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Abstract

In this paper, a novel automatic segmentation and reconstruction method is proposed for diffraction contrast
tomography (DCT) technology. The pipeline of the proposed method starts from the imaging of A/ — La alloy with the
LabDCT technique from Carl Zeiss AG, which produces a sequence of 2D microstructure sections. Then, a
segmentation algorithm based on superpixel and lifted multicut is proposed to extract the 2D microstructure in an
image section. Finally, 2D segmentations are joined together to reconstruct and visualize the 3D microstructure. As a
result, a novel morphology of Al — La alloy is recovered with both dendrite and lamellar morphologies. The proposed
method has the advantage of the ability to losslessly recover the internal microstructure.
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1 Introduction

It is important for researchers in materials domain to ana-
lyze the microstructures, which play an important role
in the properties and performance of materials [1]. This
analysis includes not only visualization but also quan-
titative evaluation of varying microstructures of mate-
rials. As a result, researchers have been always looking
forward to a technique that is able to extract the com-
plete microstructrue of grains losslessly. Actually, diffrac-
tion contrast tomography has been applied in material
domain. Marrow et al. [2] used DCT to map the three-
dimensional microstructure of a ceramic. McDonald
et al. [3] made use of DCT to help understand how the
densification of a powder body was affected by various
factors, such as particle rearrangement, rotation, local
deformation and diffusion, and grain growth. However,
this technique has not been widely employed in material
domain due to limitation of accuracy and inconvenience.
Moreover, lack of automatic segmentation algorithm also
hinders the development of microstructure analysis. Gen-
erally, microstructures of most grains are in a scale of
micrometer, while a thousandfold microscope produces
large and high-resolution images in a scale of millime-
ter. As a result, microscopic images often contain tens
of thousands of grains, which is infeasible for manual

Correspondence: ustb2013start@163.com
University of Science and Technology Beijing, 100083 Beijing, China

@ Springer Open

labeling. Therefore, it increases the demand for efficient
segmentation algorithms.

To alleviate this problem, many algorithms have been
proposed to segment grain images with computer. Ullah
et al. [4, 5] introduced a computer-aided method to accel-
erate the manual procedure. They designed a pipeline
to segment the grain images with help of the soft-
ware “image]”. First, all images were aligned using the a
“Align3_TP’, one of the Image] plugins, to avoid tansla-
tion and rotational displacements between consecutive
sections. Then, pre-processing of images was conducted
to select region of interest, correct uneven illuminated
background, and remove the small spots. It was followed
by a watershed algorithm and Geodesic transformation
to obtain the 3D segmentation. Later, Waggoner et al. [6]
presented an interactive propagating method to improve
the segmenting quality. Their idea is to partition an image
with help of the prior of the previous segmentation result,
namely “information propagation” As a result, a sequence
of images can be segmented by repeatedly propagat-
ing this kind of segmentation from one slice to another.
Hence, an interactive graphcut algorithm was introduced.
However, human labeling was still necessary.

In this paper, the segmentation and reconstruction of
3D microstructure of the Al — La dendrite is investi-
gated. Actually, many researchers have paid much atten-
tion to the microstructure of dendrites in Al — La alloy.
The basic idea is to model the relationship between the
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microstructure and the properties of Al — La alloys.
Zheng and Wang [7] reported a novel microstructure,
periodic diphase dendrite in A/ — 35%La binary alloy.
They found that there is a discontinuous microstructure
in Al — 35%La, which appears as a section plan crossed
over some branches of tree-like structure. Then, Zheng
et al. [8] experimentally studied the microstructure evo-
lution of Al — La alloys with varying La contents. By
ways of X-ray diffraction, field-emission scanning electron
microscope, energy-dispersive spectrometer and tensile
test, the variation of 2D microstructure of Al11Las under
different temperatures are discovered. Yang et al. [9] has
reported that the appropriate addition of La had an advan-
tages in refining grain size, removing harmful impurity,
and improving tensile strength and elongation rate of alu-
minum alloys. Then, He et al. [10] looked into the progress
of microstructure evolution of Al — La alloys with vary-
ing La contents. They found that the Al1;Laz phase has
an obvious influence on tensile strength, and La content
has a greater effect on the plasticity of Al — La alloy.
Therefore, the dendrites microstructure has important
effect on the properties of Al — La alloys. However, all
above studies focused on the 2D image rather than the 3D
microstructure of the Al Las phase.

