lim
n→∞ xn = L.

We present below an example to illustrate that every convergent sequence is statistically
convergent but the converse is not true.

Example 1 Let x = (xn) be a sequence defined by

xn =

⎧

⎨

⎩

1
5 (n = m2, m ∈N)
n2–1
n2+1 (otherwise).

Here, the sequence (xn) is statistically convergent to 1 even if it is not classically conver-
gent.

In 2009, Karakaya and Chishti [20], introduced the fundamental concept of weighted
statistical convergence, and later the definition was modified by Mursaleen et al. (see [21]).

Suppose that (pk) is a sequence of non-negative numbers such that

Pn =
n

∑

k=0

pk (p0 > 0; n → ∞).

Then, upon setting

tn =
1

Pn

n
∑

k=0

pkxk
(

n ∈N0 := N∪ {0}),

the given sequence (xn) is weighted statistically convergent (or statN̄ -convergent) to a
number L if, for every ε > 0,

{

k : k � Pn and pk|xk – L|� ε
}
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has zero weighted density [21]. That is, for every ε > 0,

lim
n→∞

1
Pn

∣
∣
{

k : k � Pn and pk|xk – L|� ε
}∣
∣ = 0.

Similarly, we say the sequence (xn) is statistically weighted summable to L if, for every
ε > 0,

{

k : k � n and |tk – L|� ε
}

has zero weighted summable density (see [21]). That is, for every ε > 0,

lim
n→∞

1
n

∣
∣
{

k : k � n and |tk – L|� ε
}∣
∣ = 0.

In the year 2013, Belen and Mohiuddine [5] established a new technique for weighted
statistical convergence in terms of the de la Vallée Poussin mean, and it was subsequently
investigated further by Braha et al. [8] as the �n-weighted statistical convergence. Very
recently, a certain class of weighted statistical convergence and associated Korovkin-type
approximation theorems involving trigonometric functions have been introduced by Sri-
vastava et al. (see, for details, [22]).

Suppose that X and Y are two sequence spaces, and let A = (an,k) be a non-negative
regular matrix. If for every xk ∈ X the series

Anx =
∞

∑

k=1

an,kxk

converges for all n ∈ N and the sequence (Anx) belongs to Y , then the matrix A : X → Y .
Here, (X, Y ) denotes the set of all matrices that map X into Y .

Next, as regards the regularity condition, a matrix A is said to be regular if

lim
n→∞Anx = L whenever lim

k→∞
xk = L.

We recall here that the well-known Silverman–Toeplitz theorem (see details in [23])
asserts that A = (an,k) is regular if and only if the following conditions hold true:

(i) supn→∞
∑∞

k=1 |an,k| < ∞;
(ii) limn→∞ an,k = 0 for each k;

(iii) limn→∞
∑∞

k=1 an,k = 1.
Freedman and Sember [24] extended the definition of statistical convergence by con-

sidering the non-negative regular matrix A = (an,k), which they called A-statistical con-
vergence. For any non-negative regular matrix A, we say that a sequence (xn) is said to be
A-statistically convergent (or statA-convergent) to a number L if, for each ε > 0,

dA(Kε) = 0,

where

Kε =
{

k : k ∈N and |xk – L|� ε
}

.
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We thus obtain that, for every ε > 0,

lim
n→∞

∑

k:|xk–L|�ε

an,k = 0.

In this case, we write

statA lim xn = L.

In the year 1998, the concept of A-statistical convergence was extended by Kolk [25]
to B-statistical convergence with reference to FB-convergence (or B-summable) due to
Steiglitz (see [16]).

Suppose that B = (Bi) is a sequence of infinite matrices with Bi = (bn,k(i)). Then a se-
quence (xn) is said to be B-summable to the value B limn→∞(xn) if

lim
n→∞(Bix)n = lim

n→∞

∞
∑

k=0

bn,k(i)(x)k = B lim
n→∞(xn) uniformly for i

(

n, i ∈N0 := N∪{0}).

The method (Bi) is regular if and only if the following conditions hold true (see, for details,
[26] and [27]):

(i) ‖B‖ = supn,i→∞
∑∞

k=0 |bn,k(i)| < ∞;
(ii) limn→∞ bn,k(i) = 0 uniformly in i for each k ∈N;

(iii) limn→∞
∑∞

k=0 bn,k(i) = 1 uniformly in i.
Let K = ki ⊂N (ki < ki+1) for all i. The B-density of K is defined by

dB(K) = lim
n→∞

∞
∑

k=0

bn,k(i) uniformly in i,

provided the limit exists.
Let R+ be the set of all regular methods B with bn,k(i) � 0 (∀n, k, i). Also, let B ∈R+. We

say that a sequence (xn) is B-statistically convergent (or statB-convergent) to a number L
if, for every ε > 0, we have

dB(Kε) = 0,

where

Kε =
{

k : k ∈N and |xk – L|� ε
}

.

This implies that, for every ε > 0,

lim
n→∞

∑

k:|xk–L|�ε

bn,k(i) = 0 uniformly in i.

