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Abstract

Indoor positioning navigation technologies have developed rapidly, but little effort has
been expended on integrity monitoring in Pedestrian Dead Reckoning (PDR) and WiFi
indoor positioning navigation systems. PDR accuracy will drift over time. Meanwhile,
WiFi positioning accuracy decreases in complex indoor environments due to severe
multipath propagation and interference with signals when people move about. In our
research, we aimed to improve positioning quality with an integrity monitoring
algorithm for a WiFi/PDR-integrated indoor positioning system based on the unscented
Kalman filter (UKF). The integrity monitoring is divided into three phases. A test statistic
based on the innovation of UKF determines whether the positioning system is
abnormal. Once a positioning system abnormality is detected, a robust UKF (RUKF) is
triggered to achieve higher positioning accuracy. Again, the innovation of RUKF is used
to judge the outliers in observations and identify positioning system faults. In the last
integrity monitoring phase, users will be alerted in time to reduce the risk from
positioning fault. We conducted a simulation to analyze the computational complexity
of integrity monitoring. The results showed that it did not substantially increase the
overall computational complexity when the number of dimensions in the state vector
and observation vector in the system is small (< 20). In practice, the number of
dimensions of state vector and observation vector in an indoor positioning system
rarely exceeds 20. The proposed integrity monitoring algorithm was tested in two field
experiments, showing that the proposed algorithm is quite robust, yielding higher
positioning accuracy than the traditional method, using only UKF.

Keywords: Indoor positioning, Integrity monitoring, WiFi fingerprinting positioning,
Pedestrian Dead Reckoning, Robust unscented Kalman filter, Outlier elimination

1 Introduction
The technology for seamless indoor and outdoor positioning has undergone unprece-

dented development due to the increasing demand for location-based services (LBS). In

outdoor environments, Global Navigation Satellite System (GNSS) technology guarantees

high positioning accuracy, but in most indoor environments, the GNSS signal is very
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weak, or even be no signal at all [1]. Thus, some new positioning technologies, such as

radio frequency (RF) signals, sensor-based, and multi-source fusion positioning methods,

are applied indoors [2]. Indoor positioning means using WiFi fingerprinting positioning,

Bluetooth, ultra-wideband, magnetic field positioning technologies, and Pedestrian Dead

Reckoning (PDR) [3–7], which were developed to solve this problem. Among those ap-

proaches, WiFi fingerprinting positioning and PDR are the two most popular techniques,

as they do not need additional hardware devices. However, due to severe multipath propa-

gation, high fluctuation in WiFi signals, and the cumulative error in PDR, indoor position-

ing accuracy is low. Therefore, a high precision and robust indoor positioning system is

urgently needed.

WiFi access points (APs) are widely deployed in indoor environments, such as offices,

hospitals, airports, and university buildings. In general, WiFi-based indoor positioning

is instrumented with smartphones, with a low deployment cost, tolerable errors, and

limited use of computational resources [8, 9]. WiFi fingerprinting positioning with Re-

ceived Signal Strength Indication (RSSI) observation is considered as one preferred

method of indoor positioning. WiFi fingerprinting positioning uses RSSI to measure

the environmental variation, so there is no need to know the exact location of the APs.

For PDR, smartphones using self-contained sensors such as accelerometer, gyroscope,

and magnetometer can progressively infer the position of users by combining displace-

ment of the current step with the position of the previous step. The displacement of the

current step is calculated with the help of walking step detection, step length estimation,

and user heading estimation [10]. The integration of WiFi fingerprinting positioning and

PDR is one challenging technology of higher indoor positioning accuracy [11–16].

Although a variety of indoor positioning solutions are presently available, there is little

research on the complete quality evaluation of the indoor positioning system. In particu-

lar, many researchers have paid attention to the optimization techniques of only position-

ing accuracy, rather than the complete quality of integrity, continuity, and availability.

Nevertheless, in practice, the reliability and integrity of positioning systems are indispens-

able quality evaluation indicators. If an application system only outputs information but

lacks a reliable description of that information, the service is incomplete essentially. In

some high-risk indoor applications scenarios, like firefighting, peacekeeping, emergency

evacuation, disaster relief, mobile health monitoring, and smart city businesses, the integ-

rity of indoor positioning is a performance indicator that cannot be ignored.

At present, there are several initial solutions to this problem. In [17], one WLAN-

oriented indoor positioning algorithm enhanced with threshold-specified integrity monitor-

ing was proposed. This integrity monitoring algorithm utilizes redundancy among APs and

removes each AP with a damaged feature to improve the system robustness. Likewise, lit-

erature [18] has studied the continuous availability of WLAN APs and proposed an integ-

rity monitoring algorithm that identifies and removes rogue APs to improve positioning

accuracy. Under the special considerations involved in integrity monitoring, the compre-

hensive performance of the indoor positioning system is improved. Ascher et al. investi-

gated a UWB/INS positioning system and proposed an integrity monitoring algorithm

based on extended Kalman innovation, which can effectively detect and remove the Time

Difference of Arrival (TDOA) observation outliers for improving positioning accuracy [19].

The integrity monitoring algorithm proposed in [17, 18] only applied to a single WLAN

system, but at present, one of the hottest trends in indoor positioning is multi-source
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integration positioning. These integrity monitoring algorithms all lack an alert mechanism

for cases in which positioning accuracy completely dissatisfies user requirements.

Integrity monitoring will be a desirable option to improve multi-source integration posi-

tioning quality. In our research, we proposed an integrity monitoring algorithm for a WiFi/

PDR-integrated indoor positioning system based on the unscented Kalman filter (UKF). The

positioning accuracy of the UKF-based WiFi/PDR is generally improved; however, the fac-

tors of PDR cumulative error over time, severe multipath propagation and high fluctuation

in WiFi signals, lead to the poor integrated positioning accuracy. In this paper, once the

integrated positioning accuracy drops below a certain threshold and no longer meets user

requirements, the integrity monitoring algorithm will be actively triggered for performance

optimization. Due to the complexity of indoor environments and the influence of various

observation factors such as severe multipath propagation, measurement gross errors often

appear in actual positioning measurements. If these gross errors are not detected and elimi-

nated, the position estimation will be poor and the filter may be divergent. To overcome this

issue, a RUKF is employed to eliminate the gross errors in the phase of integrity monitoring

and the measured outliers related to system faults are identified. When current measure-

ments are identified as outliers, the gain matrix of RUKF is adjusted to reduce the influence

of outliers on the filtering results. Again, once a fault is detected, the user will be alerted in

time to reduce risk from the positioning fault. Experiments on in situ measurements have

shown that the proposed algorithm can effectively identify and eliminate outliers, avoid the

divergence of the filter, and improve the robustness and accuracy of positioning.

