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Abstract

Workflow is one of the most typical applications in distributed computing, which makes a variety of complex
computing work orderly. However, assigning workflow tasks to nodes in the process of multi-node collaboration is still
a challenge, because there are some unpredictable emergencies, i.e., uncertainty, in the process of workflow
scheduling. The paper proposes a blockchain-powered resource provisioning (BPRP) method to solve the above
problems. Technically, we use the directed acyclic graph in the graph theory to represent the workflow task and
optimize the workflow scheduling strategy in the presence of uncertainty. The processing time and energy
consumption of workflow tasks are also optimized by using non-dominated sorting genetic algorithm III (NSGA-III).
Finally, we carry out experimental simulations to verify the effectiveness of the proposed method.

Keywords: Blockchain, Uncertainty-aware, Edge computing, Workflow, NSGA-III

1 Introduction
1.1 Background
With the advent of 5G era, various new applications of
mobile Internet emerge in endlessly, the basic frame-
work of smart city has been further improved, and peo-
ple’s intelligent living standards have also been greatly
improved. The operation of a city produces a large num-
ber of data [1], and the organization of the facts car-
ried by these data forms valuable information products
and promote the development of the city in an efficient,
convenient, and low-carbon direction. The information
resource center is the cornerstone of the construction of
smart cities [2, 3]. At the same time, the frequent use of
mobile devices consumes a lot of bandwidth resources,
and the processing efficiency of local mobile devices has
been unable to meet the high-quality services required by
users [4–7] [8]. Therefore, computing tasks are migrated
to the cloud data center (CDC) for execution.
Cloud computing divides huge computing processing

programs into innumerable smaller subroutines automat-
ically through the network and then submits them to a
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system composed of multiple servers [9]. After process-
ing by searching, computing, and analysis, the results are
returned to users [10]. In the cloud platform, users use
computing resources in the form of the lease, and comput-
ing resources are provided in the form of virtual machines
(VMs) [11]. Users perform migrated computing tasks by
accessing the shared pool of computing resources in the
cloud. Nevertheless, due to the long distance between
mobile devices and the cloud, cloud computing will cause
data transmission delay [12] that cannot be ignored when
it is used, which brings a lot of problems to delay-sensitive
networks in smart cities [13].
In order to meet the requirements of low latency

and high bandwidth in the 5G era, cloud computing
and Mobile Edge Computing (MEC) are integrated; that
means the cloud platform is migrated from the inside of
the mobile network to the edge of the mobile network to
realize the flexible utilization of computing resources. The
integration of cloud computing and MEC make full and
reasonable use of network computing resources [14], thus
improving the quality of service and user experience.
In order to achieve orderly and efficient utilization of

computing resources, the workflow is introduced to sim-
ulate scientific applications requiring huge computing
resources [15, 16]. Workflow refers to a kind of busi-
ness process that can be fully automated. According to a
series of different pre-set rules, information or computing
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tasks are transmitted and executed among different exec-
utives. Workflow is represented by data as interrelated
computing tasks [17, 18]. The process of mapping com-
puting tasks in a workflow to computing resources in the
cloud resource sharing pool is called workflow scheduling.
Workflow scheduling problems are divided into two cat-
egories: independent task scheduling and interdependent
task scheduling. In the former, a task is an independent
entity and does not depend on other tasks. In the latter,
there is a dependency relationship between a group of
tasks, which means that in a workflow, only when the par-
ent task is completed can the task begin to execute, which
is relatively complex. In the paper, the above two cases are
considered at the same time.
In the process of workflow scheduling, there are some

unexpected situations, such as resource conflicts, node
failures and so on, namely uncertainty [19]. Uncertainty
makes the initial static scheduling strategy unable to
work properly, which brings great challenges to workflow
scheduling. In order to ensure that tasks are completed
on time, a new real-time dynamic scheduling strategy is
needed to deal with the affected tasks. When the task is
dependent on other tasks, the scheduling of its subtasks
should also be considered.

