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Abstract

LoRa wireless technology is a revolutionary wireless network access technology with a wide application prospect. An
identification method for Lora devices based on physical layer fingerprinting is proposed to provide identities for
authentication. Contrary to previous works, a differential constellation trace figure is established from the radio
frequency (RF) fingerprinting features of LoRa devices, which transforms the feature matching to the image
recognition. A classification method based on Euclidean distance of clustering center of LoRa signal is performed to
analyze the differential constellation trace figure. The experimental results show that six LoRa transmission modules
can be recognized accurately, and even in a low signal-to-noise ratio (SNR) environment, the different LoRa devices
can still be distinguished and identified effectively.
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1 Introduction
The concept of Internet of Things (IoT) has been pro-
posed in the past decade and attracted extensive attention
worldwide [1–3]. With the development of mobile com-
munication networks and the deployment of IoT systems,
IoT applications have penetrated into every aspect of
people’s life [4, 5].
Meanwhile, with the rapid growth of IoT devices, secu-

rity risks have become a major problem that constrains
the development of IoT [6–8]. Due to the large number
of IoT terminals and complex application environments,
the security protection capability is weak, which brings
threats to the entire IoT system. Once IoT is under attack,
it may cause shutdown of factories, disorder of society and
even the safety of human life [9, 10]. Attacks against IoT
have already emerged and their scope and impact have
increased year by year. With the severe security situation
in the IoT, it is extremely urgent to strengthen the security
of IoT.
The integration and diversification of IoT terminals has

brought many security uncertainties to the IoT business,
and the problems are mainly reflected in the following
points [11–16]:
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• Most of the IoT terminals cannot integrate software
and hardware for security protection because of the
limitation of cost and performance.

• Many application scenarios are open and unattended,
so this self-running mode is vulnerable to external
attacks.

• It is necessary to study efficient and lightweight
security algorithms, taking security and efficiency
both into account.

• Vertical applications of IoT are directly related to
users’ life safety, so the damage will be greater than
that of traditional networks.

• The scale of IoT terminals will be much larger than
the traditional network terminals, so a large-scale
security attack may happen, which is difficult and
costly to prevent.

• Many users are not deeply aware of the IoT security.
When a large number of traditional devices without
the protection capability join the IoT, they will affect
the overall security and reliability.

At present, most IoT interconnections still rely on Inter-
net and mobile networks. The private protocol of IoT is
lacked, which restricts the large-scale popularization of
IoT to a certain extent. Therefore, the low power wide
area network (LPWAN) emerges [17]. Compared with the
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traditional IoT communication technology, LPWAN tech-
nology has the advantages of wide coverage, long distance,
massive connection, low power consumption, low cost,
etc. It has become a new hotspot in the research and
application development of IoT.
Among many technologies of LPWAN, the most com-

petitive technologies are LoRa [18] and NB-IoT [19]. LoRa
standard developed early with mature technology among
many LPWAN technologies and has a complete industrial
chain. As the main technical representative of LPWAN,
LoRa standard has drawn worldwide attentions in the field
of IoT and its security issues and technologies will become
important research contents. LoRaWAN [20] is a stan-
dardized specification defined by the LoRa Alliance for
low power consumption and network device compatibility
of LoRa terminals, and it mainly includes the communi-
cation protocol and system architecture, while LoRa only
defines the physical layer.
LoRaWAN network architecture consists of an end

device (ED), a gateway (GW), a network server (NS), an
application server (AS), and a joining server (JS) [21]. A
typical star topology is employed in LoRaWAN and the
messages are transmitted between the end device and the
network server by the gateway. The gateway accesses the
network server through a standard IP connection, while
the end device communicates with one or more gateways
by a single-hop LoRa or frequency-shift keying (FSK). The
gateway only completes the forwarding of the data packets
without any security protection.
In addition, LoRaWAN considers network security

issues in its design. LoRaWAN’s security policy is to
encrypt data from the end device node to the network
server and the application server. The former ensures that
the legal node can access the network, authenticate the
data packet, and perform integrity verification, and the
latter ensures the end-to-end security of the application
through the encryption of application data. The joining
server is responsible for node authentication and session
key distribution.
At present, the network architecture of IoT is not

clearly defined, while it is generally accepted that the
network architecture of IoT consists of three parts: the
sensing layer, the transport layer, and the application
layer [22]. There are already mature security management
technologies for the transport and application layer, but
the authentication technologies are missing in the sens-
ing layer[23]. LoRa terminal security issues are mainly
reflected in the following four aspects:

• Vulnerable to attacks. LoRa technology chooses the
unlicensed frequency band and the public protocol,
which brings vulnerability to the network. The
attacker can eavesdrop on the address of the legal
terminal and generate forged packets to the gateway

to cause congestion. In addition, the attacker can use
his own LoRa device to send the maximum length
preamble to occupy the channel maliciously.

• Authentication with pre-storage key. The LoRa
terminal is configured with a pre-allocation key of
AES-128 during manufacturing, so attackers can use
the side channel attack to capture the root key. Once
the root key is stolen, the communication
information will be completely cracked.

• Unauthorized authentication protocol. The
authentication mechanism between LoRa terminal
and network is simple, and the random number used
in the authentication process is too short, resulting in
the possibility of replay attacks.

• Weak key management. The keys of the network
layer and the application layer are generated by the
same root key and random number, so the two keys
are not isolated from each other. At the same time,
the integrity protection key is produced by AES-128
encryption, and thus the security level and encryption
strength are insufficient.

This paper proposes an identification method based
on the RF fingerprinting feature of LoRa signal to solve
the security issue of terminal authentication. The finger-
print extraction technology of wireless RF equipment has
received wide attention in recent years.
By analyzing the RF signals of different devices, the RF

fingerprint based on the hardware characteristics can be
extracted. The extraction of the RF fingerprint is gener-
ally based on the physical layer of the device and can be
combined with the traditional wireless network authenti-
cation technology to improve the efficiency and accuracy
of device classification and recognition.
Different devices have different RF fingerprint charac-

teristics, which makes the identities difficult to be modi-
fied or cloned. Therefore, the RF fingerprint of accessing
terminal can be identified and verified to improve the
security of authentication. As the main contributions
of this work, the proposed physical layer-based method
can solve the security issues for the LoRa terminal as
described in the previous part.

• Vulnerable to attacks. Although it is impossible to
prevent such denial of service (DoS) attacks, it is
possible to effectively identify the existence of illegal
devices for further protection.

• Authentication with pre-storage key. The physical
layer identity authentication can replace or cooperate
with the original key authentication. The attacker
cannot copy and clone the physical layer identity, so
the security of the authentication is improved.

• Unauthorized authentication protocol. The physical
layer identity can be extracted from the physical signal
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of each packet. As long as the physical characteristics
can be correctly identified, the data injection of
unauthorized device can be effectively prevented.

• Weak key management. The authentication
mechanism cannot prevent information
eavesdropping, but the security of the key update
mechanism can be improved after cooperating with
the physical layer identities.

The remainder of the paper is arranged as follows:
Section 2 discusses the related works and the LoRa signal
is analyzed in Section 3. Section 4 presents the procedure
for fingerprinting LoRa with LoRa hardware platforms,
and the experiments and results are shown in Section 5.
Finally, the conclusions are given in Section 6.

2 Related work
The current research on LoRa security mainly includes
three aspects: transport layer, physical layer, and applica-
tion layer.
The security strategy for transport layer is defined

in LoRaWAN. Han et al. [24] proposed a root key
update scheme to strengthen the security of session
key derivation. The proposed scheme applies a Rab-
bit stream cipher-based key derivation function to make
cryptoanalysis of security keys in LoRaWAN more dif-
ficult. Sanchez-Iborra et al. [25] applied a specified
Ephemeral Diffie-Hellman Over COSE (EDHOC) as a
convenient solution for the update of session keys with
flexibility, low computational cost, and limited message
exchanges. A complete communication stack has been
also presented for enabling the inclusion of the pro-
posed security solution within the LoRaWAN architec-
ture. Laufenberg [26] analyzed the possibility of two
particular scenarios of impersonating a LoRaWAN gate-
way combining existing attacks and presented different
approaches to either make the attack harder to implement
or even completely prevent it. Some other researches [27–
29] provided the security analysis of the LoRaWAN and
introduced possible vulnerabilities.
The physical layer security was first studied on other