The main text of this paper is organized as follows: Related work is introduced in

Section 2. The integration positioning approach and integrity monitoring algorithm are

conceptually proposed in Section 3. Section 4 presents the Bayesian WiFi fingerprinting

positioning, PDR, UKF-integrated WiFi fingerprinting positioning and PDR, and the in-

tegrity monitoring algorithm. Subsequently, the computational complexities of the UKF

and integrity monitoring are analyzed in Section 5. The experimental setup, asymptotic

and exact computational complexity analysis, field experiments results, and discussion

are reported in Section 6. The conclusions are given in the last section.

2 Related work
The concept of integrity first appeared in the civil aviation applications of the Global

Positioning System (GPS). It refers to the ability of a satellite navigation system to pro-

vide timely notifications or terminate signal when an error in the satellite navigation

system exceeds the alert limit and makes the satellite navigation system unavailable

[20]. Straightforwardly, integrity is a confidence measure, concerned with the accuracy

of positioning and navigation system. The function of integrity is twofold: to detect and

identify the fault or abnormality that affects positioning accuracy, and to inform the

user in a timely way that positioning service is unavailable. There is a lot of research on

integrity monitoring related to GNSS applications, among which the Receiver Autono-

mous Integrity Monitoring (RAIM) algorithm is widely used. This integrity monitoring

algorithm on the client side has many advantages, such as independent of external de-

vices, has a low cost, and is easy to implement. The classical integrity monitoring algo-

rithms include pseudo-range comparison, least-squares residuals, and parity vectors

[21], but these algorithms do not use the inertial navigation data, so these algorithms

have certain technical limitations in PDR. The indoor environment is usually much
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complex than the outdoors, and severe multipath propagation, wireless signal interrup-

tion, and the indoor structural complexity make the GNSS integrity monitoring algo-

rithm not fully applicable in indoor scenarios. However, the concept of integrity as

proposed in the context of GPS is still applicable to the performance evaluation of in-

door navigation systems.

WiFi fingerprinting positioning and PDR have their advantages and disadvantages. Due

to the high fluctuation in WiFi signals, WiFi fingerprinting positioning error is large, but

is stationary, and is not accumulative. PDR positioning has higher positioning accuracy

over a short time, but its positioning result is relative, and its error is accumulated due to

the noisy inertia sensors. To complement each other, integrated WiFi fingerprinting posi-

tioning and PDR sub-systems can reduce the signal fluctuations in WiFi by using PDR

and obtaining the initial position of PDR by using WiFi fingerprinting positioning. Ultim-

ately, data integration in WiFi fingerprinting positioning and PDR reduces the cumulative

error of PDR for improving the overall positioning accuracy [22].

In most technically, data integration of indoor positioning is implemented through fil-

ters [11–16], such as particle filter (PF) [11, 12], Kalman filtering (KF) [13, 14], and ex-

tended Kalman filtering (EKF) [15, 16]. The PF can achieve high positioning accuracy

only if a large number of representative particles are deployed, but large computational

capacity and storage is needed. Particularly, intelligent terminals like the smartphones

have very limited computing power, power supplies, and storage capacity [2], so PF is not

the optimal choice on the smartphone platforms. The KF and EKF will work effectively

only under the condition that the system state and observation operators are linear or

slightly nonlinear. In fact, the PDR is highly nonlinear. Moreover, if the KF and EKF are

used to integrate WiFi fingerprinting positioning and PDR, the improvements in position-

ing accuracy can be limited, and even the filter can become divergent. The UKF is a non-

linear filtering algorithm based on the unscented transform (UT) that overcomes the

limitations of lower filter precision-caused truncation error, and widely applied in nonlin-

ear estimation. The UKF abandons the traditional method of linearizing nonlinear func-

tions and uses the UT to handle the nonlinear transfer of mean and covariance. The UKF

approximates the probability density function of a nonlinear function, using a series of de-

termined samples to approximate the posterior probability density of the system state, in-

stead of approximating the nonlinear function. UKF does not ignore higher-order terms,

so it has higher calculation accuracy for nonlinear distributions, which effectively over-

comes the shortcomings of low accuracy and poor stability in EKF estimation. The esti-

mated results from UKF will at least be equivalent at the precision of the second-order

Taylor expansion of nonlinear models. Moreover, the computational complexity of UKF

is much lower than that of PF.

In our research, we make a tradeoff between computational complexity and position-

ing accuracy and use UKF to integrate WiFi fingerprinting positioning and PDR. To

further improve the performance of the indoor positioning system, an integrity moni-

toring algorithm is proposed. The related conceptions and processes of the integrity

monitoring algorithm are elaborated in Sections 3 and 4.4.

3 Integrated positioning approach and integrity monitoring algorithm
Figure 1 shows the technical chart for the proposed approach of integrated positioning

and integrity monitoring.
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As discussed, WiFi fingerprinting positioning accuracy is not high, due to wireless

signal outages, severe multipath propagation, and signals encounter interference when

people walk around. PDR has high positioning accuracy in a short time, but the error

will cumulative fast over time. We use the UKF to integrate the two positioning ap-

proaches to exploit the respective advantages of the two positioning approaches and

avoid their disadvantages. In this paper, the main novelty of our research is an integrity

monitoring algorithm that delivers a robust integrated positioning system and offers

users the confidence of in time positioning accuracy.

When the positioning system is working properly, the UKF is the optimal state estimation,

and so the innovation of UKF obeys a Gaussian distribution with zero-mean. According to

this principle, we designed the proposed integrity monitoring algorithm. We divided the in-

tegrity monitoring into three phases and set up three integrity flags, IF1, IF2, and IF3, as

shown in Fig. 1, in blue. The first phase of our proposed integrity monitoring algorithm is

what we call the Innovation-Based Integrity Monitoring (IBIM) algorithm. In this phase,

UKF innovation is used to construct a test statistic and then determine whether the test stat-

istic exceeds a threshold. If the test statistic is below the detection threshold (IF1 = 0), the

UKF positioning results will be directly sent to the user. If it exceeds the detection threshold

(IF1 ≠ 0), a RUKF is triggered to achieve higher positioning accuracy in the second phase.

Although the RUKF has corrected some anomaly range values and improved the posi-

tioning accuracy, observation noise and process noise are not fully estimated in real time

during the filtering process because of the complexity of indoor environments; as a result,

some outliers may still exist. The existence of outliers not only makes the positioning ac-

curacy lower but will likely cause the filter to diverge. Abnormality in an observation can

be reflected by the innovation of the filter; thus, RUKF innovation is used to identify fur-

ther possible outliers in the second phase of integrity monitoring. If there are no outliers

(IF2 = 0), the positioning results of RUKF will be output to the user. If there is an outlier

detected (IF2≠ 0), the integrity monitoring will enter the last phase. In the last phase, the

identified outliers are eliminated, and the system outliers and faults are distinguished indi-

vidually. If the current observation is an outlier (IF3 = 0), else then (IF3≠ 0). See Section

4.4 for the details of this process.