1.2 Motivation
By using the appropriate allocation method, the work-
flow system can select the most suitable participants to
perform tasks, thus improving the efficiency of workflow
operation and quality of service [20]. Traditional busi-
ness workflow is usually driven by control flow, which is
used to specify paths and constraints, and may require
manual intervention [21]. In the paper, we use the permis-
sioned private blockchain to record the real-time status of
each edge node in the system and the workflow schedul-
ing scheme used in the current system. The essence
of blockchain is a distributed public account, which is
checked by edge nodes in the system [22]. All the edge
nodes which participated in the blockchain system main-
tain the updating of the account book. The account book
is modified in accordance with strict rules and consensus.
The linkage mechanism of blockchain makes it multi-
consensus, record traceability, and non-tampering. This
makes the state of an edge node to be broadcast to other
nodes in the system in real-time and reliably, thus mak-
ing the workflow scheduling strategy more efficient and
intelligent [23].
In the blockchain, each task corresponds to a block. The

blockchain consists of some connected blocks. Each block
contains two parts: block head and block body. The block
head records the meta-information of the current block,
such as the generation time, the hash value of the current
block, and the hash value of the previous block, and the
block body record task’s actual data. The effectiveness of

each block is verified by calculating its own hash value
and the hash value of the previous block. When a task
block is generated, all edge nodes compete for the right
to record the block [24]. The successful node broadcasts
the transaction to other edge nodes, notifies them to stop
competing for the right to record, and adds the task block
to the blockchain after obtaining the consent of more than
half of the other edge nodes [25]. As a result, blockchain
is used as public accounts to record edge node status and
real-time scheduling strategy, which ensures the security
of data flow and reduces the impact of uncertainty on
workflow scheduling [26–29].

1.3 Paper contributions
The main contributions of the paper are as follows:

• We present basic concepts and definitions to analyze
the processing time of tasks and the energy
consumption of edge nodes in workflow scheduling
in the hybrid environment of cloud computing and
edge computing.

• We propose a blockchain-powered resource
provisioning (BPRP) for uncertainties in the workflow
scheduling process, which uses directed acyclic graph
to represent the workflow of each edge node, and the
success rate of tasks which are affected by
uncertainties is quantified.

• Non-dominated sorting genetic algorithm III
(NSGA-III) is used to optimize multi-objective,
which reduces the processing time and energy
consumption of workflow scheduling.

• Numerous simulations confirm the validity of BPRP.
The simulation results show that the method
effectively reduces energy consumption and
execution time and solve the uncertainty problem.

The rest of the paper is as follows. Section 2 presents the
basic concepts and model formulas. Section 3 describes
the resource scheduling method based on blockchain. In
Section 4, simulation experiments are given, which show
the performance of our method. Section 5 describes the
relevant work. Finally, Section 6 summarizes the conclu-
sions and future work.

2 Systemmodel and problem formulation
In this section, basic concepts and definitions for the
workflow scheduling based on edge computing are intro-
duced. In addition, the energy consumption and the exe-
cution time of workflow scheduling are also analyzed. Key
terms and the descriptions are listed in Table 1.

2.1 Basic concepts
Edge computing sinks computing tasks into the vicinity
of the wireless access network, i.e., the base station, and
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Table 1 Key Terms and Descriptions Terms Descriptions

Terms Descriptions

E The set of edge nodes, E = {e1, e2, ..., eN}
S The set of mobile devices, S = {s1, s2, ..., sM}
T The set of workflow tasks, Ti = {t1, t2, ..., tQ}
G The graph model workflow operations

D The set of dependencies between tasks

P(ti) The parent tasks of the ith task

C(ti) The children tasks of the ith task

ES(ti) The earliest start time of the ith task

EF(ti) The earliest finish time of the ith task

LF(ti) The latest finish time of the ith task

DL(ti) The deadline of the ith task

RT(ti) The real completion time of the ith task

EC The energy consumption of workflow scheduling

SR The success rate of workflow rescheduling

provides the services and computing functions required
by mobile devices through the wireless access network.
On the basis of the smart city, we establish a mobile
computing model based on mobile edge computing. Each
base station is defined as an edge node, which provides
computing resources for nearby mobile devices. Suppose
there are N edge nodes deployed is the edge computing
environmental, denoted as E = {e1, e2, ..., eN }.
Let S = {s1, s2, ..., sM} be the set of mobile devices, where