For the purpose of analyzing microstructures of
Alj1Las, the DCT technology is introduced in com-
pany with a lifted multicut segmentation algorithm. As
a result, a complete 3D Alj1Las grain is, for the first
time, reconstructed non-destructively. With the help of
the visualization of the reconstructed grain we find that
the dendrite structure, different from common dendrite of
single phase, possess a novel 3D morphology. This is the
reason why the chemical composition crossing the arms of
the diphase dendrite changes in discontinuous and peri-
odic oscillatory, which is consistent with the conclusion
drawn by [7, 8].
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The remaining of the paper is organized as following.
Section 2 describes the segmentation algorithm. Subse-
quently, analysis of the segmentation algorithm and the
resulted 3D microstructures are presented in Section 3.
Conclusions are drawn in the final Section 4.

2 Methods

From the DCT image sequences of Fig. 1, we find that
the 2D grains in a section appears like long strips cross-
ing each other. Moreover, there is remarkable interval
between two grains. Therefore, it is reasonable to employ
segmentation algorithms in computer vision domain to
separate different grains. In this paper, we formulate
the segmentation of microstructure as a lifted multicut
problem.

2.1 Segmentation as LMP
The minimum cost multicut problem (MP) is often
used in image decomposition problem and it is equiv-
alent to the graph decomposition problem. However, it
models only pairs of neighboring nodes in the graph,
which has difficulty in case of ambiguous boundaries.
In order to differentiate the ambiguous boundaries, min-
imum cost lifted multicut problem (LMP) [11] is pro-
posed to explicitly model relation between nodes that
are not adjacent to each other. Therefore, the relation-
ship between nodes around ambiguous boundaries can be
separated with help of more information. This distinct
makes feasible the segmentation of images with vague
edges.

Before the introduction of LMP, we first give some
parameters of LMP as follows.

e A connected graph ¢ = (V, E) with V the set of
vertices, and E the set of edges associating with two
neighbor vertices in V.

Fig. 1 Image sections of 3d Al — La alloy
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e Agraph ¢’ = (V, E'), which is called the lifted graph
of ¢, satisfies that E C E/, and D = E'\E contains
edges associating only with vertices that are not
neighboring. It is remarkable that the graph ¢’ is an
extension of ¢. In fact, when ¢’\¢ = @, there is no
edge associating with vertices that are not
neighboring. The LMP is reduced to MP problem.
On the other hand, when ¢’\¢ # @, LMP is not
equivalent to MP. In this case, however, the solutions
of MP and LMP are one-to-one corresponding.

e A costc, is assigned to every edge e € E’, where
e = uv connects two nodes u and v that belong to
distinct components.

Subsequently, the minimum cost lifted multicut problem
is defined as [11]:

i b 1

};2;2 ;Ece e (1)

s.t. VC € cycles(G),Ye € C: b, < Z b; (2)
2eC\(e)

VYuv € E'\E,YP € uv — paths(¢) : b, < Z be (3)

uveP

Vuv € ENENC € uv — cuts(¢) : 1=bo < ) 1—be, (4)

uveC

where b € B is a configuration of all the edge labeling in
E that b, € {0,1}, and B C {0,1}F is the feasible set of
the labeling configurations. In this optimization problem,
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the constrant (2) guarantees that the solution is feasible.
It means that any solution set {e € E|b, = 1} of (1) cor-
responds to a multicut or decomposition of G. While the
constraints (3) and (4) ensure that for any edge e € E/,
b, = 0if and only there is a path in ¢ with all edges labeled
0; b, = 1 if and only if there is a cut in ¢ with all edges
labeled 1.

2.2 Implementation
The pipeline of the segmentation and reconstruction is
shown in Fig. 2.

1. Superpixel. To avoid the heavy computational cost,
this paper constructs the lifted graph based on the
super-pixel algorithm. The term superpixel denotes a
set of neighboring image pixels that have similar
visual characteristics. A number of algorithms [12]
can be used to generate superpixels. As suggested by
Stutz et al. [12] and Wang et al. [13], the super-pixel
algorithms over-segment the image meshes into
much smaller graphs, which greatly reduces the
complexity of the following segmentation procedure.
As images captured from DCT are always of high
resolution, super-pixel algorithms improves the
feasibility of the multicut problem.

