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Abstract

Data mining technology has been applied in many fields. Prototype-based cluster
analysis is an important data mining method, but its ability to discover knowledge is
limited because of the need to know the number of target data categories and
cluster prototypes in advance. Artificial immune evolutionary network clustering is a
clustering method based on network structure. Compared with prototype-based
cluster analysis, it has the advantage of realizing unsupervised learning and clustering
without any prior knowledge of data. However, artificial immune evolutionary network
clustering also has problems such as a lack of guidance in the clustering process, fuzzy
boundary sensitivity, and difficulty in determining parameters. To solve these problems,
an artificial immune network clustering algorithm based on a cultural algorithm is
proposed. First, three kinds of knowledge are constructed: normative knowledge is
used to regulate the spatial range of population initialization to avoid blindness; state
knowledge is used to distinguish the type of antigen, and immune defense measures
are taken to prevent the network structure caused by noise and boundaries from being
unclear; and topology knowledge is used to guide the antigen for optimal antibody
search. Second, topology knowledge in the cultural algorithm is used to characterize
the distribution of antigens and antibodies in space, and elite learning is used to
improve the traditional clone mutation operator. Based on the shadow set theory, a
method for adaptively determining the compression threshold is proposed. Finally, the
results of simulation experiments show that the proposed algorithm can effectively
overcome the above problems, and the clustering performances on a synthetic dataset
and an actual dataset are satisfactory.

Keywords: Clustering, Immune network, Cultural algorithm, Immune defense, Shadow
set theory

1 Introduction
Data mining is the process of discovering specific information hidden in massive data-

bases through various algorithms [1]. With the accumulation of massive data brought

by the development of information technology, the use of data mining technology to

transform these data into useful information has been used in various fields [2, 3]. In

the field of cloud services, work [4] proposed a distributed cloud service method based

on distributed sensitive hashing in multisource data. Work [5] proposed a big data-

driven mashup building method that supports economic software developments. In the
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field of the Internet of Things, work [6] proposed a multidimensional data processing

and query method, work [7] studied IoT offloading utilities that support edge comput-

ing. In the field of business services, Bismita S. Jena [8] and others analyzed the busi-

ness information mining technology used on transaction datasets. Zhang et al. [9–11]

researched related data mining techniques such as business service recommendation

and service quality query; Chen et al. [12, 13] researched data for business intelligence

and business service computing. Data mining technology is also widely used in e-

commerce, media, energy services, automotive engineering, and other fields [14–19].

Clustering analysis is an important method of knowledge discovery in data mining

[20–22]. If we know the number of target data categories and clustering prototypes in

advance, we can use a prototype-based cluster analysis method, but this will inevitably

limit the ability of clustering analysis to discover knowledge. Therefore, a clustering

method without any prior knowledge of data is of course preferable for clustering ana-

lysis [23–25]. Based on the artificial immune evolutionary network (aiNet) clustering al-

gorithm, this paper proposes a new algorithm of artificial immune network clustering

based on a cultural algorithm. It guides the aiNet clustering process by constructing

normative knowledge and topological knowledge in the trust space and introduces the

principle of immune defense in the human immune system into the algorithm. In this

paper, the input taboo threshold is avoided, and the shadow set theory is used to realize

the adaptive determination of the compression threshold.

The algorithm is called the cultural evolutionary artificial immune network (CaiNet).

The algorithm uses topological knowledge in the cultural algorithm to characterize

antigens and antibodies in space [26, 27]. When an antigen searches for the anti-

body with the highest affinity, it searches through the antibodies in the topological

unit where it is located. The algorithm uses immune defense to improve the flexi-

bility of the application and improves the traditional clone mutation operator

through elite learning.

Compared with the aiNet algorithm, the CaiNet algorithm has higher average accur-

acy and smaller variance. In the simulation experiment, the seed dataset is selected as

the experimental object. The accuracy rate of the CaiNet algorithm is improved by

5.8%, and the variance is reduced by 3.71%. When the Wine dataset is selected as the

experimental object, the accuracy rate of the CaiNet algorithm reaches 98.78%. The

CaiNet algorithm has a certain improvement in balance, accuracy, recall rate, and hit

rate and has better convergence.