M is the amount of mobile services. Each mobile device in
S generates workflows when task arrives, which schedules
its computing tasks to different edge nodes to get suffi-
cient computing resources. Ti = {t1, t2, ..., tQ} represents
set of workflow tasks, where Q is the amount of it. The
edge nodes in E provide computing resources for tasks in
T ; in other words, tasks are scheduled to different edge
nodes for execution.
Definition 1 Dependencies among workflows. There

are dependencies among some workflow tasks [30]; in order
to express these relationships clearly, we use a direct acyclic
graph G = (T ,D) to model workflow operations, where
D is the set of dependencies between workflow tasks. Each
dependency is in the form of directed edge di,j = (ti, tj)
(1 < i, j ≤ Q), which means only when the task ti
is completed can the task tj begin. The dependencies of
tasks in the workflow can be calculated by conditional
probability [21].

2.2 Completion time analysis of workflow
All workflows constitute a directed acyclic graph. In order
to reduce the processing time of workflow, we find critical
paths to meet the deadlines of workflow tasks. In order to
simplify the problem, we add two virtual tasks tstart and

tlast at the beginning and end of the workflow to ensure
the single entry and single output of tasks.
Definition 2 Parent tasks. Due to the dependencies

among the tasks, a task ti (i = {1, 2, ...,Q}) can start only
when all its parent tasks are finished. We use the set P(ti)
(i = {1, 2, ...,Q}) to represents parent tasks of the ith task.
The earliest start time of each task in a workflow is

obtained from the earliest start time of its parent task, and
the start time of the task t1 is regarded as zero. The earliest
start time of the ith (i = {1, 2, ...,Q}) task is calculated by:

ES(ti) =
{

0, i = start,
max(ES(tj) + TD(tj, ti) + ED(tj)), 0 < i ≤ Q, tj ∈ P(ti),

(1)

where TD(ti, tj) represents the transmission delay
between the parent tasks and the task ti (i = {1, 2, ...,Q})
itself, and TD(ti, tj) denotes the minimum execution delay
of the parent tasks. The earliest start time of the task ti
(i = {1, 2, ...,Q}) means that all parent tasks before it is
completed as early as possible.
Therefore, the earliest finish time of the task ti (i =

{1, 2, ...,Q}) is calculated by:

EF(ti) = ES(ti) + ED(ti). (2)

Definition 3 Children tasks. The set C(ti) repre-
sents the subtasks, i.e., the children tasks of the task ti
(i = {1, 2, ...,Q}). The children tasks of the task ti (i =
{1, 2, ...,Q}) can start only when it is finished.
Let LF(ti) be the latest finish time of the task ti (i =

{1, 2, ...,Q}), which is defined as:

LF(ti) =
{

D, i = last,
min(LF(tj) − TD(ti, tj) − ED(tj)), 0 < i ≤ Q, tj ∈ C(ti),

(3)

where D is the deadline of the whole workflow which
is determined by the mobile users themselves. The latest
finish time of the task ti (i = {1, 2, ...,Q}) means the lat-
est completion time without delaying the completion of
subsequent children tasks and workflows.
Definition 4 Parent critical path. The parent critical

path of a task ti (i = {1, 2, ...,Q}) represents the critical
parent task tj (j = {1, 2, ...,Q}) of task ti and the parent
critical path of tj if it exists [1].
The task sequence on the parent critical path of the task

ti (i = {1, 2, ...,Q}) is Si = (p1, p2, ..., pH) (i = {1, 2, ...,Q}),
where H is the amount of the tasks. The deadline of Si is
denoted as:

DL(Si) = LF(pH) − ES(p1). (4)

Each task needs to be completed before its deadline.
Assume that the task pj in Si corresponds to the task ti
in T, then the deadlines [31] of each task on the parent
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critical path is calculated by:

DL(pj) = EF(pj) − ES(p1)
EF(PH) − ES(P1)

× (LF(pH) −ES(p1)), (5)

DL(ti) = DL(pj). (6)

After determining the deadlines of each task on the
parent critical path, the unallocated tasks on the parent
critical path will be allocated with optimal edge nodes
according to the scheduling strategies.