In this case, we write

statB lim xn = L.
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Quite recently, Mohiuddine [28] introduced the notion of weighted A-summability by
using a weighted regular summability matrix. He also gave the definitions of statistical
weighted A-summability and weighted A-statistical convergence. In particular, he proved
a Korovkin-type approximation theorem under the consideration of statistically weighted
A-summable sequences of real or complex numbers. Subsequently, Kadak et al. [1] in-
vestigated the statistical weighted B-summability by using a weighted regular matrix to
establish some approximation theorems.

Motivated essentially by the above-mentioned works, here we present the (presum-
ably new) notions of deferred weighted B-statistical convergence and statistical deferred
weighted B-summability.

2 Statistical deferred weighted B-summability
In the present context, here we introduce the notions of deferred weighted B-statistical
convergence and statistical deferred weighted B-summability by using the deferred
weighted regular matrices (methods).

Let (an) and (bn) be the sequences of non-negative integers fulfilling the conditions:
(i) an < bn (n ∈N)

and
(ii) limn→∞ bn = ∞.

Conditions (i) and (ii) as above are the regularity conditions of the proposed deferred
weighted mean [29].

Let (pn) be the sequence of non-negative real numbers such that

Pn =
bn∑

m=an+1

pm.

In order to present the proposed deferred weighted mean σn, we first set

σn =
1

Pn

bn∑

m=an+1

pmxm.

The given sequence (xn) is said to be deferred weighted summable (or cD(N̄)-summable) to
L if

lim
n→∞σn = L.

In this case, we write

cD(N̄) lim
n→∞ xn = L.

We denote by cD(N̄) the set of all sequences that are deferred weighted summable.
Next, we present below the following definitions.

Definition 1 A sequence (xn) is said to be deferred weightedB-summable (or [D(N̄)B ; pn]-
summable) to L if the B-transform of (xn) is deferred weighted summable to the same
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number L, that is,

lim
n→∞B(an ,bn)

n (x) =
1

Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)xk = L uniformly in i.

In this case, we write

[

D(N̄)B ; pn
]

lim
n→∞ xn = L.

We denote by [D(N̄)B ; pn] the set of all sequences that are deferred weighted B-summable.

Definition 1 generalizes various known definitions as analyzed in Remark 1.

Remark 1 If

an + 1 = α(n) and bn = β(n),

then the B(an ,bn)
n (x) mean is close to the Ba,b

n (xn) mean [1], and if

an = 0, bn = n, and B = A,

then the B(an ,bn)
n (x) mean is the same as the AN̄

m(x) mean [28]. Lastly, if

an = 0, bn = n, and B = I (identity matrix),

then the B(an ,bn)
n (x) mean is the same as the weighted mean (N̄ , pn) [21].

Definition 2 Let B = (bn,k(i)) and let (an) and (bn) be sequences of non-negative integers.
The matrix B = (Bi) is said to be a deferred weighted regular matrix (or deferred weighted
regular method) if

Bx ∈ cD(N̄) (∀xn ∈ c)

with

cD(N̄) limBixn = B lim(xn)

and let it be denoted by B ∈ (c : cD(N̄)).

This means that B(an ,bn)
n (x) exists for each n ∈ N, xn ∈ c and

lim
n→∞B(an ,bn)

n (x) → L whenever lim
n→∞ xn → L.

We denote by R+
D(w) the set of all deferred weighted regular matrices (methods).

As a characterization of the deferred weighted regular methods, we present the follow-
ing theorem.
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Theorem 1 Let B = (bn,k(i)) be a sequence of infinite matrices, and let (an) and (bn) be
sequences of non-negative integers. Then B ∈ (c : cD(N̄)) if and only if

sup
n

∞
∑

k=1

1
Pn

∣
∣
∣
∣
∣

bn∑

m=an+1

pmbm,k(i)

∣
∣
∣
∣
∣

< ∞; (2.1)

lim
n→∞

1
Pn

bn∑

m=an+1

pmbm,k(i) = 0 uniformly in i (for each k, i ∈N) (2.2)

and

lim
n→∞

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) = 1 uniformly in i. (2.3)

Proof Assume that (2.1)–(2.3) hold true and that xn → L (n → ∞). Then, for each ε > 0,
there exists m0 ∈N such that |xn – L|� ε (m > m0). Thus, we have

∣
∣B(an ,bn)

n (x) – L
∣
∣ =

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)xk – L

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)(xk – L) + L

(

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) – 1

)∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)(xk – L)

∣
∣
∣
∣
∣

+ |L|
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) – 1

∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

bn–2∑

k=1

pmbm,k(i)(xk – L)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=bn–1

pmbm,k(i)(xk – 1)

∣
∣
∣
∣
∣

+ |L|
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) – 1

∣
∣
∣
∣
∣

� sup
k

|xk – L|
bn–2∑

k=1

1
Pn

bn∑

m=an+1

pmbm,k(i)

+ ε
1

Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)

+ |L|
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) – 1

∣
∣
∣
∣
∣
.
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Taking n → ∞ and using (2.2) and (2.3), we get

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmam,k – L

∣
∣
∣
∣
∣
� ε,

which implies that

lim
n→∞

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) = L = lim
n→∞(xn) uniformly in i (i � 0),

since ε > 0 is arbitrary.
Conversely, let B ∈ (c : cD(N̄)) and xn ∈ c. Then, since Bx exists, we have the inclusion

(

c : cD(N̄)) ⊂ (c : L∞).