Based on the super-pixel algorithm, an image is
decomposed into a graph ¢.

(e)

3D Reconstruction

(a)
Over-segmentation
using Superpixel

Boundary
Detection

(c} (d)
Segmentation based Construction of
on Lifted Multicut Lifted Graph

Fig. 2 lllustration of the pipeline of the lifted multicut segmentation and reconstruction
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2. Boundary detection. It helps LMP determine the
feature of an edge. Given {d’, },i = 1,..., n the set of
detected boundaries between u and v, with d; the
strength of the i-th boundary point. The boundary
feature can be determined by:

n
fuv = ﬂ (5)

n

3. Construction of lifted graph. Moreover, a feature
vector f is calculated for each node in ¢, which
consists of the size, the gray histogram, skewness,
kurtosis, maximum, minimum, sum, variance, etc.
According to the Bayesian Network, the cost ¢,
depends on the conditional probability of y € {0, 1
with respect to the feature vector x of an edge that
(11]

Co = 1ng. 6)

Pyjx(L, %)

in which py), can be estimated by logistic regression.
However, there are two cases to consider the feature
vector x. For the first case, an edge e € E connects
two neighboring nodes u and v of two different
components. The feature vector of an edge is
constructed by concatenating feature vectors of two
nodes and the boundary feature between them.
As aresult, the feature vector of an edge connecting
u and v is constructed as %, =[fy, fi, fur]-
Then, logistic regression is conducted based on x,,,
which outputs the probability py), that

1

1+ exp*{ﬂO*Fﬂlx} @)

Pylx =
where Bo and B; can be learnt from the training set.
For the other case, the two nodes of an edge €' are
not neighbors. It is equivalent to find a path that
“best” connects these two nodes. However, it is
different from and more difficult than the first case
that it has to enumerate all paths connecting the two
nodes. In this paper, the Dijkstra’s algorithm is used
to find this path. After the path is obtained, its
probability can be determined by:

[ 120, (8)

eeP

max
Peuv—paths(¢)

Py (0,x) =
4. 3D reconstruction. To construct the 3D

microstructure of Al — La dendrite, it is necessary to
join together all the 2D segmentation results. For this
purpose, a 3D graph is introduced as following.
Given two neighboring graphs ¢/ = (V/, E') and
¢ = (V1 EHLY) of the I-th layer and the [ 4 1-th
layer respectively, the cross-layer edge set can be
defined as F = {ey|u € V'andv € V*1}. Moreover,
the 3D graph can be defined as:
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r=(Y,&)

where V C T, E=EUF. 9)

As far as the authors know, there have been many
algorithms to obtain the solution of 3D graph [11, 14].
In the situation of DCT sequential images of Al — La
dendrite, however, due to the tiny interval between
two neighbor layers, the movement of a dendrite is
always so slow that it is easy to interrelate two cross-
layer dendrite according to the euclidean distance.
Therefore, the cross-layer edge set is constructed as:

Zuﬂv 1
Zqu 1

where € denotes the threshold that can be
determined by experiments.

F = {ey| > e,uc Vliandv € VH'I}. (10)

3 Discussion and experimental results

3.1 Dataset

To capture the microstructure of the alloy, this paper con-
ducts diffraction constrast tomography experiments for
Al — La alloy. The Xradia 510 Versa from Carl Zeiss AG is
used in this test. As a result, a total number of 400 DCT
sections are captured with interval of 2 microns between
adjacent layers. The size of each section is 800 x 800
and each pixel has a resolution of 2 x 2 square microns.
Example sections are shown in Fig. 1. To reduce the com-
putational cost, each section is cropped into 4 images of
200 x 200. Therefore, a dataset of 6400 images is con-
structed for evaluation. For each image, the Alj; Las phase
is manually labeled. Furthermore for all experiments in
this section, the leave-one-out strategy is used and the
dataset is split into 10 subsets.