Fig. 1 Technical charts of the integrated positioning approach and integrity monitoring
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4 Methodology
4.1 WiFi fingerprinting positioning

WiFi fingerprinting positioning consists of two phases including offline radio map-learning

and online location inference; the WiFi fingerprinting positioning process is shown in Fig. 2.

In offline radio map-learning, a fingerprint database named a radio map [23] is con-

structed by collecting RSSI values of multiple APs at predetermined calibration points,

and the collected RSSI values are stored therein. In online location inference, real-time

RSSI measurements received by the smartphone are matched with the radio map to es-

timate the location of the smartphone [10, 24, 25].

Fingerprinting matching is done selectively with deterministic and stochastic algorithms

[26]. Typical deterministic algorithms are the nearest neighbor (NN) algorithm, k nearest

neighbor (KNN) algorithm, and the weighted k nearest neighbor (WKNN) algorithm [27].

Stochastic algorithms are mostly based on Gaussian distribution assumption [28] and

Bayesian estimation [9, 29]. The deterministic algorithms are relatively simple and have a

wide range of applications. However, WiFi signals are susceptible to interference in indoor

environments, and there is no one-to-one mapping of signal features onto physical loca-

tion [30]. Empirically, probabilistic algorithms can provide higher positioning accuracy

and good usability than deterministic algorithms. In most cases, the Bayesian estimation

algorithm is superior to the WKNN algorithm [30, 31]. Therefore, we use a Bayesian esti-

mation of the Weibull signal model in [9] as a WiFi fingerprinting positioning scheme.

4.1.1 Bayesian estimation of the Weibull signal model

In WiFi fingerprinting positioning, the Weibull signal model often used probability dens-

ity function for modeling the signal strength of radio waves [32], and it is expressed as

follows:

Fig. 2 WiFi fingerprinting positioning process
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pdf x; λ; k; θð Þ ¼ k
λ

x − θ
λ

� �k − 1

e − x − θ
λð Þk ð1Þ

Accordingly, the Cumulative Distribution Function (CDF) can be given as follows:

F xð Þ ¼ 1 − e − x − θ
λð Þk ð2Þ

where x is the variable of the function, k is the shape parameter, λ is the scale param-

eter, and θ is the shift parameter [31, 33].

The parameters of the Weibull signal model can be estimated with a limited number

of RSSI sample measurements. The model parameters (λ; k; and θ ) can be calculated

with [34, 35]:

k ¼ STD
ln 2ð Þ ; 1:5≤k≤2:5 ð3Þ

λ ¼
2� k þ 0:15ð Þ STD < 2
STD� k þ 0:15ð Þ 2≤ STD ≤ 3:5
3:5� k þ 0:15ð Þ STD > 3:5

8<
: ð4Þ

θ ¼ O − λ�Γ 1þ 1
k

� �
ð5Þ

O ¼ 1
n

Xn
i¼0

Oi ð6Þ

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼0

Oi −O
� �2s

ð7Þ

where O is the mean value of RSSI measurements set Oi, STD is the standard devi-

ation, and Γ is the gamma function. The value (k + 0.15) is an approximation result of

the expression 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þ 2

kÞ − Γ2ð1þ 1
kÞ

q
when 1.5≤k ≤ 2.5 [31].

Therefore, the distribution probability of each RSSI measurement in the fingerprint

database can be expressed as:

P xð Þ ¼ F xþ 0:5ð Þ − F x − 0:5ð Þ ð8Þ

In our research, in order to improve the computation process and weaken the RSSI

measurements of signal strength singularity, a bin-based solution is adopted. When the

conventional algorithm established the fingerprint database to 10 dB for a range of sig-

nal strength measurements RSSI by 30–100 divided into seven ranges, plus 0–30 dB for

a single range, with a total of eight ranges, each range can be regarded as a bin. With a

fingerprint database and the Weibull signal model, we can calculate the probability of

an RSSI measurement. For the sake of computational efficiency, the RSSI measure-

ments are rounded to integers. The probability for each bin in the fingerprint database

can be expressed as:

P ¼
Z xþw

x
f xð Þdx ¼ F xþ wð Þ − F xð Þ ð9Þ

where w is the width of the bin and x is the RSSI value at the left boundary value of

the bin.
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The fingerprinting method using the radio map based on the Weibull–Bayesian dens-

ity model can be represented by a set of Weibull signal models that simulate the distri-

bution of RSSI measurements. Each Weibull signal model of three parameters (

λ; k; and θ ) empirically represents the probability distribution of RSSI measurements

between APAm and a smartphone at a reference point Ri. The structure of the radio

map can be greatly simplified in this way because it only stores three parameters of the

Weibull function to restore the complete probability density [9]; therefore, it is not ne-

cessary to store the empirical probability distribution of separate RSSI bins.

4.1.2 Fingerprinting positioning using the Bayesian estimation of the Weibull signal model

The fingerprinting algorithm based on the Weibull signal model with dynamic calculation

probability, parameterized with three parameters, can be calculated with few samples, for

a probability density with higher accuracy than the traditional histogram method. The fin-

gerprinting positioning algorithm used in this paper is based on the Bayesian theory [36].

The principle is to use the conditional probability model for location fingerprinting and

Bayesian inference mechanism to estimate the position of the smartphone [37]. Also

called the Bayesian probability algorithm, the basic principle can be expressed as:

p xjyð Þ ¼ p yjxð Þ p xð Þ
p yð Þ ¼ p yjxð Þ p xð ÞP

x0∈X p yjx0ð Þ p x0ð Þ ð10Þ

where x is a reference point in the fingerprint database, y is the RSSI measurements

of AP received by the smartphone at the anchor point, and p(x|y) is the probability that

the anchor point is the reference point x when the RSSI measurement is y. The value

p(y|x) is the likelihood of the RSSI measurement being y at the reference point x. p(x)

is the probability of a reference point x, and the default assumption is the equal prob-

ability of all reference points. The term p(y) is the probability of RSSI measurement,

and the default APs are mutually independent in statistics. From Eq. (10), when the

value of p(x|y) is maximum, the probability of reference point x occurring when the

RSSI value received at the anchor point is y also reaches a maximum. The best match

with the anchor point can be used as the positioning output. Therefore, the maximum

a posteriori (MAP) estimation algorithm is used to find the maximum value of p(x|y) at

which x is the positioning result, and the formula can be expressed as follows:

x̂ ¼ argmaxxp xjyð Þ ð11Þ

In order to obtain the maximum value of p(x|y), we know that p(x) and p(y) are the

same at each fingerprint point by the Bayesian theory formula. The maximum value

of p(x|y) can be transformed to solve the maximum likelihood of p(y|x) which means

the probability of the RSSI measurements of each AP received at the fingerprint point

x. Since each AP is independent, the formula for a maximum value of the probability

product for the RSSI measurements of each AP can be expressed as:

x
∧ ¼ argmaxx

YnMAC

j¼1
p y jj x
� �� �

ð12Þ

where nMAC is the total number of AP received by smartphone at the anchor point,

x is a fingerprinting point in the fingerprinting database, and yj is the RSSI measure-

ments of the jth AP received by the smartphone at the anchor point. Therefore, the
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traditional probability product of all the APs at each fingerprinting point is calculated.