Clearly, there exists a constant M such that

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)

∣
∣
∣
∣
∣
� M (∀m, n, i)

and the corresponding series

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)

∣
∣
∣
∣
∣

converges uniformly in i for each n. Therefore, (2.1) is valid.
We now consider the sequence x(n) = (x(n)

k ) ∈ c0 defined by

x(n)
k =

⎧

⎨

⎩

1 (n = k)

0 (n 
= k)

for all n ∈ N and y = (yn) = (1, 1, 1, . . .) ∈ c. Then, since Bx(n) and By belong to cD(N̄), thus
(2.2) and (2.3) are fairly obvious. �

Next, for statistical version, we present below the following definitions.

Definition 3 Let B ∈ R+
D(w), and let (an) and (bn) be sequences of non-negative integers,

and also let K = (ki) ⊂N (ki ≤ ki+1) for all i. Then the deferred weighted B-density of K is
defined by

dB
D(N̄)(K) = lim

n→∞
1
Sn

bn∑

m=an+1

∑

k∈K

smbm,k(i) uniformly in i,

provided that the limit exists. A sequence (xn) is said to be deferred weightedB-statistically
convergent to a number L if, for each ε > 0, we have

dB
D(N̄)(Kε) = 0 uniformly in i,
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where

Kε =
{

k : k ∈N and |xk – L|� ε
}

.

Here, we write

statBD(N̄) lim
n→∞(xn) = L.

Definition 4 Let B ∈ R+
D(w), and let (an) and (bn) be sequences of non-negative integers.

We say that the sequence (xn) is statistically deferred weighted B-summable to a number
L if, for each ε > 0, we have

d(Eε) = 0 uniformly in i,

where

Eε =
{

k : k ∈N and
∣
∣B(an ,bn)

n (x) – L
∣
∣� ε

}

.

Here, we write

statD(N̄) lim
n→∞(xn) = L

(

or stat lim
n→∞B(an ,bn)

n x = L
)

.

We now prove the following theorem which determines the inclusion relation between
the deferred weighted B-statistical convergence and the statistical deferred weighted B-
summability.

Theorem 2 Suppose that

pnbn,k(i)|xn – L|� M (n ∈N; M > 0).

If a sequence (xn) is deferred weighted B-statistically convergent to a number L, then it is
statistically deferred weighted B-summable to the same number L, but the converse is not
true.

Proof Let

pnbn,k(i)|xn – L|� M (n ∈N; M > 0).

Also let (xn) be the deferred weighted B-statistically convergent to L, we have

dB
D(N̄)(Kε) = 0 uniformly in i,

where

Kε =
{

k : k ∈N and |xk – L|� ε
}

.
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Thus we have

∣
∣B(an ,bn)

n (xn) – L
∣
∣ =

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)(xk – L)

∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)(xk – L)

∣
∣
∣
∣
∣

+ |L|
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) – 1

∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∑

k∈Kε

pmbm,k(i)(xk – L)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k /∈Kε

pmbm,k(i)(xk – L)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i) – 1

∣
∣
∣
∣
∣

� sup
k→∞

|xk – L| 1
Pn

∑

k∈Kε

bn∑

m=an+1

pmbm,k(i) + ε
1

Pn

bn∑

m=an+1

∑

k /∈Kε

pmbm,k(i)

+ |L|
∣
∣
∣
∣
∣

1
Pn

bn∑

m=an+1

∑

k∈Kε

pmbm,k(i) – 1

∣
∣
∣
∣
∣
→ ε (n → ∞),

which implies that B(an ,bn)
n (xn) → L (n → ∞). This implies that the sequence (xn) is de-

ferred weighted B-summable to the number L, and hence the sequence (xn) is statistically
deferred weighted B-summable to the same number L. �

In order to prove that the converse is not true, we present Example 2 (below).

Example 2 Let us consider the infinite matrices B = (Bi) with Bi = (bn,k(i)) given by (see
[1])

xn =

⎧

⎨

⎩

1
n+1 (i � k � i + n)

0 (otherwise).

We also suppose that an = 2n, bn = 4n, and pn = 1. It can be easily seen that B ∈ R+
w. We

also consider the sequence (xn) by

xn =

⎧

⎨

⎩

0 (n is even)

1 (n is odd).
(2.4)

Since Pn = 2n, we get

1
Pn

bn∑

m=an+1

∞
∑

k=1

pmbm,k(i)xk =
1

2n

4n
∑

m=2n+1

1
n + 1

i+n
∑

k=i

xk =
1

2n

4n
∑

m=2n+1

1
2

=
1
2

.

