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1  Introduction
With the rapid development of wireless communication, Internet of Things (IoT) [1], 
artificial intelligence (AI) [2], etc., wireless terminals increase exponentially and much 
radio spectrum is urgently needed. IoT is the term used for ubiquitously intelligent inter-
connected objects which interact with each other through unique addressing schemes 
based on standard communication protocols [3]. It is believed that the IoT paradigm 
will have a strong impact on everyday life in future [4]. IOT needs a lot of spectrum 
resources; however, the radio spectrum has been fully subdivided according to the situ-
ation in different countries [5]. There is no idle spectrum to meet the requirement of the 
emerging wireless communication technology. According to the report of Federal Com-
munications Commission (FCC), the utilization ratio of authorized spectrum is under 
30% [6]. As a result, improving the utilization of spectrum seems particularly important 
for the development of wireless communication technology.

Cognitive radio (CR) [7–9] aims at opportunistic access to the registered spectrum if 
the primary user (PU) is out by periodically monitoring the observed spectrum bands. 
Once PU uses the spectrum again, the secondary user (SU) will exit the channel. CR 
technology has attracted much attention in recent years due to its time division mul-
tiplexing capability of the registered spectrum. The most important technology behind 
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CR is to periodically judge the status of the observed spectrum, named spectrum sensing 
(SS) [8, 10, 11]. To protect PU and to maintain the throughput of SU are two important 
aspects for SS, where detection probability and false alarm probability are, respectively, 
defined. High detection probability means better protection of SU, and lower false alarm 
probability means greater throughput.

In the literature, various SS schemes have been proposed for the possible perfor-
mance improvement, mainly including matched filtering detector [12], energy detector 
(ED) [13], cyclostationary feature detector (CFD) [14], etc. The matched filtering detec-
tor works by demodulating the authorization signal or pilot detection. It is an optimal 
detector if the prior knowledge of PU is known. ED is based on the energy comparison 
of signal with the preset threshold, which is the optimal blind detector due to its superb 
performance and low complexity. However, ED suffers from the influence of noise 
uncertainty, especially under low signal-to-noise ratio (SNR) regimes. CFD determines 
whether PU exists by the presence or absence of cyclostationary feature. The background 
noise is a wide stationary stochastic process, and it has no cyclostationary feature. As a 
result, CFD is applied to SS in the low SNR cases. The disadvantage of CFD consists in 
the longer observation time and the higher computational complexity.

ED is mainly considered in this paper due to its low complexity. To solve the issue of 
noise uncertainty, much effort has been made. An adaptive fixed threshold algorithm is 
proposed in [15], which makes ED robust to channel fading, shadows, and interference 
[11]. Zhang and Bao [16] provides threshold setting method with the estimated noise 
power. An improved ED model was proposed in [17], where the synergy perception gain 
was considered. In [12], sliding windows is used to alleviate noise fluctuations.

The sampling points are fixed for the traditional ED scheme and the sensing thresh-
old varies adaptively with the background noise. The disadvantage of this scheme is 
that when SNR environment becomes worse, the sensing performance will be greatly 
reduced. Motivated by the mentioned above, ED with adaptive sampling is proposed in 
this paper, where the sampling point of the observed signal is adaptively adjusted accord-
ing to the variation of the environmental SNR. When the SNR decreases, the detec-
tion performance can be maintained as much as possible by the rise of sampling point 
within the tolerance of the system. The main contribution and work can be concluded as 
follows:

1.	 The theoretical derivation states that the sensing performance can be compensated 
by increasing sampling points when the SNR decreases.

2.	 The theoretical derivation is provided that how the sensing performance can be 
maintained and even improved by the rise of sampling points within the tolerance of 
the system.

3.	 The simulation experiments are made and the conclusions proposed in this paper are 
validated.

The content of this paper is as follows. In Sect. 2, we provide the content of this paper, 
including the experimental method, personnel composition, etc. Section  3 introduces 
the system model and gives the mathematical expressions of energy detection. In Sect. 4, 
the proposed SS scheme with adaptive sampling, the SNR estimation scheme and the 
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improved ED scheme are discussed. The simulation experiments are conducted in 
Sect. 5. Section 6 is the discussion section, which puts forward the shortcomings of this 
paper. Finally, conclusions are drawn in Sect. 7.