2.3 Energy consumption analysis of workflow scheduling
In our model, we also consider the energy consumption
in workflow scheduling and strive to minimize it. Firstly,
we use a variable αi,k to represent the allocation status
between the task ti in T and the edge node ek in E. If the
task ti is allocated to the edge node ek , αi,k = 1; otherwise,
αi,k = 0. Therefore, the energy consumption of workflow
scheduling is denoted by:

EC =
Q∑
i=1

N∑
k=1

αi,k · tei,k +
Q∑
i=1

eei, (7)

where tei,k is the transmission energy consumption which
is generated when the task ti is transferred to the edge
node ek , and eei represents the execution energy con-
sumption pf the task ti. The eei is determined by the size
of the computing tasks.

2.4 Success rate analysis of workflow rescheduling
Finally, we will evaluate the success rate of workflow
rescheduling. Assume that there are A tasks needed to
be rescheduled because of the uncertainties. The vari-
able βv (v = {1, 2, ...,A}) denotes whether the task tv is
successfully completed or not.

βv =
{
1,RC(tv) ≤ DL(tv),

0, otherwise. (8)

where RT(ti) is the real completion time of the task ti in
T. Whether the actual completion time of a task is prior to
its limited deadline is the criterion to determine whether
the task is rescheduled successfully.
Consequently, the success rate of workflow rescheduling

is calculated by:

SR = 1
A

A∑
v=1

βv. (9)

2.5 Problem definition
From the foregoing, execution time and energy consump-
tion of the workflow are analyzed and quantified. In this
paper, we aim to achieve the goal of minimizing the exe-
cution time variance and reducing the energy consump-
tion presented in Eq.(7) while optimizing the workflow

scheduling strategies. The multi-objective optimization
problem is formulated by:

min(RT(tlast)), min(EC), (10)

s.t.∀ti,RT(ti) ≤ DL(ti). (11)

3 Blockchain-powered resource provisioning
method in edge computing

In this paper, a blockchain-powered resource provision-
ing (BPRP) is proposed to resolve the uncertainty dur-
ing workflow scheduling. Firstly, blockchain is adopted
to record the strategy of workflow scheduling and help
all edge nodes to learn the strategy. Then, NSGA-
III is employed to select balanced strategies, which
is a multi-objective optimization problem. Finally, the
optimal scheduling strategy is obtained by the SAW
(simple additive weighting) and MCDM (multiple-criteria
decision-making).

3.1 Select balanced workflow scheduling strategy using
NSGA-III

3.1.1 Encoding
Each task in the workflow is numbered and given a value,
which is expressed by integers. In GA, the value of each
task is viewed as a gene and represents that the task is
migrated to an edge node with a corresponding number.
The strategies of the workflow, consists of the scheduling
strategies of all tasks, is treated as a chromosome.

3.1.2 Fitness function
Fitness functions are critical metrics to ensure the diver-
sity of the solutions in genetic algorithms (GA). In this
paper, the fitness functions of the total energy consump-
tion and the completion time are given in Eq.(3) and
Eq.(7), respectively. To evaluate the performance of our
method, these functions need to be normalized and mini-
mized.

3.1.3 Initialization
Before performing NSGA-III, some critical parameters
need to be given for initialization, including the number
of iterations Itn and the size of the population Cp, i.e., the
number of the chromosomes. The crossover probability pc
and the mutation probability pm are initialized to ensure
diversity of the iterative results.