Clearly, the sequence (xn) is neither convergent nor statistically convergent and also the
sequence (xn) is not statistically weighted B-summable and weighted B-statistically con-
vergent. However, the sequence (xn) is deferred weighted B-summable to 1

2 , so it is statis-
tically deferred weighted B-summable to 1

2 , but the sequence (xn) is not deferred weighted
B-statistically convergent.
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3 A Korovkin-type theorem via statistical deferred weighted B-summability
In the last few decades, many researchers emphasized expanding or generalizing the
Korovkin-type hypotheses from numerous points of view in light of a few distinct an-
gles, containing (for instance) space of functions, Banach spaces summability theory, etc.
Certainly, the change of Korovkin-type hypothesis is far from being finished till today. For
additional points of interest and outcomes associated with the Korovkin-type hypothe-
sis and other related advancements, we allude the reader to the current works [7–10, 22],
and [17]. The main objective of this paper is to extend the notion of statistical convergence
by the help of the deferred weighted regular technique and to show how this technique
leads to a number of results based upon an approximation of functions of two variables
over the Banach space CB(D). Moreover, we establish some important approximation the-
orems related to the statistical deferred weighted B-summability and deferred weighted
B-statistical convergence, which will effectively extend and improve most (if not all) of
the existing results depending upon the choice of sequences of the deferred weighted B
means. Based upon the proposed methodology and techniques, we intend to estimate the
rate of convergence and investigate the Korovkin-type approximation results. In fact, we
extend here the result of Kadak et al. [1] by using the notion of statistical deferred weighted
B-summability and present the following theorem.

Let D be any compact subset of the real two-dimensional space. We denote by CB(D) the
space of all continuous real-valued functions on D = I × I (I = [0, A]), A ≤ 1

2 and equipped
with the norm

‖f ‖CB(D) = sup
{∣
∣f (x, y)

∣
∣ : (x, y) ∈D

}

, f ∈ CB(D).

Let T : CB(D) → CB(D) be a linear operator. Then we say that T is a positive linear oper-
ator provided

f � 0 implies T(f ) � 0.

Also, we use the notation T(f ; x, y) for the values of T(f ) at the point (x, y) ∈D.

Theorem 3 Let B ∈ R+
D(w), and let (an) and (bn) be sequences of non-negative integers.

Let Tn (n ∈ N) be a sequence of positive linear operators from CB(D) into itself, and let
f ∈ CB(D). Then

statD(N̄) lim
n

∥
∥Tn

(

f (s, t); x, y
)

– f (x, y)
∥
∥

CB(D) = 0, f ∈ CB(D) (3.1)

if and only if

statD(N̄) lim
n

∥
∥Tn

(

fj(s, t); x, y
)

– f (x, y)
∥
∥

CB(D) = 0, (j = 0, 1, 2, 3), (3.2)

where

f0(s, t) = 1, f1(s, t) =
s

1 – s
, f2(s, t) =

t
1 – t

and

f3(s, t) =
(

s
1 – s

)2

+
(

t
1 – t

)2

.
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Proof Since each of the functions fj(s, t) ∈ CB(D), the following implication

(3.1) �⇒ (3.2)

is fairly obvious. In order to complete the proof of Theorem 3, we first assume that (3.2)
holds true. Let f ∈ CB(D), ∀(x, y) ∈ D. Since f (x, y) is bounded on D, then there exists a
constant M > 0 such that

∣
∣f (x, y)

∣
∣�M (∀x, y ∈D),

which implies that

∣
∣f (s, t) – f (x, y)

∣
∣� 2M (s, t, x, y ∈D). (3.3)

Clearly, f is a continuous function on D, for given ε > 0, there exists δ = δ(ε) > 0 such that

∣
∣f (s, t) – f (x, y)

∣
∣ < ε whenever

∣
∣
∣
∣

s
1 – s

–
x

1 – x

∣
∣
∣
∣

< δ and
∣
∣
∣
∣

t
1 – t

–
y

1 – y

∣
∣
∣
∣

< δ (3.4)

for all s, t, x, y ∈D.
From equations (3.3) and (3.4), we get

∣
∣f (s, t) – f (x, y)

∣
∣ < ε +

2M
δ2

([

ϕ(s, x)
]2 +

[

ϕ(t, y)
]2), (3.5)

where

ϕ(s, x) =
s

1 – s
–

x
1 – x

and ϕ(t, y) =
t

1 – t
–

y
1 – y

.