The main innovations of this article are summarized as follows:

1. We propose using the cultural algorithm to guide the aiNet clustering algorithm

and use the topology knowledge in the cultural algorithm to characterize the

distribution of antigens and antibodies in the space, which greatly reduces the

complexity of the algorithm search.

2. Based on the concept and theory of the shadow set, we propose a method for

adaptive determination of the compression threshold based on the shadow set,

which improves the ability of the algorithm to quickly solve the algorithm.

3. Drawing on the immune defense suppression measures adopted in medicine to

avoid excessive epidemic prevention, we propose a new algorithm immune defense

mode, which improves the flexibility of algorithm application.
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The organizational structure of the paper is as follows. First, we discussed related

work in Section 2. Subsequently, we introduce the structure of the CaiNet algorithm in

Section 3, define three kinds of knowledge in Section 3.1, design and improve the oper-

ation operator in Section 3.2, simplify the optimal antibody search for antigens through

topology knowledge steps, formulate the mutation rules of the algorithm, propose a

method of adaptive determination of the compression threshold based on the shadow

set, and formulate the immune defense criteria of the CaiNet algorithm. The algorithm

steps of the CaiNet algorithm are summarized in Section 4. Finally, we select three

types of datasets in Section 5 for simulation experiments and evaluate the stability and

convergence performance of the CaiNet algorithm.

2 Related work
Artificial immune evolutionary network clustering is a clustering method based on net-

work structure [28]. Compared with the prototype clustering method, it can achieve

real unsupervised learning and clustering. Based on the basic aiNet algorithm, Li Jie

et al. introduced the concept of taboo cloning in immunology to the artificial immune

network clustering algorithm, which solved the problem that aiNet cannot handle the

fuzzy boundary of the sample subset [29]. Considering the problem of memory network

dynamics and irregular changes caused by the lack of objective function guidance of

the aiNet algorithm, Guo Jianhua et al. established the overall objectives and con-

straints of the memory network by defining quality evaluation standards, thus realizing

the guidance of the algorithm, and discussed the value of the compression threshold

[30]. To overcome the problem that the monoclonal algorithm easily falls into local

optimum, Zhou Yang et al. proposed an evolutionary immune network clustering algo-

rithm based on polyclonal algorithms [31]. Ma Li et al. applied a variety of artificial im-

mune system operators to the clustering process. Based on the basic principles of

biological immunity and cloning, they proposed an adaptive multiclone clustering algo-

rithm that automatically adjusts clustering categories by setting affinity functions to in-

crease the antibody population diversity of individuals to expand the search range of

the solution and avoid precocity of the algorithm [32]. It has been found in experiments

that for unbalanced datasets, clusters of small samples are easily undetectable when

using a large taboo threshold. However, the improved aiNet algorithm does not have a

unified understanding of the death threshold, compression threshold, and taboo thresh-

old to be input. In many cases, it needs to be determined according to the characteris-

tics of the data, which makes the algorithm more difficult to apply.

This paper defines three kinds of knowledge in the CaiNet algorithm: normative

knowledge, topology knowledge, and state knowledge. Normative knowledge provides a

code of conduct for evolution, topological knowledge easily guides the expansion of the

network in different spaces, and state knowledge is used to control the strength of anti-

gen activation networks in different states. In this paper, the topology unit is used to

form the topology knowledge in the cultural algorithm, which simplifies the optimal

antibody search step and formulates new mutation rules, which overcomes the limita-

tions of the traditional algorithm. The determination of the compression threshold is

the difficulty of most algorithms. Based on the concept and theory of the shadow set,

this paper proposes an adaptive determination method for the compression threshold

based on the shadow set, which is conducive to the rapid solution of the algorithm. To

Deng et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:168 Page 3 of 17



avoid the unclear structure of the immune network caused by the boundary data in the

traditional algorithm, it may prevent the network from accurately expressing the distri-

bution of antigens so that it does not activate the immune network. This article refers

to the immune defense suppression measures taken to avoid excessive defense in medi-

cine. For the noise, the boundary, and the antigen inside the cluster, three different

methods are used to treat them differently.

To test the effect of the new algorithm, we select three UCI datasets as the experi-

mental objects and compare the average accuracy and variance in the algorithm. The

experimental results show that the stability and convergence of the new algorithm and

the performance significantly improve.