3.1.4 Crossover andmutation
The crossover is the core in GA, and the crossover distin-
guishes GA from other evolutionary algorithms. After the
positions of the intersections are determined, two individ-
uals exchange partial gene fragments to obtain an effective
search in the string space, and excellent traits are inher-
ited by the offspring. The specific crossover operation is
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shown in Fig. 1. The genes g3 and g4 in the chromosome p1
and p2 are selected as intersections, and two new chromo-
somes are generated after gene exchange. The mutation
prevents the population from falling into local optimum
by modifying part of the gene fragment in the chromo-
some. The specific mutation operation is shown in Fig. 2.
The gene fragments g3 and g4 in the chromosome p1 are
modified to obtain a new chromosome, which has a higher
fitness value.

3.1.5 Selection
In NSGA-III, a set of reference points is first defined for
further association with individuals, and reference points
solve poor diversity caused by the crowded distance used
inNSGA-II, which easily leads to the algorithm falling into
local optimum. Next, the initial population Pot of size Cp
is randomly generated. The population Mt of size 2Cp is
composed of the initial population Pot and the offspring
populationQt which is processed by the crossover and the
mutation.
To select the bestCp individuals from the populationMt

for the next generation, the fitness value of each individ-
ual is calculated, and the non-dominated sorting based on
Pareto dominance divides the population Mt into differ-
ent non-dominated layers according to the fitness values.
FL = {F1,F2,...FK } is employed to represent each layer, and
individuals with lower fitness values are divided into lower
layers. From the first level, the individuals are selected
into the offspring population Mt+1 until the size of Mt+1
is equal to Cp . Suppose that FH is the largest accept-
able layer, the individuals in larger layers are discarded.
However, if all individuals in FH are received, the size
of the population Mt+1 may be larger than Cp. Unlike
the crowded distance-based approach in NSGA-II, ref-
erence point-based approach is employed to select the
appropriate individuals from FH in NSGA-III.
The normalization is a key part of the reference point-

based approach. First, the ideal points, i.e., the minimum
values of the population targets, are calculated for further

scalarization and the scalar formulas are given below:

RTn = RT − RTmin, (12)

ECn = EC − ECmin. (13)

where RTmin and ECmin are the minimum of the comple-
tion time and energy consumption, respectively.
Then, each fitness function is viewed as an axis and the

ideal point is the origin. There is a maximum value for
each fitness function, which is connected to the respective
origin, and the intercept is determined by the intersec-
tion of the line and the coordinate axis. The normalized
equations are given in Eq.(14) and Eq.(15).

RTt = RTn
art − RTmin

, (14)

ECt = ECn
aec − ECmin

. (15)

where art and aec are the intercepts.
The reference points are equidistantly distributed on

the axis and the individuals are connected to these refer-
ence points for selection. When selecting the remaining
individuals, a principle needs to be followed, i.e., the
individuals corresponding to the reference points with
fewer connections should be retained to ensure diversity.
Therefore, if one reference point has little links in the pre-
vious layers, the corresponding closest individual in FH
is selected into Mt+1, and the process continues until the
size ofMt+1 is equal to Cp.

3.2 Assess the strategy using sAW andmCDM
In our paper, SAW and MCDM are used for evaluating
the scheduling strategy. Since the completion time and the
total energy consumption satisfy a certain degree of inde-
pendence, different weights are specified to determine
better strategies. The utility function is given as follows:

val = χrt · RTt + χec · ECt . (16)

Fig. 1 Example of the crossover
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Fig. 2 Example of the mutation

where χrt and χec are the weights of the completion time
and the total energy consumption, respectively.
In Algorithm 1, the size of population Cp, the num-

ber of iterations Itn, the crossover probability pc, and the
mutation probability pm are inputs. After initializing the
population Pot by the fitness functions, the population
Mt is also determined. In the process of selecting the
next generation, more balanced scheduling strategies are
selected after each iteration. Finally, scheduling strategies
R with higher utility values are selected through SAW and
MCDM.