3.2 Evaluation of superpixel

To evaluate the superpixel algorithms, we make use of the
measurement of undersegmentation error (UE) [15] and
boundary recall (Rec) [16] to evaluate. Suppose a region
from the ground truth segmentation is G; and from the
superpixel algorithm is S;. Then, the “leakage” is used
here to describe the overlap of superpixels with multiple,
nearby ground truth segments. It can be evaluated by:

1 (Zsne0181) — 16
UE=—» ~— ?
Gl & Gl

(11)

where the normalized “leakage” of superpixel S; with

Y osing;20 1Sj1)—1Gil
respect to G; is denoted by % A high
value of UE means that the superpixels do not tightly fit
the ground truth result. Rec evaluates the boundary with
respect to the ground truth that:

TP(G,S)

Rec(G,S) = TP(G,S) + EN(G, S)

(12)



Su EURASIP Journal on Image and Video Processing (2018) 2018:135

where TP(G, S) means the number of true positive bound-
ary pixels FN(G, S) denotes the number of false-negative
boundary pixels. Therefore, a high Rec indicates better
boundary detection.

We compare three superpixel algorithms, i.e., NC [17],
Reg [18], and SLIC [15]. The evaluation results of these
algorithms are shown in Fig. 3, from which we can draw
three conclusions. Firstly, with the increase of number
of superpixels, Rec results of the three algorithms are
improved consistently. This is in tune with intuition that
more superpixels lead to a less “leakage” and a better “fit”
Secondly, SLIC obtains the best results over the other
two algorithms. Finally and most importantly, the cut-off
number of superpixel, with satisfied performance, can be
determined to be 1000. Actually, the Rec result of SLIC
tends to be 1 when the number superpixels is more than
1000. NC gets a similar Rec with SLIC when the number
of superpixels is more than 1300. In contrast, Reg obtains
the worst result. Similarly, the UE curve of SLIC decreases
nearly to the minimum, 0.72, after the number superpix-
els reaches 1000, while the best UE results of Reg and NC
are 0.105 and 0.13 respectively.

3.3 Evaluation of boundary detection

Similar to superpixel, boundary also plays an important
role in the cost of LMP (7). This section evaluates and
chooses the most appropriate boundary detector for DCT
images. Three boundary detectors are involved for com-
parison, i.e.,, DeepContour (DC) [19], Structure Forest
(SF) [20]) and RCF [21]. The precision-recall curve is
introduced to evaluate the performance of the three algo-
rithms. Precision/recall curves are shown in Fig. 4. It
indicates that the SF outperforms all the other two meth-
ods. In fact, SF obtains an F-score approximate to 0.69,
while the F-scores of DC and RCF are 0.62 and 0.66
respectively.
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It should be noted that Fig. 4 does not mean disap-
pointed performance of DeepContour and RCF. On other
dataset, BSDS500 for example, we also obtain different
results which support RCF. However, comprehensive eval-
uation of these algorithms is beyond the scope of this
paper. Therefore, the objective conclusion is that the
Structure Forest algorithm performs the best on our DCT
dataset.

3.4 Performance of segmentation
This section evaluates the performance of LMP-based
segmentation with different superpixel and boundary
detection algorithms. We evaluate the influence of the two
procedures, superpixel and edge detection, to the segmen-
tation. The idea is to evaluate one procedure by fixing the
other. Particularly, we choose structure forest as boundary
detection method when assessing superpixel algorithms,
because structure forest obtains the best performance in
Section 3.3. Similarly, SLIC is employed as superpixel
method when assessing boundary detection algorithms.
As a result, a total of five combinations are compared: (1)
NC [17] + SF [20], (2) Reg [18] + SF [20], (3) SLIC [15] +
SF [20], (4) SLIC [15] + DC [19], and (5) SLIC [15] + RCF
[21]. The number of superpixels is fixed to be 1000 due to
the best performance in Fig. 3. All above combinations are
followed by the logistic regression and the lifted multicut
algorithm.