3 Method
Cultural algorithms use trust space and population space for double-layer evolution.

The population space forms different types of knowledge through trial and error in the

processing of trust space and then guides the evolution of the population space. The

designed algorithm structure is shown in Fig. 1.

3.1 Background knowledge

In this algorithm, three kinds of knowledge are defined. Normative knowledge defines

the interval range of the antigen and each generation of antibodies and provides a be-

havioral rule for evolution. Topological knowledge expresses the distribution of anti-

gens and antibodies in the search space and provides opinions and recommendations

for immune recognition suggestions that are helpful to guide the expansion of the net-

work in different spaces. State knowledge records the different states that the antigens

may be in and is used to control the strength of the antigen activation network in dif-

ferent states.

Update 
knowledge

Normative 
knowledge

Topological 
knowledge

State 
knowledge

knowledge 
acquisition

Knowledge 
guidance

Clone

Antibody 
population

compress variation

Choice

Trust space
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Fig. 1 AiNet clustering principle based on a cultural algorithm
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Definition 1 Antibody-antigen affinity. Antibody-antigen affinity is the measure-

ment of affinity between the antibody and antigen and is described in detail in

formula (1).

f g; bð Þ ¼ 1
1þ g − bk k ð1Þ

In the formula, ‖⋅‖ represents the Euclidean distance, G represents the antigen

collection, and gi represents a single data sample. Bk represents the immune net-

work, that is, the antibody collection, and bk,j represents the k antibody in the jth

network.

Definition 2 Antibody-antibody affinity. Antibody-antibody affinity is expressed by

the Euclidean distance di,j between the antibodies, which can form the affinity matrix

Dk ¼ ðdi; jÞNk�Nk
of the network, and Nk represents the number of antibody neurons in

the k-th network.

Definition 3 Clone operation. The clone operation selects a part of the antibody

with a high affinity to copy. For antibody bi, the clone operation can be

expressed as:

C bið Þ ¼ bi;0; bi;1; L ; bi;n − 1
� �

; n ¼ Int Nc � AiXN
j¼1

Aj

0
BBBB@

1
CCCCA ð2Þ

where Nc represents the total antibody size after cloning, Ai represents the affinity

of the i antibody, and N represents the number of antibodies participating in the

clone.

Definition 4 Normative knowledge. Normative knowledge records the spatial

range of antibody production; one range is the value interval of each dimension of

the antigen, and the other is the value interval of each dimension of the memory

network antibody neuron, which is represented by N0 and Nt, and its formal defin-

ition is:

N0 ¼ l1;u1; l2;u2; L; ln; unf g ð3Þ

Nt ¼ lt1;u
t
1; l

t
2;u

t
2; L; l

t
m; u

t
m

� � ð4Þ

where li represents the lower bound, ui represents the upper bound, and i repre-

sents the ith dimension. N0 is static knowledge and does not change throughout

the clustering process; Nt is dynamic knowledge, which changes with each net-

work change. The superscripts of lti and μti in Nt represent the number of

iterations.

In the internal image of antigens, antibody neurons are generally distributed in

the space determined by all antigens; therefore, the antibody population should be

within the space determined by N0 during initialization. As the network evolves, it

should gradually converge because such a network is more refined and clustering
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is more obvious. To achieve this goal, Nt is used to guide the initialization of the

antibody population. When the population is initialized, most of the antibodies

(80%) are generated in the specified space. To avoid a suboptimal algorithm solu-

tion, some of the antibodies (20%) are also generated in the residual set of Nt rela-

tive to N0, forming a disturbance and preventing the network from falling into the

local optimal solution.

Definition 5 Topology knowledge. The topological unit refers to the hypergeometric

region with an antibody as the center and lj as the edge length of the jth dimension.