3.3 Deal with the uncertainty during the workflow
scheduling

In the process of workflow scheduling, scheduling strate-
gies are usually dynamically changed. Due to network
congestion and performance degradation, new strategies

Algorithm 1 Selection of The Strategy
Require: Iit , Cp, pc, pm
Ensure: R
1: Calculate RT and EC
2: Use RT and EC to initial Pot
3: Obtain Qt through pc and pm
4: Mt = Pt ∪ Qt
5: i = 1
6: while i < Itn do
7: Non-dominated sorting ofMt
8: j = 1
9: whileMt+1 ≤ Cp do

10: Mt+1 = Mt ∪ Fj
11: end while
12: Normalize the individuals in Fj
13: Determine reference points and connect reference

points to Fj
14: whileMt+1 > Cp do
15: Delete the individuals fromMt+1
16: end while
17: end while
18: Use SAW and MCDM to select the scheduling strat-

egy R with higher utility value
19: return R

need to be developed to further optimize the completion
time and total energy consumption. It is assumed that the
uncertainty is generated when the task ti is executed, the
task ti and other tasks on the path where ti is located, i.e.,
the affected subsequent tasks, need to be organized into
a new workflow for rescheduling. The corresponding new
blocks are generated and added to the blockchain. In the
process of admitting the transaction by other edge nodes,
new scheduling strategies are simultaneously added to the
task execution list by all edge nodes for updating.

3.4 Method view
In this paper, to address the uncertainty generated during
the workflow scheduling, a blockchain-based resource
provisioning method is proposed. During the schedul-
ing process, the scheduling strategy for each task in the
workflow is treated as a transaction and added to the
blockchain. The transactions need to be recognized by
all miners, i.e., edge nodes, so it is necessary to reduce
the completion time and total energy consumption as
much as possible. NSGA-III is able to perform well in this
multi-objective optimization problem. First, NSGA-III is
adopted to determine initial workflow scheduling strate-
gies and new transactions are appended to the blockchain.
Afterward, better scheduling strategies are selected by the
utility function. Finally, the workflow will be rescheduled
if the uncertainty is generated.
The proposed BPRP is summarized in Algorithm 2.

First, the inputs are initial scheduling strategies R and
the number of the affected tasks Un. After the uncer-
tainty is generated, the workflow is rescheduled and new
scheduling strategies Rn are generated (lines 1–3). The
new transactions corresponding to the new scheduling
strategies also need to be recognized by all edge nodes.
Finally, the deadline for each task in the workflow is deter-
mined, and the success rate is calculated by the efficiency
of solving the affected tasks (lines 4–11).

4 Experimental evaluation
In this section, to evaluate the feasibility of our method
BPRP, some experiments are performed to test the per-
formance under simulated conditions. First, the simulated
environment is built and the experiments are evaluated
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Algorithm 2 Blockchain-powered Resource Provisioning
Require: R, Un
Ensure: Rn, SR
1: The uncertainty is generated in blockchain-based

framework
2: Reschedule the workflow and generate a new schedul-

ing strategy Rn
3: New transactions are appended to the blockchain and

recognized by all edge nodes
4: DL =ε · RTold
5: i = 1, sum = 0
6: while i ≤ Un do
7: if RTnew ≤ DT then
8: sum = sum + 1
9: end if

10: end while
11: SR = sum/Un
12: return Rn, SR

through some metrics. Afterward, comparative exper-
iments are performed to compare with our method.
Finally, the experimental results are assessed.

4.1 Experimental context
In our experiments, the workflows with different tasks are
employed to simulate applications in mobile devices, and
the number of tasks is set to 50, 100, 150, 200, 250, and
300, respectively. There are a total of 30 edge nodes, and
different VMs are placed on these edge nodes to simulate
different processing capabilities [32] [33]. Some other key
parameters are described in Table 2.
Benchmark, First Fit (FF), and Next Fit (NF) are three

algorithms that are chosen for comparison. The detailed
introductions are given as follows.
(1) Benchmark: Each task in the workflow is migrated

to a random edge node in order until all tasks have
their own scheduling strategies. If the uncertainty arises
while performing a task, new scheduling strategies are not
regenerated. In our design, the affected tasks will continue
to be executed until the tasks are completed.
(2) First Fit: The tasks in the workflow are preferentially

migrated to the nearest edge nodes. If an edge node is
unable to provide enough computing resources, a farther