We introduce three indicators [22] in this evaluation,
i.e., the segmentation covering (SC), the probabilistic
Rand index (RI), and the variation of information (VT).

e SC measures averaged matching between proposed
segments with a ground truth labeling, defined as:

5C$,6) = 3 B ey 508
b |G| g<G s; U g

(13)
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Fig. 3 Qualitative evaluation of superpixel algorithms on the DCT image dataset
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Fig. 4 Precision-recall curve

e Rand index (RI) evaluates the labeling distance
between two regions, which is defined as:

RI(S, G) = Z%j/ ( 'f')

i<j

(14)

where:

1 if there exist k and k’ such that both x; and
x; are in both sz and g/

1 if there exist k and &’ such that both «; is in,
both s and girand «; is in neither s; nor gi

0 otherwise

Vij =

(15)
® VI measures the relative entropy between two
segmentation sets, S and G, and is defined as:
VI(S,G) = H(S|G) + H(GIS) (16)

where H(S|G) and H(G|S) are conditional image
entropies that can be defined as:

HESIG) = Y Y Plsly)log (17)

ls€{0,1} [;{0,1}

P(ly)
P(lg, ly)

where s and /; are labels in S and G respectively.
H(G|S) can be defined similarly.

The segmentation results using these three indicators
are shown in Table 1. We can draw two conclusions.
Firstly, the influence of superpixel is greater than that
of boundary detector. The max deviation of SC is 0.18
(NC+SF) when alternating superpixel algorithms and 0.26
(SLIC+RCF) when alternating boundary detectors. Simi-
lar results can also be found in RI (0.219 vs 0.008) and VI
(0.742 vs 0.043). This is reasonable because the accuracy
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Table 1 Comparison of segmentation results
Method SC RI VI
NC [17] + SF [20] 0612 0.704 1.798
Reg [18] + SF [20] 0.651 0.761 1515
SLIC[15] + SF [20] 0.792 0923 1.056
SLUIC[15]+DC[19] 0.776 0.897 1.140
SLIC[15] + RCF [21] 0.790 0915 1.013

of superpixel is the precondition of segmentation. Sec-
ondly, SLC + SF obtains the best performance in both SC
and R, and a similar performance with the best one (SLC
+ RCEF). Therefore, this paper considers the combination
SLC + SF as the best pipeline.

Subsequently, this paper analyzes the construction of
the 3D graph. The only parameter in this procedure to be
considered is the threshold € in 10. For this evaluation, the
cross-layer correspondences are manually labeled to con-
struct the cross-layer edge set Fy. Given the cross-layer
edge set Fs from the segmentation algorithm, the accuracy
can be evaluated by:

acc = TP/GT (18)

where TP denotes the number of edges in F; N Fy, and GT
denotes the number of edges in F,. The results are shown
in Fig. 5. It indicates that the accuracy keeps higher than
0.98 until € > 0.8. Therefore in this paper, the threshold is
set to be 0.8.

Finally, the 3D visualization technology allows us to
investigate the microstructure of this dendrite in any view
angle. This is illustrated in Fig. 6 where two observations
are shown. This morphology has two features. First, the
whole microstructure is well developed in the form of
dendrite. For example in the left of Fig. 6, the dendrite

Accuracy
o
=
()]
T

0.7 0.75 0.8 0.85 0.9 0.95
Threshold

Fig. 5 Accuracy of cross-layer construction along with variation of the
threshold
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Fig. 6 Different views of the dendrite of the phase Alj1Las in Al — La alloy. Different colors denote different connected components

structure appears as the base of the whole microstruc-
ture. On the other hand, the dendrite arm acts as lamellar
eutectic morphology.

The reconstructed three-dimentional microstructure in
Fig. 6 is novel and different from the tree-structure
described in [8]. Through 2D imaging methods of
X-ray diffraction and SEM, Zheng et al. [7, 8] found the
diphase morphology in 2D images, which is predicted to
produced by cross-sectioning the alloy vertical to den-
drite arms (c.f. Fig. 4 in [8]). However, they did not verify
this prediction without the complete three-dimensional
microstructure. With help of the reconstructed three-
dimensional microstructure in this paper, nevertheless,
the 2D “diphase” dendrites named by Zheng et al. [8]
are formulated by cross-sectioning the dendrites arms in
lamellar eutectic microstructure.

4 Conclusion

While many researches focused on the variation of
microstructure evolution [10] and properties of the alloy
[9, 23] according to varying components, there has been
little experimental verification of these microstructures in
three dimension. For the Al — 35La alloy prepared by free
solidification experiment, the 3D dendritic microstruc-
ture of Alj1Las phase has been captured and analyzed
based on the diffraction contrast tomography (DCT) tech-
nique and the lifted multicut algorithm.