The knowledge about antibody and antigen features contained in all topological units is

called topology knowledge. The topological unit represented by antibody bj can be

expressed as:

Ti ¼ bi;1 −
l1
2
; bi;1 þ l1

2
; bi;2 −

l2
2
; bi;2 þ l2

2
; L; bi;m −

lm
2
; bi;m þ lm

2

� �
ð5Þ

In the formula, bi; j −
l j
2 and bi; j þ l j

2 represent the upper and lower bounds, re-

spectively, of the topological unit represented by the antibody on the first dimen-

sion. By calculating the coordinates of the antibody and antigen in space, we can

determine whether it belongs to a topological unit. If an antigen gj belongs to a

topological unit Ti, it is recorded as gj ∈ Ti. There may be intersections between

topological units. When an antigen belongs to more than one topological space,

the distance between the antigen and the center of the topological unit is calcu-

lated, and the smallest distance is taken as the topological unit of the antigen. Due

to the distribution of antibodies, some antigens may not be in any topological

units. In this case, the distance between antigens and the center of all topological

units is calculated, and the one with the smallest distance is taken as the topo-

logical unit.

When the topological unit is determined, the antigen can be mapped into the topo-

logical unit. Since antibody bi is the center of topological unit Ti, and according to the

principle of immune network clustering, the antibody is the inner image of the net-

work. Therefore, we call antibody bi the representative point of the antigen contained

in topological unit Ti. In particular, when the topological unit does not contain any an-

tigens, it is deleted.

Definition 6 State knowledge. Without losing generality, the data in the dataset are di-

vided into noise, boundary, and cluster internal points, and state knowledge is used to

record the different antigen states.

Topological elements can be regarded as grids with knowledge characteristics.

According to the existing grid-based clustering methods, noise and boundary points

(including fuzzy boundaries) are significantly different from the data within the

cluster. It has been found that the noise and boundary points of the data include

but are not limited to the following features: the area where the noise and bound-

ary points are located is generally sparse; the difference between the boundary

points and the class interior is that the latter often has close neighbors in multiple

directions, that is, the uniformity is relatively good; the density of the area where

the boundary points are located generally has a jump. The difference between
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different point sets mainly lies in the density and uniformity, the noise density is

small, the density at the boundary is small and uneven, and the data density inside

the cluster is large and evenly distributed. The density is expressed by the number

of antigens in the grid, i.e.,

ρ j ¼
X
bi∈T j

1 ð6Þ

The joint entropy method is used to measure the uniformity of the data distribution

in the topological unit. For each antigen bj,i in the topological unit, the number of anti-

gens is calculated in its ε neighborhood, and it is recorded as ρj, i, ε ¼ l j
.
4
. lj is the

length of the side of Tj, and

pj;i ¼
ρ j;i

ρ j
ð7Þ

is recorded. The entropy of bj,i can be expressed as:

H j;i ¼ − pj;i logpj;i ð8Þ

Furthermore, we can obtain the combined entropy of all antigens in Tj

H j ¼
X
b j;i∈T j

H j;i ¼ −
X
b j;i∈T j

p j;i logpj;i ð9Þ

The data can be divided into 3 categories according to prior knowledge, so this is a

two-dimensional clustering problem with a known number of categories, which can be

solved well using methods such as fuzzy C-means. After the clustering is completed,

the antigens in the corresponding topological units can be labeled as noise, boundary

points, and cluster internal data.

When a data point is marked incorrectly, the algorithm may be guided in the

wrong direction. The distribution of antibodies has randomness, and a clustering

algorithm is not always effective. Therefore, misclassification always occurs. To

avoid the impact of this situation, the idea of evidence accumulation is introduced.

Evidence accumulation refers to adding 1 to the evidence value of an antigen if it

is labeled in the same state in the adjacent time sequence, and 1 is subtracted

from the evidence value if it is labeled in different states in the adjacent time se-

quence. Because of the randomness of the antibody, this can greatly reduce the im-

pact of misclassification. According to the above methods, state knowledge can be

expressed as:

S ¼ S1;D1; S2;D2; L; Si;Di; L; Sn;Dnf g ð10Þ

where Si represents the state of the ith antigen, Di represents the evidence of the

state, and Di is equal to 1 at the initialization phase.
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3.2 AiNet clustering based on a cultural algorithm

3.2.1 Optimal antibody search

We use topological units (hypergeometry) to form topology knowledge in cul-

tural algorithms. Topology knowledge includes two parts: antigen and antibody.

Therefore, we hope to simplify the optimal antibody search by topology

knowledge.