2 � Methods
The motivation of this paper is to provide a SS scheme where the trade-off between the 
sensing complexity and the sensing accuracy by adaptive sampling of received signal. 
Two theorems are derived by mathematical derivation, where the proposed SS scheme is 
discussed and demonstrated. To verify the effectiveness of the proposed schemes, simu-
lation experiments based on the MATLAB platform are made.

In the simulation experiment, the experimental results are compared with the tradi-
tional ED scheme and the traditional SNR evaluation, and it is concluded that the exper-
imental results are better than the traditional schemes. In the simulations, the method of 
controlling variables is considered, where when the environment changes, the detection 
probability remains unchanged by changing N.

It states that the proposed algorithm balances sensing complexity and the sens-
ing accuracy. When the SNR becomes larger, especially above 0 dB, ED is the optimal 
scheme due to the lowest complexity and the superb performance. When the SNR is at 
a lower level, the proposed scheme helps to improve the sensing accuracy by the rise of 
the sensing complexity within the system tolerance.

For the authors of this paper, Youheng Tan, Yuebo Li, Yangying Zhang and I are doc-
toral students of Beijing University of posts and Telecommunications. Junsheng Mu is 
the Postdoctor of Beijing University of posts and Telecommunications and Xiaojun Jing 
is the professor of Beijing University of posts and Telecommunications.

3 � System model
Generally, SS is considered to be a binary hypothesis, where H1 represents the existence 
of the PU and H0 denotes that the PU does not exist [18]. In ED, we sample the received 
signal through the frequency band with carrier frequency fc and bandwidth W  , and the 
sampling frequency is fs . When PU is active, the sampling signal received by the SU can 
be formulated as [19]

When the PU does not exist, the sampling signal received by the SU is

where sn denotes the signal of the PU with mean 0 and variance σ 2
s  . xn is additional white 

Gaussian noise (AWGN) with mean 0 and variance σ 2
x .

Let τ is the sensing time slot and N  represents the sampling point N = τ fs . Then, the 
received energy T

(

y
)

 at the receiver of the SU [20] is

(1)y(n) = sn + xn.

(2)y(n) = xn,

(3)T
(

y
)

= 1

N

N
∑

n=1

∣

∣y(n)
∣

∣

2
.
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The probability density function (PDF) of T
(

y
)

 is a Chi-square distribution with the 
freedom degree 2N  in the complex-valued case [21]. Then, the false alarm probability 
and the corresponding detection probability of ED can be, respectively, denoted as

where εi is the sensing threshold, γ = σ 2
s−i

σ 2
x−i

 represents received SNR of the channel, σ 2
s−i 

is the power of the PU signal. σ 2
x−i is the power of noise.Q(x) is complementary inverse 

function of Gaussian distribution �(x), and Q(x) = 1−�(x),

The general procedure of ED is shown in Algorithm 1.
To consider both detection probability and false alarm probability, Fi is regarded as the 

optimization objective [22],

where 1− Pd−i denotes the missed detection probability of the ith channel.
The sensing threshold plays an important role for SS, and it directly influences the per-

formance of SS. Assume that a target false alarm probability Pf  is required, then (4) can 
be written as

According to [23], the sensing threshold is under the constraint as follows:

(4)

Pf = P(H1|H0)

= Q

[(

εi

σ 2
x−i

− 1

)

√
N

]

,

(5)

Pd = P(H1|H1)

= Q

[(

εi

σ 2
x−i

− γ − 1

)
√

N

2γ + 1

]

,

(6)Q(x) =
1√
2π

∞
∫

x

exp

(

−
t2

2

)

dt.

(7)

Fi = Pf−i + (1− Pd−i)

= Q

[( −→εi
σ 2
x−i

− 1

)

√

Ni

]

+ 1− Q

[( −→εi
σ 2
x−i

− γ − 1

)
√

Ni

2γ + 1

]

,

(8)εi =
(

Q−1
(

Pf
)

√
N

+ 1

)

σ 2
x .

(9)σ 2
x ≤ εi ≤ σ 2

s .
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4 � SS with adaptive sampling
The main contribution of this paper contains three modules, SNR estimation, SS with 
adaptive sampling (proposed scheme) and improved ED, where SS with adaptive sam-
pling and improved ED are two optional schemes based on the estimated SNR (Fig. 1).