The corresponding fingerprinting point is the positioning result.

The dynamic calculation probability method differs from the traditional fingerprinting

method in that it takes the uncertainty of RSSI measurements into account and may vary

from the received AP in a range from +5 to −5 dB [9]. Subsequently, we can dynamically

obtain a possible range for RSSI measurements and then calculate the probability, which

can more accurately estimate the probability of occurrence of an AP. The probability of

RSSI measurements from all APs received at the anchor point can be expressed as:

P xð Þ ¼
Z xþ5

x − 5
f xð Þdx ¼ F xþ 5ð Þ − F x − 5ð Þ ð13Þ

where x is the RSSI value of the AP Am received by smartphone at the fingerprint

point Ri. The three parameters of the Weibull signal model are stored in the fingerprint

database to rebuild the probability distribution of the RSSI measurements between an

AP Am and a smartphone at a fingerprint point Ri, and then calculates the probability

value of the range dynamically in real time.

4.2 Pedestrian Dead Reckoning

PDR leverages inertial sensors such as a gyroscope, accelerometer, and magnetometer

to obtain users’ movement information, then combines it with the previous location of

a user to estimate current location by the equation:

Pt ¼ Pt − 1 þ Lt
sin θtð Þ
cos θtð Þ

� �
ð14Þ

where Pt is the position at timestamp t, Lt is the step length, and θt is the heading dir-

ection at timestamp t.

Smartphones integrate many sensors, such as accelerometers, gyroscopes, magnetom-

eters, and barometers, which makes PDR more feasible and convenient. A classic PDR

mainly contains three parts: step detection, step length estimation, and heading direc-

tion estimation.

4.2.1 Step detection

When the pedestrian walks horizontally, periodical variations can be detected from ac-

celerometer readings as shown in Fig. 3. By the accelerometer of the smartphone, it is

easy to determine whether the pedestrian is stationary or walking. As can be seen from

Fig. 3, the green circle represents the detected steps, the actual number of steps is 52,

and the detected number of steps is also 52. The pedestrian overall acceleration can be

expressed as follows:

Acc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z

q
− g ð15Þ

where the ax, ay, az denote the smartphone three-axis accelerometer values and g is

the local gravity acceleration. By performing peak detection with a given threshold,

pedestrian steps can be recognized in real time [38].
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4.2.2 Step length estimation

The people step models vary widely, making the general model less accurate; the step

lengths are determined by various factors, including height, attitude, and walking fre-

quency [39, 40]. For the same person, the step length mainly depends on the walking

speed [41]. Therefore, we apply the empirical model [42] to estimate the step length:

L ¼ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Accmax − Accmin

4
p

ð16Þ

where Accmax and Accmin represent the maximum and minimum of value of the ac-

celeration in the vertical direction during a step, k is the personalized coefficients for

different pedestrians. The coefficient can be easily estimated by counting steps when

pedestrians travel a known distance. In our research, the k is 0.57 m.

4.2.3 Heading direction estimation

To reduce the circumstance disturbances as well as accumulative error, we combine gyro-

scopes and magnetometers to estimate the heading direction. The smartphone heading dir-

ection comes from the gyroscope angular velocity and initial direction. It works steadily

when facing external disturbance, but error accumulates rapidly over time. The smartphone

heading direction can be determined by integrating the Z-axis angular velocity of a

gyroscope:

Ht ¼ Ht − 1 þ wtdt ð17Þ

where Ht is the current smartphone heading direction and wt is the angular velocity

at step t. Magnetic direction can be directly obtained from a direction sensor (magnet-

ometer), which is easily disturbed by circumstances. The magnetic heading angle is cal-

culated as:

Hmag ¼ arctan
My

Mx

� �
ð18Þ

where Mx and My are the Earth’s magnetic field components along x and y axes of

the reference frame. The combination method refers to [43], the heading direction cal-

culated as follows:

Fig. 3 The acceleration patterns of a pedestrian in stationary and walking states
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H ¼ 1 − Wð ÞHt þWHmag ð19Þ

where W is the weight of the magnetic data and empirically taking the value 0.01 [43].

4.3 UKF integrated WiFi fingerprinting positioning and PDR

WiFi fingerprinting positioning accuracy is low, its positioning error is relatively stable, and

there is no cumulative error over time. In contrast, PDR delivers higher positioning accuracy

in a short time, but error gradually accumulates. The integration of WiFi fingerprinting po-

sitioning and PDR over time forms a relatively robust indoor positioning system.

4.3.1 UKF model

The UKF is a nonlinear filtering algorithm based on the unscented transform (UT) that over-

comes the limitations of lower filter precision-caused truncation error, and widely applied in

nonlinear estimation. Assume the state model and measurement model of a system as follows:

Xk ¼ f Xk − 1; μk − 1

� �þWk − 1

Zk ¼ h Xkð Þ þ Vk

	
ð20Þ

where f is the nonlinear state function, h is the nonlinear observation function,Wk and

Vk are the process noise and measurement noise, respectively, which are both uncorre-

lated zero-mean white Gaussian noise, and their covariances are Qk and Rk, respectively,

that is Wk~N(0,Qk), Vk~N(0,Rk). Finally, μk − 1 is the control input of the model.

The first step in unscented Kalman filtering is to sample the pre-state distribution of

the system, that is, to generate a series of points named Sigma points by UT. Consider an

n-dimensional random variable X with a mean of x̂ and a covariance of P, transformed by

a nonlinear function f (⋅). The UT will generate a Sigma Vector X with a dimension of

2n + 1 and a set of weighted points W, as specified by the following procedures:

X 0ð Þ ¼ x̂

X ið Þ ¼ x̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λð ÞP

p� �T

i
i ¼ 1; 2;⋯; nð Þ

X iþ nð Þ ¼ x̂ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λð ÞP

p� �T

i
i ¼ 1; 2;⋯;nð Þ

8>>><
>>>:

ð21Þ

W mð Þ
0 ¼ λ

nþ λ
W cð Þ

0 ¼ W mð Þ
0 þ 1 − α2 þ β

� �
W mð Þ

i ¼ W cð Þ
i ¼ 1

2 nþ λð Þ i ¼ 1; 2;⋯; 2nð Þ

8>>>><
>>>>:

ð22Þ

λ ¼ α2 nþ κð Þ − n ð23Þ

where ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ λÞPp Þi represents column i of the square root matrix. λ is a scaling param-

eter, which is used to reduce the total prediction error, α determines the propagation speed

of the Sigma sampling point around x̂, and α is usually set to a small positive number, (1E