According to topological knowledge, antibodies can be regarded as representa-

tive points of antigens in antibody units, and the distance between antibodies

with a high affinity and their representative points should be small. Therefore, we

can first use a representative point antibody to find the k' > k antibody with the

smallest distance, then calculate the affinity between the k' antibody and antigen,

and take the k antibody with the highest affinity as the optimal k antibody. Its

pseudocode is:

For other antigens belonging to Tj, only step 2 is needed to find the optimal K

antibody, which can greatly reduce the complexity.
The value of k’ should be greater than k because there is a certain distance deviation

between bj and gi. In practice, the greater the difference between k’ and k, the more ac-

curate the results obtained, and the cost is the expansion of the search range. Consider-

ing the uniformity of antibody distribution in the network, k’ is generally taken as

3k
.
2
.

3.2.2 Elite learning variation

In traditional aiNet clustering, antibody improvement is achieved by clone variation,

expressed as

bj ¼ bj − α bj − gi
� 	 ð11Þ

where α represents variability, and the value decreases with increasing bj and gi affinity.

Formula (11) improves the antibody by reducing the distance between antibody bj and

antigen gi, but this method still has some limitations, such as bj being only close to the

antigen and not focusing on learning from other antibodies. To make the target anti-

body obtain the advantage information of outstanding antibodies at the same time, the

following variation rules are formulated:

bj ¼ bj − α r1 bj − gi
� 	þ r2 bj − b0

� 	� � ð12Þ
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where b0 represents the antibody with the highest affinity with gi. In the current net-

work, r1 and r2 are weighting factors, meeting the requirement of r1+ r2 = 1; if b0≡bj, r1
= 1. In fact, when r1 = 1, it degenerates into the mutation strategy of a traditional

algorithm.

3.2.3 Compression threshold determination

There is no unified understanding of how to set the compression threshold. The

general guidance is to take a very small compression threshold first, for example,

10−3, and gradually increase it with the change in the network. There is little dis-

cussion on this in the existing literature. According to the concept and theory of

shadow sets, we propose an adaptive method to determine the compression

threshold.

Shadow sets is a theory proposed by Pedrycz to address fuzzy problems, in which set

levels 1,0 and [0,1] are used to describe and simplify fuzzy relationships. The sample

points corresponding to level 1 belong to a set completely, [0,1] indicates whether the

sample point belongs to a set or not. The 0 corresponding sample point does not be-

long to a collection at all. The above three levels correspond to the complements of the

lower approximation, upper approximation and lower approximation relative to the

upper approximation.

The purpose of network compression is to improve the affinity between anti-

body and antibody, that is, to increase the distance between antibodies and pre-

vent network redundancy caused by a small distance. The smaller the distance,

the more likely it is to be compressed, and the greater the distance, the more

likely it is to not be compressed. Without losing generality, we use the

normalization of distance to express the possibility membership degree of

whether the antibody should be compressed. The possibility membership of

whether the antibody should be compressed is defined as the mapping of the dis-

tance between the antibody and the antigen to the [0,1] closed interval, expressed

by the formula:

ui; j ¼ di; j − dmin

dmax − dmin
; i; j ¼ 1; 2; L ; n ð13Þ

The objective function is defined as:

arg min
α

F αð Þ ¼ ξ1 þ ξ2 − ξ3j j; α∈ 0; 0:5ð Þ ð14Þ

where a is in the range of (0,0.5], ξ1 ¼
X
ui; j ≤α

ui; j , ξ2 ¼
X

ui; j ≥1 − α

ð1 − ui; jÞ , and ξ3 =

card (I) represents modulo set A, and I = { i | α < uij < 1 − α}. When the α value is

determined, the part of the antibody satisfying μi, j ≤ α needs to be compressed.

Obviously, according to this threshold determination method, a certain number

of antibodies are compressed each time, which is consistent with the actual situ-

ation of network compression in the algorithm. In addition, F(α) is a simple

step-like unimodal function that can be quickly solved by methods such as

dichotomy.
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3.2.4 Immune defense

According to the traditional aiNet clustering method, regardless of the nature of the

antigen, the antibody can generate an immune response and then activate the antibody

network. This is the main reason for the unclear structure of the immune network due

to “abnormal” data such as noise and fuzzy boundaries.