4.1 � SS with adaptive sampling

The essence of ED is that εi varies adaptively with background noise for the fixed N  . 
According to (4), we can get

where ε1 and ε2 , respectively, denote the sensing threshold for two different moments, 
ε1 < ε2 . σ 2

x1−i and σ 2
x2−i denote the corresponding noise power, σ 2

x1−i < σ 2
x2−i.

(10) can be further described as

where K  is a constant greater than 1 for the given Pf .

Theorem  1  If σ 2
x−i varies from σ 2

x1−i to σ 2
x2−i(σ

2
x1−i < σ 2

x2−i ), Fi can be constant by 
increasing N  for fixed false alarm probability.

Proof  To keep Fi constant for fixed false alarm probability, the following equation can 
be obtained:

where γ1 and γ2 are the corresponding SNR.□

(10)

(

ε1

σ 2
x1−i

− 1

)

√
N =

(

ε2

σ 2
x2−i

− 1

)

√
N = Q−1(Pf ),

(11)K =
ε1

σ 2
x1−i

=
ε2

σ 2
x2−i

,

(12)

(

ε1

σ 2
x1−i

− γ1 − 1

)
√

Ni−1

2γ1 + 1
=

(

ε2

σ 2
x2−i

− γ2 − 1

)
√

Ni−2

2γ2 + 1
,
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Let a = γ1 , b = γ2 . When σ 2
x1−i < σ 2

x2−i , we can get a > b > 0.
Based on (11), (12) can be written as

Due to Pd is generally higher than 0.5, then  
(K − a− 1)

√

Ni−1

2a+1 = (K − b− 1)

√

Ni−2

2b+1
< 0. And because 

√

Ni
2γ+1 > 0 , then 

(K − a− 1) < 0&(K − b− 1) < 0.
(13) can be further denoted as

Let us define

Then,

According to (16), f (x) = x+1−K√
2x+1

 monotonically increases with x. (14) can be writ-

ten as

Due to a > b , then we can get (a+1−K )√
2a+1

>
(b+1−K )√

2b+1
.

(13)(K − a− 1)

√

Ni−1

2a+ 1
= (K − b− 1)

√

Ni−2

2b+ 1
.

(14)(a+ 1− K )

√

Ni−1

2a+ 1
= (b+ 1− K )

√

Ni−2

2b+ 1
.

(15)f (x) =
x + 1− K√

2x + 1
(x> 0).

(16)

f
′
(x) =

√
2x + 1− (x + 1− K )

[

(2x + 1)
1
2

]′

2x + 1

=
(x + 1− K )

′√
2x + 1− (x + 1− K )

(√
2x + 1

)
′

(√
2x + 1

)2

=
√
2x + 1− (x + 1− K )[(2x + 1)

1
2 ]′

2x + 1

=
√
2x + 1− (x + 1− K ) 12 (2x + 1)−

1
2 · 2

2x + 1

=
√
2x + 1− (x + 1− K )(2x + 1)−

1
2

2x + 1

=
(√

2x + 1− (x + 1− K )√
2x + 1

)

· 1

2x + 1

= 2x + 1− x − 1+ K√
2x + 1

· 1

2x + 1

=
x + K√

2x + 1 · (2x + 1)

=
x + K

√
2x + 1

3
> 0.

(17)
(a+ 1− K )√

2a+ 1
.
√

Ni−1 =
(b+ 1− K )√

2b+ 1
.
√

Ni−2.
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To maintain the detection performance, the following conclusion can be drawn 
according to (17):

As a result, the conclusion in Theorem 1 can be drawn.
From Theorem  1, when the sensing environment becomes worse, Pd can be main-

tained by increasing N  . Then, the Fi of two moments can be, respectively, expressed as

Because Pd−1=Pd−2 and K = ε1
σ 2
x1−i

= ε2
σ 2
x2−i

 , then we can get

due to Ni−2 > Ni−1 , then we can get Pf−1 > Pf−2.
As a result,

Remark  It can be seen from Theorem 1 that based on the constant false alarm criterion 
(CFAR), Pd can be maintained by increasing N  when the environment becomes worse. 
At the same time, due to the increase in N  , the Pf  will be smaller than before in fact.

We assume that P̃d signifies the minimum detection probability of the system require-
ment, while P̃f denotes the corresponding maximum false alarm probability,

For the given γ , σ 2
s−i , σ

2
x−i and εi , according to (23) and (24), the constraint on Ni can 

be obtained as follows:

(18)Ni−2 > Ni−1.