The pipeline of the segmentation of DCT images con-
sists of four procedures. The first one is the superpixel
method, which greatly reduces the burden of segmen-
tation. Then, the lifted graph is constructed based on
the superpixels and boundary detection algorithms. It is
followed by the lifted multicut algorithm which solves
the image segmentation problem. After the experimen-
tal evaluation, the combination of SLIC [15] and SF
[20] is selected to obtain the best segmenting accu-
racy. Finally, with help of the cross-layer correspon-
dence and 3D visualization, the whole microstructure of
Alj1Las is reconstructed from the DCT image sequence.
As a consequence, a novel morphology of the AljjLas

phase is observed through the visualization of the 3D
microstructure.

The value of this work is reflected in that, for the first
time, the 3D microstructure is exhibited in the material
domain. Moreover, compared to traditional mechanical
cross-sectioning methods, the DCT technique as well
as the LMP segmentation algorithm is able to recover
the microstructure losslessly. Therefore, it is our future
work to study the 3D microstructures of other kinds
of alloys as well as their relationship to mechanical
properties [10].

Abbreviations

DC: DeepContour; DCT: Diffraction contrast tomography; FN: False negative;
LMP: Minimum cost lifted multicut problem; MP: Minimum cost multicut
problem; RCF: Richer convolutional feature; Rec: Boundary recall; RI:
Probabilistic rand index; SC: Segmentation covering; SF: Structure forest; SLIC:
Simple linear iterative clustering; TP: True positive; UE: Undersegmentation
error; VI: Variation of information

Acknowledgements
The author thanks the editor and anonymous reviewers for their helpful
comments and valuable suggestions.

Funding
This work was partially supported by National Key Research and Development
Program of China (No. 2016YFB0700500).

Availability of data and materials
I can provide the data.

Authors’ contributions
The author took part in the discussion of the work described in this paper. The
author read and approved the final manuscript.

Authors’ information

Ya Su received the B.Sc, M.Sc,, and Ph.D. degrees in Signal and Information
Processing all from Xidian University, Xi'an, China, in 2003, 2006, and 2010
respectively. He was a Postdoc fellow at the State Key Laboratory of Intelligent
Technology and Systems, Department of Electronic Engineering, Tsinghua
University, Beijing, China. He is now faculty of the School of Computer and
Communication Engineering, University of Science and Technology Beijing.
His research interests include machine learning and computer vision.

Ethics approval and consent to participate
Approved.

Consent for publication
Approved.



Su EURASIP Journal on Image and Video Processing (2018) 2018:135

Competing interests

There is no potential competing interests in our paper. The author has seen
the manuscript and approved to submit to your journal. | confirm that the
content of the manuscript has not been published or submitted for
publication elsewhere.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 16 September 2018 Accepted: 14 November 2018
Published online: 04 December 2018

References

1. M-n.Feng, Y.-c. Wang, H. Wang, G.-q. Liu, W.-h. Xue, Reconstruction of
three-dimensional grain structure in polycrystalline iron via an interactive
segmentation method. Int. J. Miner. Metall. Mater. 24(3), 257-263 (2017)

2. TJ.Marrow, A.King, P. Reischig, S. Rolland Du Roscoat, W. Ludwig,
Diffraction contrast tomography of polycrystalline alumina. Mater. Sci.
Technol. Conf. Exhibition. 1, 489-499 (2009)

3. S.A.McDonald, C. Holzner, EM. Lauridsen, P. Reischig, A.P. Merkle, P.J.
Withers, Microstructural evolution during sintering of copper particles
studied by laboratory diffraction contrast tomography (LabDCT). Sci. Rep.
7(1) (2017)

4. A.Ullah, G. Liu, J. Luan, W. Li, M. ur Rahman, M. Ali, Three-dimensional
visualization and quantitative characterization of grains in polycrystalline
iron. Mater. Charact. 91, 65-75 (2014)

5. A Ullah, G. Liu, H. Wang, M. Khan, D.F. Khan, J. Luan, Optimal approach of
three-dimensional microstructure reconstructions and visualizations.
Mater. Express. 3(2), 109-118 (2013)