Since the function f ∈ CB(D), inequality (3.5) holds for s, t, x, y ∈D.
Now, since the operator Tn(f (s, t); x, y) is linear and monotone, so inequality (3.5) under

this operator becomes

∣
∣Tn

(

f (s, t); x, y
)

– f (x, y)
∣
∣ =

∣
∣Tn

(

f (s, t) – f (x, y); x, y
)

+ f (x, y)
[

Tk(f0; x, y) – f0
]∣
∣

�
∣
∣Tn

(

f (s, t) – f (x, y); x, y
)

+ M
[

Tk(1; x, y) – 1
]∣
∣

�
∣
∣
∣
∣
Tn

(

ε +
2M
δ2

[

ϕ(s, x)2 + ϕ(t, y)2]; x, y
)∣

∣
∣
∣

+ M
∣
∣Tn(1; x, y) – 1

∣
∣

� ε + (ε + M)
∣
∣Tn(f0; x, y) – f0(x, y)

∣
∣

+
2M
δ2

∣
∣Tn(f3; x, y) – f3(x, y)

∣
∣

–
4M
δ2

(
x

1 – x

)
∣
∣Tn(f1; x, y) – f1(x, y)

∣
∣

–
4M
δ2

(
y

1 – y

)
∣
∣Tn(f2; x, y) – f2(x, y)

∣
∣
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+
2M
δ2

((
x

1 – x

)2

+
(

y
1 – y

2
))

∣
∣Tn(f0; x, y) – f0(x, y)

∣
∣

� ε +
(

ε + M +
4M
δ2

)
∣
∣Tn(1; x, y) – 1

∣
∣

+
4M
δ2

∣
∣Tn(f1; x, y) – f1(x, y)

∣
∣ +

4M
δ2

∣
∣Tn(f2; x, y) – f2(x, y)

∣
∣

+
2M
δ2

∣
∣Tn(f3; x, y) – f3(x, y)

∣
∣. (3.6)

Next, taking supx,y∈D on both sides of (3.6), we get

∥
∥Tn

(

f (s, t); x, y
)

– f (x, y)
∥
∥

CB(D) � ε + N
3

∑

j=0

∥
∥Tn

(

fj(s, t); x, y
)

– fj(x, y)
∥
∥

CB(D), (3.7)

where

N =
{

ε + M +
4M
δ2

}

.

We now replace Tn(f (s, t); x, y) by

Ln
(

f (s, t); x, y
)

=
1

Pn

bn∑

m=an+1

∞
∑

k=0

pmbm,k(i)Tk
(

f (s, t); x, y
)

(∀i, m ∈N)

in equation (3.7).
Now, for given r > 0, we choose 0 < ε′ < r, and by setting

Kn =
∣
∣
{

n : n �N and
∣
∣Ln

(

f (s, t); x, y
)

– f (x, y)
∣
∣� r

}∣
∣

and

Kj,n =
∣
∣
∣
∣

{

n : n �N and
∣
∣Ln

(

fj(s, t); x, y
)

– fj(x, y)
∣
∣� r – ε′

4N

}∣
∣
∣
∣

(j = 0, 1, 2, 3),

we easily find from (3.7) that

Kn �
3

∑

j=0

Kj,n.

Thus, we have

‖Kn‖CB(D)

n
�

3
∑

j=0

‖Kj,n‖CB(D)

n
. (3.8)

Clearly, from the above supposition for the implication in (3.2) and Definition 4, the
right-hand side of (3.8) tends to zero (n → ∞). Subsequently, we obtain

statD(N̄) lim
n→∞

∥
∥Tn

(

fj(s, t); x, y
)

– fj(x, y)
∥
∥

CB(D) = 0 (j = 0, 1, 2, 3).

Hence, implication (3.1) is fairly true, which completes the proof of Theorem 3. �
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Remark 2 If

B = A, an = 0, and bn = n (∀n)

in our Theorem 3, then we obtain a statistical weighted A-summability version of
Korovkin-type approximation theorem (see [28]). Furthermore, if we substitute

an + 1 = α(n) and bn = β(n) (∀n)

in our Theorem 3, then we obtain a statistical weighted B-summability version of
Korovkin-type approximation theorem (see [1]). Finally,

B = I (identity matrix), an = 0, and bn = n (∀n)

in our Theorem 3, then we obtain a statistical weighted convergence version of Korovkin-
type approximation theorem (see [19]).

Now we recall the generating function type Meyer–König and Zeller operators of two
variables (see [30] and [31]).

Let us take the following sequence of generalized linear positive operators:

Ln,m
(

f (s, t); x, y
)

=
1

hn(x, s)hm(y, t)

∞
∑

k=0

∞
∑

l=0

f
(

ak,n

ak,n + qn
,

cl,m

cl,m + rm

)

× 	k,n(s)	l,m(t)xkyl, (3.9)

where

0 � ak,n

ak,n + qn
� A and 0 � cl,m

cl,m + rm
� B

(∀A, B ∈ (0, 1)
)

.

For the sequences of functions, (	k,n(s))n∈N and (	l,m(t))n∈N are the generating functions,
hn(x, s) and hm(y, t) are defined by

hn(x, s) =
∞

∑

k=0

	k,n(s)xk and hm(y, t) =
∞

∑

l=0

	l,m(t)yl (

s, t ∈ I × I ⊂R
2).