(19)

F1 = Pf−1 + (1− Pd−1)

= Q

[(

ε1

σ 2
x1−i

− 1

)

√

Ni−1

]

+ 1− Q

[(

ε1

σ 2
x1−i

− γ1 − 1

)
√

Ni−1

2γ1 + 1

]

,

(20)

F2 = Pf−2 + (1− Pd−2)

= Q

[(

ε2

σ 2
x2−i

− 1

)

√

Ni−2

]

+ 1− Q

[(

ε2

σ 2
x2−i

− γ2 − 1

)
√

Ni−2

2γ2 + 1

]

,

(21)F1 − F2=Q
[

(K − 1)
√

Ni−1

]

−Q
[

(K − 1)
√

Ni−2

]

.

(22)F2<F1.

(23)P̃f ≥ Pf ,

(24)P̃d ≤ Pd.

(25)Nmin ≤ N ≤ Nmax,
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where T0 is the maximum sampling interval that the system can tolerate.

Theorem 2  If σ 2
x−i varies from σ 2

x1−i to σ 2
x2−i(σ

2
x1−i < σ 2

x2−i ), the sensing performance 
can be maintained and even improved when Nmin ≤ N1 ≤ N ≤ Nmax for the fixed false 
alarm probability, where N1 denotes the minimum point that can keep Pd constant.

Proof  With the fall of the SNR, to keep the Pd for the fixed false alarm probability, the 
minimum sampling point N1 meets the requirement as follows:

where Pd−MED corresponds to the detection probability with noise variance σ 2
x2−i and 

Pd−ED corresponds with the detection probability with noise variance σ 2
x1−i . N0 corre-

sponds with the sampling point with noise variance σ 2
x1−i.□

(28) states that the detection probability can be constant if

However, when N1 < N ≤ Nmax , 0 > K − γ2 − 1 > K − γ1 − 1 according to (9), 
then

where γ2 denotes the corresponding SNR when the sampling point N (N ∈ (N1, Nmax]) 
is required to keep the Pd , γ2 < γ1.

Due to

then

(26)Nmin = max











Q−1
�

Pf−i

�

εi
σ 2
x
− 1





2

,





√
2γi + 1Q−1

�

Pd−i

�

εi
σ 2
x
− γi − 1





2










,

(27)Nmax = fsT0,

(28)

Pd−MED=Pd−ED

⇒ Q

[

(K − γ1 − 1)

√

N1

2γ1 + 1

]

=Q

[

(K − γ0 − 1)

√

N0

2γ0 + 1

]

⇒
[

(K − γ1 − 1)

√

N1

2γ1 + 1

]

=
[

(K − γ0 − 1)

√

N0

2γ0 + 1

]

⇒ N1 =
(K − γ0 − 1)2

(K − γ1 − 1)2
×

2γ1 + 1

2γ0 + 1
× N0,

N = N1 =
(K − γ0 − 1)2

(K − γ1 − 1)2
×

2γ1 + 1

2γ0 + 1
× N0&N ∈ [Nmin, Nmax].

(29)
(

K − γ2 − 1

K − γ1 − 1

)2

> 1,

(30)0 < 2γ + 1 < 2γ1 + 1,
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According to (30) and (31), we get

where Pd−RED denotes the detection probability with the sampling point 
N (N ∈ (N1, Nmax]).

Theorem 2 states that the sensing performance can be maintained and even improved 
by the adaptive sampling of the observed signal within the tolerance of the CR system.

Based on (28),

Since N1 > N0 , then Pf−MED < Pf−ED . Then,

In consequence,

The same to the theoretical derivations in (33)–(37), the following equation can be 
obtained

Remark  From the derivation of Theorem 2, we can know that when the environment 
SNR decreases, we can maintain the detection performance by increasing the sampling 
point. If the complexity of the system is not considered, we can increase the sampling 

(31)0 <
N1(2γ + 1)

N (2γ1 + 1)
< 1.