6. J.Waggoner, Y. Zhou, J. Simmons, M. De Graef, S. Wang, 3D materials
image segmentation by 2D propagation: A graph-cut approach
considering homomorphism. [EEE Trans. Image Process. 22(12),
5282-5293 (2013)

7. Y.Zheng, Z.Wang, A novel periodic dendrite microstructure in Al-La
binary alloy. J. Cryst. Growth. 318(1), 1013-1015 (2011)

8. Y.H.Zheng, Z.D. Wang, S. M. Zhang, Microstructure of diphase dendrite
in Al-35%La alloy during solidification. J. Cryst. Growth. 362, 33-37 (2013)

9. Q.Yang, F.Bu, F. Meng, X. Qiu, D. Zhang, T. Zheng, X. Liu, J. Meng, The
improved effects by the combinative addition of lanthanum and
samarium on the microstructures and the tensile properties of
high-pressure die-cast Mg-4Al-based alloy. Mater. Sci. Eng. A. 628,
319-326 (2015)

10. Y.He, J. Liu, S. Qiu, Z. Deng, J. Zhang, Y. Shen, Microstructure evolution
and mechanical properties of Al-La alloys with varying La contents. Mater.
Sci.Eng. A. 701, 134-142 (2017)

11. M. Keuper, E. Levinkov, N. Bonneel, G. Lavoue, T. Brox, B. Andres, in
International Conference on Computer Vision, Vol. 2015 Inter. Efficient
decomposition of image and mesh graphs by lifted multicuts (IEEE, 2015),
pp. 17511759

12. D.Stutz, A. Hermans, B. Leibe, Superpixels: An evaluation of the
state-of-the-art. Comp. Vision Image Underst. 166, 1-27 (2018)

13. M.Wang, X. Liu, Y. Gao, X. Ma, N.Q. Soomro, Superpixel segmentation: A
benchmark. Signal Proc. Image Commun. 56, 28-39 (2017)

14. T.Liu, M. Zhang, M. Javanmardi, N. Ramesh, T. Tasdizen, in European
Conference on Computer Vision. SSHMT: Semi-supervised Hierarchical
Merge Tree for Electron Microscopy Image Segmentation (Springer,
2016), pp. 144-159

15. R.Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, SLIC
Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans.
Pattern Anal. Mach. Intell. 34(11), 2274-2282 (2012)

16. D.R. Martin, C.C. Fowlkes, J. Malik, Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Trans.
Pattern Anal. Mach. Intell. 26(5), 530-549 (2004)

17. G. Mori, in International Conference on Computer Vision, Vol. Il. Guiding
model search using segmentation (IEEE, 2005), pp. 1417-1423

18. H.Fu, X.Cao, D. Tang, Y. Han, D. Xu, Regularity preserved superpixels and
super voxels. IEEE Trans. Multimedia. 16(4), 1165-1175 (2014)

19. W.Shen, X. Wang, Y. Wang, X. Bai, Z. Zhang, in Computer Vision and Pattern
Recognition, Vol. 07-12-June. DeepContour: A deep convolutional feature

20.

21.

22.

23.

Page 8 of 8

learned by positive-sharing loss for contour detection (IEEE, 2015),

pp. 3982-3991

P. Dollar, C. L. Zitnick, in International Conference on Computer Vision.
Structured forests for fast edge detection (IEEE, 2013), pp. 1841-1848

Y. Liu, M\M. Cheng, X. Hu, K. Wang, X. Bai, in Computer Vision and Pattern
Recognition. Richer convolutional features for edge detection (IEEE, 2017),
pp. 5872-5881

P. Arbeldez, M. Maire, C. Fowlkes, J. Malik, Contour detection and
hierarchical image segmentation. IEEE Trans. Pattern. Anal. Mach. Intell.
33(5),898-916 (2011)

M. Murashkin, I. Sabirov, A. Medvedeyv, N. Enikeev, W. Lefebvre, R. Valiev, X.
Sauvage, Mechanical and electrical properties of an ultrafine grained
Al-8.5 wt. % RE (RE = 5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe
plastic deformation. Mater. Des. 90, 433-442 (2016)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	Methods
	Segmentation as LMP
	Implementation

	Discussion and experimental results
	Dataset
	Evaluation of superpixel
	Evaluation of boundary detection
	Performance of segmentation

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