−4 ≤ α ≤ 1). In the calculation, κ usually takes 0, and the candidate parameter β is a non-

negative weight coefficient, which is usually 2 [22]. WðmÞ
i represents the weight of the mean

of the ith sigma sample point, and WðcÞ
i represents the weight of the covariance of the ith

Sigma sample point.
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After the Sigma sampling point is obtained, the time domain update of the unscented

Kalman filter is executed in the following steps:

ξ −
k

� �
i ¼ f X −

k

� �
i

� �
i ¼ 0; 1;⋯; 2nð Þ

x̂ −
k ¼

X2n

i¼0
W mð Þ

i ξ −
k

� �
i

P −
k ¼

X2n

i¼0
W cð Þ

i ξ −
k

� �
i − x̂ −

i

h i
ξ −
k

� �
i − x̂ −

i

h iT
þQk

Z −
k

� �
i ¼ h ξ −

k

� �
i

� �
z −
k ¼

X2n

i¼0
W mð Þ

i Z −
k

� �
i

8>>>>>>>>><
>>>>>>>>>:

ð24Þ

where ξ −
k represents a one-step prediction state vector of Sigma sample points after

the system nonlinear state function transform at different times k, x
∧ −

k is the priori state

estimation, P −
k is a priori covariance matrix of the state vector, ðZ −

k Þi represents the

observation vector, and z
∧ −

k denotes the observation prediction vector.

The measurement update of the UKF is completed as in the following steps:

Pzz ¼
X2n

i¼0
W cð Þ

i Z −
k

� �
i − ẑ −

i

h i
Z −
k

� �
i − ẑ −

i

h iT
þ Rk

Pxz ¼
X2n

i¼0
W cð Þ

i ξ −
k

� �
i − x̂ −

i

h i
Z −
k

� �
i − x̂ −

i

h iT
Kk ¼ PxzP

− 1
zz

x̂k ¼ x̂ −
k þ Kk Z −

k − ẑ −
k

� �
Pk ¼ P −

k − KkPzzK
T
k

8>>>>>>><
>>>>>>>:

ð25Þ

where Pzz represents the observation prediction error covariance matrix, Pxz is the cross-

covariance matrix of state vector and observation vector, Kk is the gain matrix of UKF, x
∧
k repre-

sents a posteriori state estimation, and Pk denotes a posteriori covariance matrix of state vector.

4.3.2 Implementation of UKF integration [22]

The results of WiFi fingerprinting positioning and PDR are integrated by using the

above UKF algorithm. The system state is modeled by a nonlinear expression based on

the pedestrian state information. The system model can be expressed as:

Xk ¼
xk
yk
θk

2
4

3
5 ¼

xk − 1 þ�l � cosθk − 1

yk − 1 þ�l � sinθk − 1

θk − 1 þ �θ

2
4

3
5þWk − 1 ð26Þ

where xk and yk are the locations after k steps, θk is the heading direction after k steps,

wk − 1 is three-dimensional system process noise, �l is the step length of step k, and �θ is

the variation of the heading direction in step k. The measurement model is as follows:

Zk ¼

xk
yk
lk
Δθk
θk

2
66664

3
77775 ¼

xk
ykffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xk − xk − 1ð Þ2 þ yk − yk − 1

� �2q
θk − θk − 1

θk

2
666664

3
777775
þ Vk ð27Þ

where xk and yk are the position of pedestrian inferred from WiFi fingerprinting posi-

tioning, lk is the step length of step k inferred from PDR positioning, Δθk is the vari-

ation of heading direction of step k inferred from the gyroscope, θk is the heading
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direction of step k inferred from the magnetometer, and Vk is the five-dimensional sys-

tem measurement noise.

4.4 Integrity monitoring

4.4.1 Innovation-based Integrity Monitoring

Innovation of Kalman filtering is defined as the difference between the real observation

and the predicted observation. Then the innovation can be written as:

rk ¼ zk − ẑ −
k ð28Þ

It can be shown that when there are no faults of state prediction and observation, the

innovation or residual error obeys Gaussian distribution with zero-mean [44], namely:

rk~N(0, Dk) (29)

where Dk is the innovation covariance matrix:

Dk ¼ Pzz ¼
X2n

i¼0
W cð Þ

i Z −
k

� �
i − ẑ −

i

h i
Z −
k

� �
i − ẑ −

i

h iT
þ Rk ð30Þ

in the process of measurement update, assuming that there is a gross error in the

measurement result of the positioning sensors, the observation equation at time k can

be expressed as:

Zk ¼ h Xkð Þ þ Vk þ B ð31Þ

where B is fault-caused gross error, B ¼ ½b1; b2;⋯; bn� . If the ith positioning sensor

fails, bi ≠ 0, and if there is no fault, bi = 0. At this time, the innovation affected by the

gross error can be written as:

rk bð Þ ¼ Zk bð Þ − ẑ −
k ¼ rk þ B ð32Þ

The innovation vector at this time is no longer zero [45], namely:

rk bð Þ∼N B; Dkð Þ ð33Þ

The test statistic of fault or gross error in innovation can be expressed as [46]:

λavg ¼ rk
TDk

− 1 rk ð34Þ

where rk is the innovation of Kalman filter at time k while Dk is the covariance matrix

of the innovation at time k. In statistics, if there is no gross error (no fault), the test

statistic λavg obeys the center χ2 distribution with the degree of freedom m, where m is

the dimension of the current moment Zk observation vector:

λavg � χ2 mð Þ ð35Þ

If there is a gross error, the test statistic λavg obeys a non-central χ2 distribution with

a degree of freedom of m:

λavg∼χ2 λ; mð Þ ð36Þ

where λ is a non-central parameter, λ ¼ BTDk
− 1B. The threshold TD of gross error

detection according to the Neyman–Pearson criterion [47], where the false alarm rate

Pfa = α, here the value is 0.333 × 10−6, TD can be expressed as:
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Pfa ¼
Z þ∞

TD

χ2 mð Þdx ð37Þ

thus, the abnormality judgment of the hypothesis test is:

H0 : No abnormality; λavg≤ TD

H1 : Abnormal; λavg > TD

	
ð38Þ

The expressions (38) can be used to determine whether the system is abnormal. If

there is no abnormality in the system, the positioning results of UKF will be sent to the

user (as can be seen from Fig. 1, IF1 = 0 at this time). If an abnormality occurs in the

system (IF1 ≠0), the RUKF is triggered to remove the gross errors and obtain higher

positioning accuracy. See Section 4.4.2 for details.

4.4.2 The robust UKF model

Multipath propagation and the complex indoor environment interfere with positioning

lead to gross errors during the UKF measurement and updating process. The presence

of gross errors can result in decreased positioning accuracy and even the filter may be

divergent. In order to reduce this effect, it is reasonable to perform a robust estimation.