The immune defense mechanism means that the immune system can attack, destroy,

and clear “alien components” such as bacteria, viruses, and foreign bodies, which is a

very important protection mechanism for the human body. We simulate this process in

the algorithm.

To defend against “alien elements,” we must first identify the “alien elements” accord-

ing to the state knowledge constructed in the cultural algorithm. It is convenient to de-

termine the “alien component,” that is, the parts marked as the noise and boundary in

the state knowledge.

In the clustering problem, because the boundary data easily cause the immune net-

work structure to be unclear, it does not activate the immune network, which creates

the problem that it may make the network unable to accurately express the distribution

of the antigens.

To avoid this problem, three different methods are adopted to treat the antigens

in noise, boundary and cluster according to the immune defense inhibition mea-

sures taken to avoid overdefense in medicine, namely,

gi∈S
0; Clonal dominant antibody selection and variation

gi∈S
1; dominat antibody selection and mutation

gi∈S
2; do not operate

8<
: ð15Þ

where S0, S1, and S2 represent the interior, boundary, and noise antigen set of

the cluster, respectively, and the noise and boundary points are defended differ-

ently by the immune defense mechanism guided by state knowledge. If noise is

no longer involved in the immune process, it is eliminated directly. Boundary

points do not participate in the process of cloning to avoid the generation of a

large number of cloned antibodies at the boundary and prevent the blurring of

network structure at the boundary. The reason why boundary points participate

in the selection and variation is to avoid the excessive movement of antibodies to

the clustering center, resulting in a lack of affinity between the boundary and

antibody network, thus leading to the problem of boundary point

misclassification.

3.3 Specific steps

For the final immune network, the minimum spanning tree is generated according to

its connected graph. There is a larger weight between the representative antibodies of

two different clusters. According to the set pruning threshold, the m connections

with larger weights are removed so that m+1 clusters can be obtained. The steps

of the CaiNet algorithm are shown as:
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After the data points in these units are eliminated, the dataset is recorded as X = {x1,

x2,⋯, xi,⋯, xn}, and the clustering is recorded as C1,C2,⋯, Cj,⋯,Cm. Next, determine

the type of data based on the distance between the data point and the antibody, that is,

d2 xi; blð Þ ¼ min d2 xi; bkð Þ; k ¼ 1; 2; L;m
� �

; bl∈C j⇒xi∈C j ð16Þ

4 Experiments
The running configurations include hardware settings (2.70 GHz CPU, 8.0 GB RAM)

and software settings (Windows 10 and Python 3.6). Each test is executed 50 times to

record their average performances.
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4.1 Experimental results on a synthetic dataset

High-dimensional data are not easy to display intuitively, so we use a two-dimensional

synthetic dataset to verify the proposed clustering algorithm. There are three clusters

in the dataset, two of which have more samples, and the other contains fewer samples.

There are fuzzy boundaries between the three clusters, and they contain many in-

stances of sample noise.

As shown in Fig. 2, the minimum spanning tree obtained by CaiNet can be di-

vided into three distinct categories. The nodes of the tree can better reflect the

data distribution of the dataset, and the nodes are relatively uniform. According to

the algorithm, the last operation before obtaining the final minimum spanning tree

is network compression. Therefore, the uniform distribution of the nodes is related

to the selection of the compression threshold, which also shows that selecting the

threshold using the shadow sets method is effective and can avoid the blindness of

choosing a fixed compression threshold. The taboo clone method is not used in

the algorithm, but the algorithm is also effective for datasets with fuzzy boundaries,

indicating that the immune defense principle can achieve the same effect as the

taboo clone.

The algorithm clusters the noise, boundary, and normal data and explicitly eliminates

the noise. From the results, we can see that most of the noise in the data can be identi-

fied by the algorithm. Since taboo cloning is not used, the new algorithm does not need

to set the taboo threshold in advance, which is very convenient and effective in

practice.

Fig. 2 Clustering effect on a synthetic dataset
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4.2 Experimental results on a real-world dataset

To test the clustering effect of the algorithm on actual high-dimensional data, we

choose the iris, wine, and seeds UCI datasets as experimental objects.