(32)

(

K − γ − 1

K − γ1 − 1

)2

>
N1(2γ + 1)

N (2γ1 + 1)

⇒
K − γ − 1

K − γ1 − 1
>

√

N1(2γ + 1)

N (2γ1 + 1)

⇒ (K − γ − 1)

√

N

2γ + 1
< (K − γ1 − 1)

√

N1

2γ1 + 1

⇒ Q

[

(K − γ − 1)

√

N

2γ + 1

]

> Q

[

(K − γ1 − 1)

√

N1

2γ1 + 1

]

⇒ Pd−RED > Pd−MED,

(33)Pf−ED = Q
[

(K − 1)
√

N0

]

,

(34)Pf−MED = Q
[

(K − 1)
√

N1

]

.

(35)
{

FMED = Pf−MED + Pmd−MED

FED = Pf−ED + Pmd−ED
,

(36)Pmd−MED = 1− Pd−MED,

(37)Pmd−ED = 1− Pd−ED.

(38)FMED < FED.

(39)FRED < FMED.



Page 11 of 17Miao et al. J Wireless Com Network        (2021) 2021:156 	

point to the upper limit of the system, and then the detection performance will be opti-
mized. If the SNR environment drops a lot and the required sampling points are above 
the upper limit of the system, the proposed scheme will not work anymore. At this 
moment, IED will be considered and the detail of IED will be discussed later.

4.2 � SNR evaluation

In the proposed schemes, the accuracy of SNR evaluation directly influences the sens-
ing performance. How to effectively evaluate the environmental SNR seems particularly 
important. As a result, an SNR estimation model based on convolutional neural network 
(CNN) and long short-term memory (LSTM) network is employed [24].

The flowchart of the CNN-LSTM network is shown in Fig. 2. From Fig. 2, the CNN-
LSTM network is divided into two parts, the CNN module and the LSTM module. The 
CNN module extracts the features of the segmented signal to form the feature vector. 
The output feature of the CNN module is input to the LSTM module, and the features 
of each short sequence are fused in the fully connected layer. After the fully connected 
layer, the evaluated SNR is obtained.

Figure 3 provides the relative error comparisons of various SNR estimation schemes, 
including spectrum analysis (SA) estimation [25], maximum likelihood (ML) estimation 
[26] and the CNN-LSTM scheme considered in this paper. From Fig. 3, the relative error 
of the CNN-LSTM scheme is the lowest, which states that the CNN-LSTM scheme con-
sidered in this paper has a strong ability of SNR estimation.

4.3 � Improved energy detection (IED)

If the required sampling point for maintaining the sensing performance is beyond the 
tolerance of the CR system, IED [27] is considered in this paper.

The detailed procedure of IED is shown in Algorithm 2. The observed frequency band 
is determined to be busy if it satisfies one of the conditions as follows:

Training 
dataset e

Data segmentation

U1 U2 Ul

CNN CNN CNN

LSTM LSTM LSTM

Fully connected feature fusion

Calculation loss

loss
convergence

Output 
modelTest signal

Data 
segmentation

Signal to 
noise ratio

loss

Y

Training phase

Test phase

e e eei-2 i-1 i i+1 i+2

Fig. 2  Flowchart of the CNN-LSTM network
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1.	 The energy of the received signal is higher than the threshold.
2.	 The energy of the received signal is lower than the threshold. In the meanwhile, both 

the average energy and the last energy of the received signal are higher than the 
threshold.

5 � Simulation result
In this section, corresponding simulations are performed to verify the effectiveness of 
the proposed scheme. The simulation experiments in this paper are all completed under 
Gaussian channels, and the initial sampling point is N = 100 , and every experiment iter-
ated 5000 times.

Fig. 3  Relative error comparisons of various SNR estimation schemes
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Figure  4 exhibits the performance comparisons of various schemes, where T-ED 
denotes the theoretical performance of the proposed scheme and R-ED denotes the 
real performance of the proposed scheme. The principle of T-ED is the same as that of 
R-ED. They are both based on energy detection under CFAR conditions. The difference 
between T-ED and R-ED is the false alarm probability. In the experiment, the false alarm 
probability of T-ED corresponds with Theorem 1, and its false alarm probability is fixed 
for each detection probability, while the false alarm probability of R-ED adaptively var-
ies with the sampling point. In Fig. 4, the SNR jumps from − 2 to − 5 dB, and the corre-
sponding sampling point are 200, 500 for T-ED and R-ED. The sampling point is 100 for 
the classical ED. From Fig. 4, when the SNR varies from − 2 to − 5 dB, the sensing per-
formance of ED greatly decreases due to an increase in noise content, which states that 
ED suffers from the noise uncertainty. Compared the sensing performance of T-ED with 
that of ED under SNR = − 5 dB situation, the sensing performance is greatly improved 
for the proposed T-ED. It indicates that the sensing performance can be improved with 
the rise of the sampling point, which manifests the rationality of the contribution for this 
paper.