Table 2 Parameter settings

Parameter description Value

The power of open VM μ 0.25 KW

The idle power of VM κ 0.04 KW

The working power rate of VM γ 0.06 KW

The processing power of edge node ω 2000 MHz

The bandwidth between edge nodes andmobile devices η 2000 mbps

edge node will accept the task. Moreover, new scheduling
strategies are regenerated when uncertainty occurs.
(3) Next Fit: Unlike First Fit, this method does not seek

service from the nearest edge node every time, but instead
searches from the edge node that last provided the service.
These scheduling strategies are implemented on a lap-

top PC with Intel Core i7-7700HQ 2.80 GHz processors
and 8G RAM.

4.2 Performance assessment of bPRP
The proposed BPRP is a multi-objective optimization
problem, and two metrics, i.e., the completion time and
the total energy consumption, are two optimization goals
in this paper. There are many balanced methods gener-
ated in NSGA-III, and the optimal method is selected by
SAW and MCDM. The utility value is a key indicator for
evaluating the performance of a solution, and the utility
values for workflows with a different number of tasks are
given in Fig. 3. A solution with higher utility value is con-
sidered to be better. Therefore, solution 1 is considered as
the optimal solution in Fig. 3a.
To evaluate the success rate of our method in addressing

the uncertainty, a graph of success rate is given in Fig. 4.
This figure compares the success rate of workflows with
a different number of tasks when the deadline factor is
set to 1.4. It is not difficult to find that a workflow with
fewer tasks has a higher success rate when dealing with
the uncertainty.

4.3 Comparison of the completion time
Figure 5 shows that BPRP consumes less time than two
other methods. With the expansion of the task size in
the workflow, the advantage of BPRP in terms of comple-
tion time is more obvious. Benchmark consumes the most
time in three methods, which confirms that new schedul-
ing strategies are usually superior in the event of the
uncertainty. BPRP has less completion time than FF, which
also confirms the superiority of NSGA-III in dealing with
a multi-objective optimization problem. Moreover, in the
process of the transactions being confirmed, the schedul-
ing strategies are also detected by each edge node, which
saves some time.

4.4 Comparison of total energy consumption
Figure 6 shows the comparisons of the total energy con-
sumption for the three methods. It is clear that our
method consumes less energy. In the decision process,
the transaction corresponding to the scheduling strategy
of each task is confirmed by each edge node. Therefore,
the state of each edge node is able to be known by other
edge nodes, and better strategies are generated. However,
the tasks in the workflow are randomly migrated to other
edge nodes in Benchmark, which results in many poor
strategies being developed and consuming more energy.
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Fig. 3 The utility value of the workflow with different task scales. a Number of the tasks = 50; b number of the tasks = 100; c number of the tasks =
150; and d number of the tasks = 200

Fig. 4 Example of the utility value
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Fig. 5 Comparison of the completion time

4.5 Comparison of the success rate
There is no doubt that tasks take more time to execute
when uncertainty arises. In this experiment, the setting
of the deadline is related to the ideal completion time of
the workflow, i.e., the completion time when no uncer-
tainty occurs. The relevant parameters, i.e., the deadline
factors, are set to 1.2, 1.4, 1.6, and 1.8, respectively, which
mean that the deadline is set a multiple of the ideal time.
According to Fig. 7, BPRP has a higher success rate and
increases as the deadline increases. When the deadline
factor is equal to 1.8, the success rate reaches 1. Therefore,
it predicts that the success rate of solving the uncertainty
will gradually approach 1 if the time is sufficient.