A robust estimator is a reasonable alternative to obtain reliable parameter estimation in

most cases [48–50]. We use the robust estimation of the measurement noise matrix Rk,

a revised covariance matrix of Rk is defined as Rk .

Rk ¼ αk
− 1 Rk ð39Þ

where αk = diag [α1;α2;⋯; αm] is an equal weight matrix of observations Zk, m is the

dimension of the observation vector Zk at the current time. It can be obtained empiric-

ally using the Huber weight function or IGG functions. The IGG III weight function

[51] is selected. Namely, the equivalent weight is calculated as [51, 52]:

αi ¼
1; j si j ≤k0

k0
j si j �

k1 − j si j
k1 − k0

	 
2

; k0 <j si j ≤k1
10 − 30; j si j> k1

8>><
>>:

ð40Þ

where k0 and k1 are constants, theoretically having the values of k0 = 2.5~3.5 and k1

= 3.5~4.5, respectively. In our research, k0 = 2.5 and k1 = 3.5. si is the normalized re-

sidual of the ith observation [53]. Thus, the update process in RUKF is as follows:

Pzz ¼
X2n

i¼0
W cð Þ

i Z −
k

� �
i − ẑ −

i

h i
Z −
k

� �
i − ẑ −

i

h iT
þ Rk

Pxz ¼
X2n

i¼0
W cð Þ

i ξ −
k

� �
i − x̂ −

i

h i
Z −
k

� �
i − x̂ −

i

h iT
Kk ¼ PxzP

− 1
zz

x̂k ¼ x̂ −
k þ Kk Z −

k − ẑ −
k

� �
Pk ¼ P −

k − KkPzzK
T
k

8>>>>>>>><
>>>>>>>>:

ð41Þ

where Pzz denotes the observation prediction error covariance matrix and Kk denotes

the gain matrix of RUKF.
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4.4.3 Outlier and fault judgment

Although the RUKF has corrected some range observation anomalies and somewhat

improved the positioning accuracy, positioning accuracy is still quite limited because

there is no real-time estimation of system and observation noise due to complex indoor

environments and severe multipath propagation, and some outliers may remain in the

system. If these outliers are not detected and removed, position estimation will not be

optimal and the filter will probably diverge, which reduces the performance of the posi-

tioning system. To solve this problem, outlier identification and elimination algorithms

are proposed; see Sections 4.4.3.1 and 4.4.3.2 for the details of this process.

The frequency of the appearance of outliers is much higher than the frequency of sys-

tem fault in the positioning process. If no distinction is made between outliers and

faults, it is easy to judge an outlier point in the system as a fault, which will cause sys-

tem false alarm, increase false alarm rate, and make the system output values discon-

tinuous. In reference to [54], the test statistic at time k exceeds a certain detection

threshold (as can be seen from Fig. 4, red line), and it will be considered as an outlier.

Outliers are in the form of an isolated point (a certain moment), while other data in a

certain field of k is normal. For a continuous occurrence of test statistic exceeding the de-

tection threshold during a period, it can be considered as a fault. For example, the test sta-

tistics exceed the detection threshold at the time kn, and at knþ1 , knþ2 , ⋯, both kn + p

times exceed the detection threshold (as can be seen from Fig. 4, the elliptical part).

4.4.3.1 Outlier identification The innovation of RUKF, rk as shown in Eq. (28), and

the covariance matrix of innovation Pzz is given by Eq. (41). The rk and Pzz are used to

judge whether each component of observation zk is an outlier. The judgment criterion

can be expressed as:

rkð Þi
�� ��≤C ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pzz
� �

i;i

q
ð42Þ

where (i, i) is the ith element on the diagonal of Pzz , (rk)i is the ith component of rk.

C is constant and determined according to the actual physical background, in our re-

search, C = 3. If Eq. (42) holds, then (zk)i is a normal observation (IF2 = 0 at this time).

Conversely, (zk)i is considered to be an outlier (IF3 = 0), where (zk)i is the ith compo-

nent of zk. If a large number of outliers appear successively, the observation can be con-

sidered a fault (IF3 ≠0), and then the system will alert the user in time.

The identification method is simple and feasible, with a clear physical explanation.

More importantly, this method can effectively identify which component in an observa-

tion that exceeds the error limit, so that the target motion state model and noise statis-

tical characteristics presupposed in advance, can be improved in a targeted manner,

thereby improving filtering accuracy.

4.4.3.2 Outlier elimination In the UKF, posteriori state estimation x̂k is recursively

corrected using the difference between new observation zk and predicted observation

ẑ −
k (i.e., innovation); thus, the magnitude of the effect of zk on state estimation depends

largely on gain matrix Kk . Therefore, to get the correct estimate x̂k , zk must be normal.

When zk is distorted or includes an outlier, the Kk needs to be adjusted to obtain an ac-
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curate estimation x̂k . When the ith component of the observation zk is not satisfied

(42), that is, when (zk)i is an outlier, then the Kk is adjusted, so that,

Kk ¼ mKk 0 < m < 1ð Þ ð43Þ

continues to find the filter estimate x̂k and the filter estimate posteriori covariance

matrix of state vector Pk. Thus, the effect of an outlier point is eliminated when esti-

mating the target parameter.

5 Computational complexity analysis
Computing the number of Floating Point Operations (FLOPs) of an algorithm is an ef-

fective method to analyze the computational complexity, especially when matrix opera-

tions are involved. One FLOP is an operation to add, subtract, multiply, or divide

between two floating points. The number of FLOPs can be considered as a quantitative

description of algorithm complexity [55]. In our research, WiFi fingerprinting position-

ing and PDR are scalar operations, while the UKF algorithm and the integrity monitor-

ing algorithm both involve matrix operations. For the sake of brevity, in this instance,

we consider only FLOPs for the UKF and integrity monitoring algorithms and neglect

the computationally small, WiFi fingerprinting positioning and PDR scalar operations.

The number of FLOPs required for common operations between matrices can be

expressed as follows [56, 57]:

1. Matrix addition and subtraction: A∈ Rn ×m, B∈ Rn ×m, then A ± B requires mn

FLOPs.

2. Matrix multiplication: A∈ Rn ×m, B∈ Rm × h, 2mnh − nh FLOPs are required to

obtain AB.

3. Matrix inversion: A∈ Rn × n, A−1 is computed using n3 FLOPs.

Fig. 4 A diagram of outliers and fault judgment
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4. Cholesky factorization: A∈ Rn × n,n3/3 FLOPs are required for the chol(A).

The computational complexities of the UKF and the integrity algorithms introduced

in this paper were quantitatively analyzed according to these rules.

5.1 UKF algorithm complexity analysis

We denote the total computational complexity in FLOPs by ζ. In the following, m rep-

resents the number of dimensions in the state vector in the indoor positioning system,

while n represents the number of dimensions in the observation vector. The UKF algo-

rithm complexity analysis, according to the steps in Section 4.3.1, is as follows:

1) In UT transformation, n3/3 + 3n2 FLOPs are needed to generate Sigma sample

point X.