Because the nodes are given by

s =
ak,n

ak,n + qn
and t =

cl,m

cl,m + rm
,

the denominators of

s
1 – s

=
an,k

qn
and

t
1 – t

=
cl,m

rm

are independent of k and l, respectively.
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We also suppose that the following conditions hold true:
(i) hn(x, s) = (1 – x)hn+1(x, s) and hm(y, t) = (1 – y)hm+1(y, t);

(ii) qn	k,n+1(s) = ak+1,n	k+1,n(s) and rm	l,m+1(t) = cl+1,m	l+1,m(t);
(iii) qn → ∞, qn+1

qn
→ ∞ (rm → ∞), rm+1

rm
→ ∞ and qn, rm 
= 0 (∀m, n);

(iv) ak+1,n – ak,n+1 = φn and cl+1,m – al,m+1 = ψm,
where

φn � n � ∞, ψm � m � ∞ and a0,n = cm,0 = 0.

It is easy to see that Ln(f (s, t); x, y) is positive linear operators. We also observe that

Ln(1; x, y) = 1, Ln

(
s

1 – s
; x, y

)

=
x

1 – x
, Ln

(
t

1 – t
; x, y

)

=
t

1 – t

and

Ln

((
s

1 – s

)2

+
(

t
1 – t

)2

; x, y
)

=
x2

(1 – x)2
qn+1

qn
+

y2

(1 – y)2
rn+1

rn
+

x
1 – x

φn

qn
+

y
1 – y

ψn

rn
.

Example 3 Let Tn : CB(D) → CB(D), D = [0, A] × [0, A], A ≤ 1
2 be defined by

Tn(f ; x, y) = (1 + xn)Ln(f ; x, y), (3.10)

where (xn) is a sequence defined as in Example 2. It is clear that the sequence (Tn) satisfies
the conditions (3.2) of our Theorem 3, thus we obtain

statD(N̄) lim
n

∥
∥Tn(1; x, y) – 1

∥
∥

CB(D) = 0

statD(N̄) lim
n

∥
∥
∥
∥

Tn

(
s

1 – s
; x, y

)

–
x

1 – x

∥
∥
∥
∥

CB(D)
= 0

statD(N̄) lim
n

∥
∥
∥
∥

Tn

(
t

1 – t
; x, y

)

–
y

1 – y

∥
∥
∥
∥

CB(D)
= 0

and

statD(N̄) lim
n

∥
∥
∥
∥

Tn

[(
s

1 – s

)2

+
(

t
1 – t

)2

; x, y
]

–
[(

s
1 – s

)2

+
(

t
1 – t

)2]∥
∥
∥
∥

CB(D)
= 0.

Therefore, from Theorem 3, we have

statD(N̄) lim
n

∥
∥Tn

(

f (s, t); x, y
)

– f (x, y)
∥
∥

CB(D) = 0, f ∈ CB(D).

However, since (xn) is not statistically weighted B-summable, so the result of Kadak et al.
[1], p. 85, Theorem 3, certainly does not hold for the operators defined by us in (3.10).
Moreover, as (xn) is statistically deferred weighted B-summable, therefore we conclude
that our Theorem 3 works for the operators which we consider here.
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4 Rate of deferred weighted B-statistical convergence
In this section, we compute the rate of deferred weighted B-statistical convergence of a
sequence of positive linear operators of functions of two variables defined on CB(D) into
itself by the help of modulus of continuity. We present the following definition.

Definition 5 Let B ∈ R+
D(w), (an) and (bn) be sequences of non-negative integers. Also

let (un) be a positive non-decreasing sequence. We say that a sequence (xn) is deferred
weighted B-statistically convergent to a number L with the rate o(un) if, for every ε > 0,

lim
n→∞

1
unPn

bn∑

m=an+1

∑

k∈Kε

pmbm,k(i) = 0 uniformly in i,

where

Kε =
{

k : k �N and |xk – L|� ε
}

.

We write

xn – L = statBD(N̄) – o(un).

We now present and prove the following lemma.

Lemma 1 Let (un) and (vn) be two positive non-decreasing sequences. Assume that B ∈
R+

D(w), (an) and (bn) are sequences of non-negative integers, and let x = (xn) and y = (yn) be
two sequences such that

xn – L1 = statBD(N̄) – o(un)

and

yn – L2 = statBD(N̄) – o(vn).

Then each of the following assertions holds true:
(i) (xn – L1) ± (yn – L2) = statBD(N̄) – o(wn);

(ii) (xn – L1)(yn – L2) = statBD(N̄) – o(unvn);
(iii) γ (xn – L1) = statBD(N̄) – o(un) (for any scalar γ );
(iv)

√|xn – L1| = statBD(N̄) – o(un),
where wn = max{un, vn}.