The average correct rate represents the proportion of the data that the algorithm

classifies in the cluster correctly. To test the stability of the algorithm, we test the speci-

fied algorithm 50 times on the datasets to obtain a variance in the accuracy after 50

times. Obviously, the smaller the variance is, the higher the stability of the algorithm.

For these three datasets, the comparison between the CaiNet algorithm and the aiNet

clustering algorithm is shown in Table 1. As seen from the table, in the comparative

experiment results, the variance in the CaiNet algorithm is smaller than that of the

aiNet clustering algorithm, and the average correct rate of the CaiNet algorithm is

higher than the average correct rate of the aiNet clustering algorithm, which shows that

the CaiNet algorithm is more stable. When the seeds dataset is selected as the experi-

mental object, the variance in the CaiNet algorithm decreases the most, which is 3.71%

less than the variance in the aiNet clustering algorithm. The average accuracy of the

CaiNet algorithm is the highest, which is 5.8% higher than the average accuracy of the

aiNet clustering algorithm. When the wine dataset is selected as the experimental ob-

ject, the variance in the CaiNet algorithm is the smallest at only 0.66%; at the same

time, the average correct rate of the CaiNet algorithm reaches 98.78%. It can be seen

that the variance and average correct rate of the CaiNet algorithm are affected by the

selected dataset, and the degree of improvement of its algorithm stability is also related

to the selected dataset.

In addition, we test the algorithm convergence performances. In the running time of

the simulation experiment, we choose to perform 100 simulation operations. The re-

sults are shown in Figs. 3, 4, 5, and 6. As seen in the figures, the CaiNet algorithm has

the best balance and the highest accuracy. The CaiNet algorithm also has a higher re-

call and hit rate than the other methods. Therefore, the CaiNet algorithm has better

convergence performance.

4.3 Discussion

We tested and evaluated our proposed CaiNet method with a baseline method named

aiNet to prove the advantages of our method. However, several additional points should

be noted and further analyzed in detail, which are specified below.

1. For the three compared datasets in the experiments in Subsection 4.2, i.e., iris,

wine, and seeds, their data volumes are all not large enough (the three sample sizes

Table 1 Comparison of clustering performance between the two algorithms for three datasets.

Dataset Sample size Clustering number Dimension Algorithm Average accuracy Variance

IRIS 150 3 4 CaiNet 92.16 2.39

aiNet 89.41 5.87

Wine 178 3 13 CaiNet 98.78 0.66

aiNet 94.15 2.72

Seeds 210 3 7 CaiNet 88.24 2.51

aiNet 82.44 6.22
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are 150, 178, and 210, respectively). Therefore, in future work, we need to

investigate more appropriate and larger datasets to validate the feasibility of our

model and method, especially in the big data environment.

2. Although our CaiNet method performs better than the compared baseline aiNet

method, the accuracy of the CaiNet method is still not very high (92.16%, 98.78%,

88.24%). Therefore, we need to seek more efficient improvements to refine our

work in this paper.

3. Clustering is often a time-consuming task that requires a high time complexity,

which is often not very suitable for the big data environment. Therefore,

Fig. 3 The comparison of algorithm balance

Fig. 4 The comparison of algorithm precision
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lightweight clustering methods are often required. We will further optimize our

method to accommodate big data volume.

5 Conclusion
In this paper, cultural knowledge is used to guide the clustering of aiNet, and topology

knowledge of the cultural algorithm is used to represent the distribution of antigens

and antibodies in the space. Antigens only need to search using the antibodies in the

topological unit when finding the highest affinity antibody, which greatly reduces the

complexity. Through immune defense, the flexibility of algorithm application is im-

proved. According to the theory of shadow sets, an adaptive method to determine the

Fig. 5 The comparison of algorithm recall

Fig. 6 The comparison of algorithm hit rate
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compression threshold is proposed; the traditional clonal mutation operator is im-

proved by elite learning, which speeds up the convergence of the network. From the

simulation experiment, we can see that the accuracy and stability of the improved algo-

rithm have been improved, which proves its effectiveness.

In the future, we will continue to refine our work by considering more complex sce-

narios, such as multidimensional clustering problems. In addition, how to adapt our

method to big data application requirements is another open question that requires in-

tensive study.
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