2) In the time domain updating, the one-step prediction state vector ξ −
k of Sigma

sample points requires −n + 4n2 FLOPs. The priori state estimation x̂ −
k requires

2n + 2n2 FLOPs, the priori covariance matrix of state vector P −
k is computed using

2n + 5n2 + 4n3 FLOPs, the observation vector Z −
k needs n3/3 + 3n2 FLOPs, and the

observation prediction vector ẑ −
k requires 2m + 2mn FLOPs.

3) In the measurement updating process, to obtain the observation prediction error

covariance Pzz, 2m + 3m2 + 2mn + 4m2n FLOPs are needed, to determine the cross-

covariance of the state vector and observation vector Pxz requires 2n + 2mn +

2n2 + 4mn2 FLOPs, the gain matrix Kk of the UKF costs m3 + 2m2n −mn FLOPs,

the posteriori state estimation x̂k is computed using 2mn +m FLOPs, and the pos-

teriori covariance matrix of state vector Pk needs 2m
2n −mn + 2mn2 FLOPs.

Therefore, the total computational complexity of UKF is:

ζUKF ¼ m3 þ 14n3=3þ 8m2nþ 6mn2 þ 3m2 þ 19n2 þ 6mnþ 5mþ 5n
� �

FLOPs

ð44Þ

5.2 Integrity monitoring algorithm computational complexity analysis

The integrity monitoring algorithm is designed on the basis of UKF. Therefore, the al-

gorithm computational complexity is higher than that of the UKF regardless of whether

any system abnormality is detected. According to Sections 3 and 4.4, the integrity mon-

itoring process can be divided into three phases. As discussed in Section 4.4.1, the gross

error detection threshold TD can be calculated in advance. In the first phase (i.e.,

IBIM), if no system abnormality is detected, only formula (34) participates in the calcu-

lation, it costs m3 + 2m2 +m − 1 FLOPs. So the total computational complexity of integ-

rity monitoring at this time can be expressed by the sum of UKF and IBIM FLOPs, i.e.,

ζ IM phase1 ¼ ζUKF þ ζ IBIM ¼ 2m3 þ 14n3=3þ 8m2nþ 6mn2 þ 5m2 þ 19n2 þ 6mnþ 6mþ 5n − 1
� �

FLOPs

ð45Þ

If a system abnormality is detected, the RUKF is triggered. At this time, as in Section

4.4.2, the total computational complexity of integrity monitoring algorithm can be

expressed as follows:
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ζ IM phase2 ¼ ζUKF þ ζ IBIM þ ζRUKF ¼ ð3m3 þ 14n3=3þ 16m2nþ 12mn2 þ 9m2 þ 21n2

þ10mnþ 9mþ 7n − 1Þ FLOPs

ð46Þ

According to Section 4.4.3.2, if outliers are detected, the total computational com-

plexity of the integrity monitoring is:

ζ IMphase3 ¼ ζUKF þ ζ IBIM þ ζRUKF þ ζOutliersElimination ¼ ð3m3 þ 14n3=3þ 18m2nþ 14mn2

þ10m2 þ 21n2 þ 11mnþ 10mþ 7n − 1Þ FLOPs

ð47Þ

6 Experimental evaluation
In this section, two field experiments conducted to evaluate the performance of the pro-

posed algorithm are presented and analyzed. The experimental setup is introduced in detail,

and the asymptotic exact computational complexities of the UKF and integrity monitoring

algorithm (IM) are analyzed. The implications of results and analysis are discussed.

6.1 Experimental setup

We developed an Android application for the experiments to collect positioning data

and analyzed the data with MATLAB (R2019a, The MathWorks, Nitick, MA, USA).

The device involved in the experiments was a smartphone running on the Android 8.0

operating system. The phone model was a HUAWEI Honor8 (4GB Ram/64 GB Rom)

(Shenzhen, China). To evaluate the performance of the proposed algorithm, two field

tests were conducted on the first floor and the third floor of an office building of the

Earth Space Information Science International Research Center, Wuhan University.

The office building has five floors, and a typical office environment, including corridors,

office rooms, and computer rooms. Figure 5 shows the layout of the experiment area

and the trajectories of the test true path (blue solid line). The lengths of the two true

paths are 124 m and 93m. The red stars are the locations of the APs. The experimental

scene on the first floor includes the corridor, a VIP reception room marked by A as

shown in Fig. 5a and a computer room marked by B as shown in Fig. 5a. Also, the ex-

perimental scene on the third floor had only the selected corridor, as shown in Fig. 5b.

6.2 Asymptotic and exact computational complexity analysis

We found that the computational complexities depend on state vector dimension (n)

and observation vector dimension (m) of the positioning system, based on an analysis

of the computational complexities of the UKF and integrity monitoring algorithms as

in Section 5. In our research, n is 3 and m is 5. We compared the asymptotic and exact

computational complexities of the UKF and the three phases of integrity monitoring in

Figs. 6 and 7. In those figures, we plotted the curve of the computational complexity,

describing the FLOPs against state vector and observation vector dimensions.

The computational complexity values FLOPs of the UKF and IM-Phase1 are the same

when the m is a constant. Figure 6a shows the asymptotic exact computational com-

plexity when the m equals 5, and the n varies from 1 to 60. Figure 6b shows the asymp-

totic exact computational complexity when the n is 3, and m varies from 1 to 60. It can
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be seen from Fig. 6a that the computational complexity values FLOPs of the UKF and

IM-Phase1 are the same. This implies that under the condition of constant m, the first

phase of integrity monitoring has no impact on the overall computational complexity.

From Fig. 6b, as the number of dimension in observation vector of indoor positioning

system gradually increases (m > 20), the computational complexity values FLOPs of

UKF and IM-Phase1 are no longer the same, which indicates that under the condition

of constant n, the number of dimension in observation of indoor positioning system

gradually increases has a certain effect on the computational complexity of the first

phase of integrity monitoring algorithm.

The integrity monitoring algorithm does not substantially increase in overall computa-

tional complexity when the number of dimensions in the state vector and observation vec-

tor in indoor positioning system is no more than 20. From Fig. 6, we can see that the

computational complexity values FLOPs of the UKF, IM-Phase1, IM-Phase2, and IM-

Phase3 are almost the same when the m and n are less than 20. The number of

Fig. 5 The layout of the experiment area and the trajectories of the true path. a The first floor. b The
third floor

Fig. 6 Computational complexity in FLOPs of different state and observation dimensions. a Observation
vector dimension m = 5, n varies from 1 to 60. b State vector dimension n = 3, m varies from 1 to 60
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dimensions in the state vector and observation vector in the system is less than 20 in most

use cases. It illustrates that the integrity monitoring algorithm does not substantially in-

crease in overall computational complexity when the number of dimensions in the state

vector and observation vector in indoor positioning system is small (< 20), which also

means that the integrity monitoring algorithm has no significant impact on the real-time

performance of the positioning system. Figure 7 shows the asymptotic exact computa-

tional complexities of the UKF, IM-Phase1, IM-Phase2, and IM-Phase3 when the state

vector dimension n and the observation vector dimension m are 20 simultaneously.