Proof To prove assertion (i) of Lemma 1, we consider the following sets for ε > 0 and x ∈D:

Nn =
∣
∣
{

k : k � Pn and
∣
∣(xk + yk) – (L1 + L2)

∣
∣� ε

}∣
∣,

N0;n =
∣
∣
∣
∣

{

k : k � Pn and |xk – L1| � ε

2

}∣
∣
∣
∣
,

and

N1,n =
∣
∣
∣
∣

{

k : k � Pn and |yk – L2|� ε

2

}∣
∣
∣
∣
.
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Clearly, we have

Nn ⊆N0,n ∪N1,n

which implies, for n ∈N, that

lim
n→∞

1
Pn

bn∑

m=an+1

∑

k∈Nn

pmbm,k(i) � lim
n→∞

1
Pn

bn∑

m=an+1

∑

k∈N0,n

pmbm,k(i)

+ lim
n→∞

1
Pn

bn∑

m=an+1

∑

k∈N1,n

pmbm,k(i). (4.1)

Moreover, since

wn = max{un, vn}, (4.2)

by (4.1) we get

lim
n→∞

1
wnPn

bn∑

m=an+1

∑

k∈Nn

pmbm,k(i) � lim
n→∞

1
unPn

bn∑

m=an+1

∑

k∈N0,n

pmbm,k(i)

+ lim
n→∞

1
vnPn

bn∑

m=an+1

∑

k∈N1,n

pmbm,k(i). (4.3)

Also, by applying Theorem 3, we obtain

lim
n→∞

1
wnPn

bn∑

m=an+1

∑

k∈Nn

pmbm,k(i) = 0 uniformly in i. (4.4)

Thus, assertion (i) of Lemma 1 is proved.
As assertions (ii) to (iv) of Lemma 1 are quite similar to (i), so it can be proved along

similar lines. Hence, the proof of Lemma 1 is completed. �

We remind the modulus of continuity of a function of two variables f (x, y) ∈ CB(D) as

ω(f ; δ) = sup
(s,t),(x,y)∈D

{∣
∣f (s, t) – f (x, y)

∣
∣ :

√

(s – x)2 + (t – y)2 � δ
}

(δ > 0), (4.5)

which implies

∣
∣f (s, t) – f (x, y)

∣
∣� ω

[

f ;

√
(

s
1 – s

–
x

1 – x

)2

+
(

t
1 – t

–
y

1 – y

)2]

. (4.6)

Now we present a theorem to get the rates of deferred weighted B-statistical convergence
with the help of the modulus of continuity in (4.5).

Theorem 4 Let B ∈ R+
D(w), and (an) and (bn) be sequences of non-negative integers. Let

Tn : CB(D) → CB(D) be sequences of positive linear operators. Also let (un) and (vn) be
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positive non-decreasing sequences. We assume that the following conditions (i) and (ii) are
satisfied:

(i) ‖Tn(1; x, y) – 1‖CB(D) = statBD(N̄) – o(un);
(ii) ω(f ,λn) = statBD(N̄) – o(vn) on D,

where

λn =
√∥

∥Tn
(

ϕ2(s, t), x, y
)∥
∥

CB(D) with ϕ(s, t) =
(

s
1 – s

–
x

1 – x

)2

+
(

t
1 – t

–
y

1 – y

)2

.

Then, for every f ∈ CB(D), the following assertion holds true:

∥
∥Tn

(

f (s, t); x, y
)

– f (x, y)
∥
∥

CB(D) = statBD(N̄) – o(wn), (4.7)

where (wn) is given by (4.2).

Proof Let f ∈ CB(D) and (x, y) ∈D. Using (4.6), we have

∣
∣Tn(f ; x, y) – f (x, y)

∣
∣ � Tn

(∣
∣f (s, t) – f (x, y)

∣
∣; x, y

)

+
∣
∣f (x, y)

∣
∣
∣
∣Tn(1; x, y) – 1

∣
∣

� Tn

(
√

( s
1–s – x

1–x )2 + ( t
1–t – y

1–y )2

δ
+ 1; x, y

)

ω(f , δ)

+ N
∣
∣Tn(1; x, y) – 1

∣
∣

�
(

Tn(1; x, y) +
1
δ2 Tn

(

ϕ(s, t); x, y
)
)

ω(f , δ) + N
∣
∣Tn(1; x, y) – 1

∣
∣,

where

N = ‖f ‖CB(D).

Taking the supremum over (x, y) ∈D on both sides, we have

∥
∥Tn(f ; x, y) – f (x, y)

∥
∥

CB(D)

� ω(f , δ)
{

1
δ2

∥
∥Tn

(

ϕ(s, t); x, y
)∥
∥

CB(D) +
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D) + 1
}

+ N
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D).

Now, putting δ = λn =
√

Tn(ϕ2; x, y), we get

∥
∥Tn(f ; x, y) – f (x, y)

∥
∥

CB(D)

� ω(f ,λn)
{∥
∥Tn(1; x, y) – 1

∥
∥

CB(D) + 2
}

+ N
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D)

� ω(f ,λn)
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D) + 2ω(f ,λn) + N
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D).

So, we have

∥
∥Tn(f ; x, y) – f (x, y)

∥
∥

CB(D)

� μ
{

ω(f ,λn)
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D) + ω(f ,λn) +
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D)

}

,
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where

μ = max{2, N}.