In addition, the detection probability of R-ED is higher than that of T-ED for the same 
false alarm probability, which corresponds with the analysis in (20)–(23).

Fig. 4  Sensing performance comparisons of various schemes

Fig. 5  Throughput comparisons of various schemes
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Fig. 6  Detection probability comparisons when false alarm probability is 0.1

Fig. 7  Variation of the sampling point with SNR

As a supplement, Fig.  5 provides the throughput comparisons of various schemes. 
Under the same conditions, the throughput and the false alarm probability are inverse 
numbers related to each other. From Fig. 5, the performance of this algorithm is better. 
It is worth noting that the two T-ED lines in Fig. 5 coincide with ED when γ = −2 dB. 
That is because that the algorithm mentioned in this paper is based on the CFAR crite-
rion. To sum up, the simulations in Figs. 4 and 5 validate effectiveness of the proposed 
Theorem 1.

Figure  6 shows detection probability comparisons under various sampling condi-
tions when the false alarm probability is 0.1, where the background SNR varies from 
− 2 to − 8  dB. From Fig.  6, the sensing performance can be constant by increasing 
sampling point infinitely, which is in accordance with the analysis in Fig. 4. If the tol-
erance of system sampling point is considered ( N1 ≤ N ≤ Nmax ), the sensing perfor-
mance can be maintained in the case of a small reduction in SNR, which indicates 
the applicable scope of the proposed scheme. Comparing the sensing performance 
( N = N1 ) with the sensing performance ( N1 < N ≤ Nmax ), the detection probability 
( N1 < N ≤ Nmax ) is higher than that of N = N1 . This states that the sensing perfor-
mance can be improved when the background SNR decreases by adaptive sampling 
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within the tolerance of the CR system. However, the sensing performance will still 
greatly decrease if a sudden and drastic change happens to the SNR.

Figure 7 shows the variation of the sampling point with SNR, where the sampling 
point corresponds with the detection probability in Fig. 6. From Fig. 7, the sampling 
point is identical for the case N = N1 and the case N increase infinitely when SNR 
varies from − 2 to − 5 dB. The reason for this phenomenon is that the SNR varies to a 
small extent and the required sampling point is within the tolerance of the system for 
constant sensing performance. When the SNR varies from − 5 to − 8 dB, the required 
sampling point is above the tolerance of the system for constant sensing performance. 
As a result, the sampling point of the case N = N1 and the case N = Nmax is identi-
cal when SNR varies from − 5 to − 8 dB, far below the sampling point of the case N 
increase infinitely.

The performance of ED and IED under different signal-to-noise ratios is compared in 
Fig. 8. As the analysis shown in Fig. 8, if a sudden and drastic change happens to the 
SNR, the sensing performance will still greatly decrease for the proposed scheme.

IED is considered in this case. From Fig. 8, the sensing performance is still at a high 
level even under SNR = −15 dB condition, which indicates that IED is suitable for 
the sudden and drastic change of the background SNR. As a result, both the proposed 
scheme and IED can ensure the superb sensing performance no matter how the SNR 
changes.

6 � Discussions
As can be seen from the simulations result, the optimization design proposed in this 
paper can improve perceptual performance. However, this method specifies the value 
range of SNR, and when this range is exceeded, the method will not be used. Compared 
with other methods, the R-ED algorithm is not applicable in a wide range, but within the 
agreed range, the accuracy of the method will be greatly improved and the complexity of 
the system will be reduced.

Fig. 8  Performance comparisons between ED and IED under different SNRs
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7 � Conclusions
In this paper, an adaptive sampling scheme is proposed to balance the sensing accuracy 
in real time. The sampling point of the proposed scheme adaptively increases with the 
fall of the SNR within the tolerance of the system, which greatly improves the sensing 
accuracy in the low-SNR cases. In other cases, IED is considered to SS, which improves 
the sensing accuracy without sacrificing complexity. Both theoretical derivations and 
simulation experiments validate the conclusions drawn in this paper.
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