It can be seen from Fig. 7 that the overall trend of the computational complexities of

these algorithms is consistent with that of Fig. 6, but as the n and m are increasing, the

algorithm complexity values FLOPs also increase. Figure 7 again shows that the integ-

rity algorithm does not substantially increase the overall computational complexity

when the number of dimensions in the state vector and observation vector in the posi-

tioning system is less than 20.

6.3 Experimental results and discussion

The first experiment was conducted on the first floor, the author entered two rooms,

the first room is a VIP reception room, the second room is a computer room, and the

rest of the test scene was completed in the corridor. Another experiment scenario was

the corridor of the third floor. Figure 8 shows the true path of the two sets of experi-

ments, as well as the trajectory of positioning results of WiFi, PDR, UKF, and IM.

The smartphone was always held flat in the two experiments. During the experiment,

the WiFi fingerprinting positioning error was relatively stable, and there was no cumu-

lative error over time. In contrast, PDR has a high accuracy within a short distance, but

there was a significant cumulative error as walking distance increased. It can be seen

from Fig. 8a that PDR positioning accuracy was relatively high at the beginning when

the author entered the VIP reception room, the positioning trajectory of PDR deviated

from the real trajectory significantly, and the cumulative error was 0.8 m at this time,

and 1.8 m when the author arrived at the computer room. In the end, the maximum

cumulative error of PDR was 6.49 m. We found that during the third floor experimental

test, the average cumulative error of the PDR was less than that on the first floor. That

Fig. 7 Computational complexity in FLOPs of different state and observation dimensions. a Observation
vector dimension m = 20, n varies from 1 to 60. b State vector dimension n = 20, m varies from 1 to 60
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is because the test scene on the first floor is more complicated, and the test route

length is larger. Due to the cumulative error of PDR over time, the integrated position-

ing accuracy declined. However, after using WiFi fingerprinting positioning and IM,

the positioning accuracy is improved.

In the first floor experiment, the average positioning errors of WiFi and PDR were

2.37 m and 2.49 m, respectively. The average positioning error after UKF integrated was

1.38 m, while the error using the proposed IM was 1.02 m. The average positioning er-

rors were reduced by 41.7% and 44.6%, respectively, through UKF for WiFi/PDR inte-

gration. After applying the IM, the average positioning errors were reduced by 57% and

59%, respectively. In the third floor experiment, the average positioning errors for WiFi

and PDR were 2.18 m and 2.16 m, respectively, and the average positioning error after

UKF integrated was 1.22 m, while the error with the proposed IM was 0.85 m. After

UKF for WiFi/PDR integration, the average positioning errors were reduced by 44.0%

and 43.5%, respectively. Applying the IM, the average positioning errors were reduced

by 61.0% and 60.6%, respectively.

The Cumulative Distribution Functions (CDF) of positioning errors in two experi-

mental scenes are demonstrated in Fig. 9. The errors at a 95% confidence level for WiFi

was 4.35 m and 5.17 m for PDR. For UKF, the error was 2.51 m, and for IM, the error

was 1.96 m in the first floor experiment. In the third floor experiment, the error at a

95% confidence level WiFi was 3.69 m; for PDR, the error was 4.54 m, and for UKF, the

error was 2.38 m. For IM in the third floor experiment, the error was 1.65 m.

In the IM test, we determine the current integrity phase by setting the integrity flags

(IF 1, IF2, and IF3). In each experimental phase of integrity monitoring, we set a corre-

sponding counter. When the corresponding integrity phase is entered, the counter is

incremented by one. In test experiments on the first floor and the third floor, the

Fig. 8 The resulting trajectories of several positioning methods. a The first floor. b The third floor
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number of times the counter entered the first phase of IM were 38 and 23, respectively;

the number of times the counter entered the second phase were 17 and 8, respectively;

and the number of times the third phase were 1 and 0 times, respectively. In the last

phase of the two experiments, the large cumulative error of PDR resulted in reduced

integrated accuracy. In particular, in the last phase of the experiment on the first floor,

the cumulative PDR error increased, leading to a continuous increase of error in the in-

tegrated positioning results over some time, which triggered the third phase of integ-

rity, an alarm message was sent to the user in time. This demonstrates the ability of IM

to warn the user in time when the positioning accuracy does not meet user require-

ments. After applying our proposed IM algorithm, not only the positioning accuracy

and robustness of the system are improved, but also the confidence of the positioning

accuracy is guaranteed.

7 Conclusions and future work
This paper presents an integrity monitoring algorithm for WiFi/PDR/smartphone-inte-

grated indoor positioning system based on the UKF. Using UKF for WiFi/PDR integration

positioning, we make a tradeoff between computational complexity and positioning accur-

acy. To this end, our algorithm can be effectively applied to smart terminals such as

smartphones. We found that after the UKF integration of WiFi fingerprinting positioning

and PDR, the positioning accuracy of the integrated system is higher than the positioning

accuracy of WiFi fingerprinting positioning and PDR individually.

The main contribution of this paper is the proposed integrity monitoring algorithm.

A RUKF is employed to achieve higher positioning accuracy in the integrity monitoring

phase. Besides, a highly feasible and effective method is proposed to identify the outliers

and faults of the indoor positioning system. Once a fault is detected, the user will be

alerted in time to reduce the potential risk. In safety-sensitive applications of indoor

positioning, the timely alarm is an important means to avoid the loss or reduce the risk

probability when the positioning accuracy no longer meets the user’s requirements.

Furthermore, by analyzing the computational complexities of the UKF and integrity

monitoring algorithm, we concluded that the algorithm does not substantially increase in

overall computational complexity when the number of dimensions in the state vector and

observation vector in an indoor positioning system is less than 20. In practice, the number

of dimensions in the state vector and observation vector in an indoor positioning system

rarely exceeds 20. In this sense, our proposed integrity monitoring algorithm is efficient.

Fig. 9 Four approaches corresponding cumulative distribution functions of positioning error. a The first
floor. b The third floor
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Finally, we used a smartphone equipped with the proposed WiFi/PDR-integrated in-

door positioning system to collect positioning data and analyzed the experimental re-

sults in MATLAB. It is shown that the UKF algorithm with integrity monitoring

improved the positioning quality, accuracy, and performance.

In our future work with integrity monitoring algorithms, we will focus on multi-fault

detection to tackle isolated, damaged, or problematic WiFi APs for further improving

WiFi fingerprinting positioning accuracy. Integrity monitoring will improve the posi-

tioning accuracy of the integrated positioning sources and increase the robustness of

the integrated positioning system.
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