For given ε > 0, we consider the following sets:

Hn =
{

n : n � Pn and
∥
∥Tn(f ; x, y) – f (x, y)

∥
∥

CB(D) � ε
}

; (4.8)

H0,n =
{

n : n � Pn and ω(f ,λn)
∥
∥Tn(f ; x, y) – f (x, y)

∥
∥

CB(D) �
ε

3μ

}

; (4.9)

H1,n =
{

n : n � Pn and ω(f ,λn) � ε

3μ

}

(4.10)

and

H2,n =
{

n : n � Pn and
∥
∥Tn(1; x, y) – 1

∥
∥

CB(D) �
ε

3μ

}

. (4.11)

Lastly, for the sake of conditions (i) and (ii) of Theorem 3 in conjunction with Lemma 1,
inequalities (4.8)–(4.11) lead us to assertion (4.7) of Theorem 4.

This completes the proof of Theorem 4. �

5 Concluding remarks and observations
In this concluding section of our investigation, we present several further remarks and
observations concerning various results which we have proved here.

Remark 3 Let (xn)n∈N be the sequence given in Example 2. Then, since

statD(N̄) lim
n→∞ xn → 1

2
on CB(D),

we have

statD(N̄) lim
n→∞

∥
∥Tn(fj; x, y) – fj(x, y)

∥
∥

CB(D) = 0 (j = 0, 1, 2, 3). (5.1)

Therefore, by applying Theorem 3, we write

statD(N̄) lim
n→∞

∥
∥Tn(f ; x, y) – f (x, y)

∥
∥

CB(D) = 0, f ∈ CB(D), (5.2)

where

f0(s, t) = 1, f1(s, t) =
s

1 – s
, f2(s, t) =

t
1 – t

and

f3(s, t) =
(

s
1 – s

)2

+
(

t
1 – t

)2

.

However, since (xn) is not ordinarily convergent, it does not converge uniformly in the
ordinary sense. Thus, for the operators defined in (3.10) the traditional Korovkin-type
theorem does not work. Hence, this application clearly indicates that our Theorem 3 non-
trivially generalizes (is stronger than) the usual Korovkin-type theorem (see [32]).
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Remark 4 Let (xn)n∈N be the sequence as given in Example 2. Then

statD(N̄) lim
n→∞ xn → 1

2
on CB(D),

so (5.1) holds. Now, by applying (5.1) and our Theorem 3, condition (5.2) holds. However,
since (xn) is not statistically weighted B-summable, so we can demand that the result of
Kadak et al. [1], p. 85, Theorem 3, does not hold true for our operator defined in (3.10).
Thus, our Theorem 3 is also a non-trivial extension of Kadak et al. [1], p. 85, Theorem 3,
and [21]. Based upon the above results, it is concluded here that our proposed method has
successfully worked for the operators defined in (3.10), and therefore it is stronger than
the ordinary and statistical versions of the Korovkin-type approximation theorem (see [1,
32], and [21]) established earlier.

Remark 5 We replace conditions (i) and (ii) in our Theorem 4 by the condition

∣
∣Tn(fj; x, y) – fj(x, y)

∣
∣
CB(D) = statBD(N̄) – o(unj ) (j = 0, 1, 2, 3). (5.3)

Now, we can write

Tn
(

ϕ2; x, y
)

= F
3

∑

j=0

∥
∥Tn

(

fj(s, t); x, y
)

– fj(x, y)
∥
∥

CB(D), (5.4)

where

F =
{

ε + M +
4M
δ2

}

, (j = 0, 1, 2, 3).

It now follows from (5.3), (5.4), and Lemma 1 that

λn =
√

Tn
(

ϕ2
)

= statBD(N̄) – o(dn) on CB(D), (5.5)

where

o(dn) = max{un0 , un1 , un2 , un3}.

Thus, we fairly obtain

ω(f , δ) = statBD(N̄) – o(dn) on CB(D).

By using (5.5) in Theorem 4, we certainly obtain, for all f ∈ CB(D), that

Tn(f ; x, y) – f (x, y) = statBD(N̄) – o(dn) on CB(D). (5.6)

Therefore, if we use condition (5.3) in Theorem 4 instead of conditions (i) and (ii), then
we obtain the rates of statistical deferred weighted B-summability of the sequence (Tn) of
positive linear operators in Theorem 3.
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31. Taşdelen, F., Erençin, A.: The generalization of bivariate MKZ operators by multiple generating functions. J. Math. Anal.

Appl. 331, 727–735 (2007)
32. Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publ., Delhi (1960)

https://doi.org/10.1007/s13398-017-0442-3

	Statistical deferred weighted B-summability and its applications to associated approximation theorems
	Abstract
	MSC
	Keywords

	Introduction, preliminaries and motivation
	Statistical deferred weighted B-summability
	A Korovkin-type theorem via statistical deferred weighted B-summability
	Rate of deferred weighted B-statistical convergence
	Concluding remarks and observations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