5 Related work
With the development of mobile communication technol-
ogy, the basic framework of smart cities has been further
improved. The concept of a smart city integrates big data
and the Internet of Things (IoT) to connect everything
in life to optimize the efficiency of urban processes and
services and connect them to residents. At present, the
blockchain has become a new model to support the smart
city framework [34]. The blockchain technology has non-
modifiability and no centrality, and the hash verification
of the block makes the data transmission and recording
real and reliable [35]. Blockchain has a great advantage
in terms of the transfer value, which makes economic

Fig. 6 Comparison of total energy consumption
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Fig. 7 Comparison of the success rate

value in data from mobile devices at relatively low cost.
The author of [36] established a blockchain platform that
uses the PBFT-DPOC consistency algorithm to achieve
decentralized autonomy of mobile devices. [37] proposed
an algorithm which helps to select the best resources
from the cloud resource pool to save costs. [38] intro-
duced a blockchain network simulator called SimBlock,
which consists of thousands of nodes, simulating a peer-
to-peer network in a blockchain, and verifies large-scale
blockchain network behavior [39].
Workflow is one of the most typical applications in dis-

tributed computing. Due to the increase in data generated
by mobile devices and the rapid increase in the num-
ber of workflows, workflow scheduling has become the
focus of mobile communication technology development
in recent years. [13] proposed a revised discrete particle
swarm optimization (RDPSO) algorithm, which schedules
workflows in the cloud, thereby reducing the energy con-
sumption of data transmission in cloud workflows. Using
a SHEFT algorithm in [40] allows computing resources to
be dynamically scaled when workflow tasks are executed,
saving computing resources and reducing overall execu-
tion time. A method for dynamic expansion of computing
resources was also proposed in [41]. The scheduling algo-
rithm in [42] determined the mapping between tasks and
computing resources in the artifact path. By determin-
ing the effective mapping of tasks to resources on critical
paths, computational tasks can be completed within a
specified time. But the limitation of this article is that the
author does not consider the cost of workflow execution.
In the workflow scheduling, there will be uncertainty such
as node failure and service reliability. In order to ensure
that the tasks in the workflow are completed within the

deadline, these uncertainties need to be processed. The
author of [19] proposed an algorithm called PRS that com-
bines active and passive scheduling methods to sched-
ule workflows, minimizing the impact of uncertainty on
workflow scheduling. Considering that the available band-
width is not able to be accurately estimated under the
influence of uncertainty factors, [43] uses a particle swarm
optimization based scheduler RobWE, which changes the
function according to the user’s needs. The author of [44]
established a new model called R-MOHEFT, which esti-
mated the processing time of tasks in the workflow when
the resource elasticity configuration and the uncertainty
interval were unknown. Assuming that the probability dis-
tribution function of uncertainty is known, two variables
are proposed in [45] to measure the robustness of work-
flow execution, and a new workflow scheduling algorithm
is proposed to solve the problem of computing resource
allocation in the cloud resource pool.

6 Conclusion and future work
Cloud computing has the advantages of resource-saving,
on-demand deployment, and high flexibility. In recent
years, the development of cloud computing has been very
hot. In order to reduce the round-trip delay of infor-
mation transmission between the local device and the
CDC, we use MEC as an extension of cloud comput-
ing to migrate the cloud platform from the inside of
the mobile network to the edge of the mobile network
to realize the flexible utilization of computing resources.
Our paper proposes a blockchain-powered resource pro-
visioning (BPRP) method for the uncertainty of workflow
scheduling in the cloud. The blockchain is used to record
the current state and task assignment of each node. At
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the same time, the processing time and energy consump-
tion of the workflow tasks are optimized by using the
non-dominated sorting genetic algorithm III (NSGA-III)
to ensure that the tasks are completed efficiently within
the deadline. A large number of experiments have verified
the effectiveness of the method.
In future applications, the proposed BPRP method will

be extended to the actual scenario of workflow schedul-
ing in the cloud, reducing the impact of uncertainty on
workflow scheduling.

Abbreviations
MCDM: Multiple-criteria decision-making; NSGA-III: Non-dominated sorting
genetic algorithm-III; SAW: Simple additive weighting
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