IoT platforms. In 2008, Brik et al. [30] designed an iden-
tification system for the 802.11b wireless network card,
and the signal characteristics in the modulation domain
were using as the RF fingerprint. The frequency offset,
synchronization correlation, I/Q offset, amplitude error,
and phase error of the modulation signal were selected
as the RF fingerprint of the device, and the RF fin-
gerprint was classified by K-nearest algorithm and sup-
port vector machine (SVM). In 2016, Noubir et al. [31]
extracted the features for fingerprint recognition from the
physical layer and data link layer of wireless local area
network (WLAN) device. Carrier frequency offset, sam-
pling frequency offset, transmitter switching transient,

and scrambling factor were extracted. Through the above
features, the recognition schemes for different types of
network cards based on the 802.11a/g/p were designed.
For the same type of WLAN devices, the correct recog-
nition rate was very high. Peng et al. [32] modeled the
O-QPSK modulation signal and explained the differential
constellation trajectory in detail from the theoretical level.
They used the proposed method to identify and authen-
ticate ZigBee devices effectively. For the research of radio
frequency fingerprint of LoRa signal, in 2017, Robyns
et al. [33] proposed a new method of fingerprint recog-
nition based on machine learning. Unlike other methods,
this method does not extract the local features of the
signal, but takes the pre-processed data of the signal as
the whole object of recognition and the input data of
machine learning.
The application layer focuses on data processing secu-

rity and data privacy protection. Xu et al. [34] designed an
IoT-oriented data placement method with privacy preser-
vation, which can achieve high resource usage, energy
saving and efficient data access, and realize privacy preser-
vation of the IoT data. An edge computing-enabled com-
putation offloading method with privacy preservation
[35] is proposed to realize multi-objective optimization
to reduce the execution time and energy consumption
and prevent privacy conflicts of the computing tasks. Xu
et al. [36] proposed a computation offloading method
for IoT-enabled cloud-edge computing to address the
multi-objective optimization problem of task offloading
in cloud-edge computing. An energy-aware computation
offloading method [37] is designed to reduce the offload-
ing time of the computing tasks and the energy consump-
tion of wireless metropolitan area networks (WMAN).

3 LoRa signal analysis
In order to extract physical identities from the wireless sig-
nals, it is necessary to analyze the physical layer of LoRa
signal firstly. As a LPWAN technology, LoRa operates in
the global free band. By raising the receiving sensitivity,
LoRa reduces the link budget and the transmitting power.
A high spreading factor, typically 6-12, is used to transmit
data signals over a wider frequency band. Forward error
correction and redundant information in data encoding
are utilized to combat the effects of channel noise on LoRa
signals. Although the data throughput rate is small, it has
strong transmission reliability.

3.1 LoRamodulation principle
The LoRa modulation scheme was improved by the chirp
spread spectrum (CSS) scheme, which was originally
designed for radar. A linear frequency modulation (LFM)
signal, also known as a chirp signal, has constant ampli-
tude and sweeps across the entire bandwidth linearly over
a defined period of time. The implementation of LoRa
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signal modulation mainly relies on the chirp pulse, which
is used to encode the information.
The chirp pulse signal is an essential element of CSS

modulation technology and the time domain waveform
with duration time T can be expressed as follows:

c(t) =rect
( t
T

) · ejϕ(t) (1)

where rect
( t
T

)
is a rectangular signal and

rect
(
t
T

)
=

{
1,

∣
∣ t
T

∣
∣ ≤ 1

2
0, otherwise (2)

In Eq. 1, ϕ(t) represents the phase of the chirp signal,
and the relationship between the chirp signal phase and
the instantaneous frequency f (t) can be expressed as

f (t) = 1
2π

· dϕ(t)
dt

(3)

For CSS, the instantaneous frequency of the chirp signal
is a time-dependent linear function, so there is

f (t) = fC + μ · B
T

· t = fC + μKt (4)

where fC represents the carrier frequency, μ represents
the instantaneous frequency changing slope of the chirp
signal, B represents the bandwidth, and K = B

T represents
the frequency modulation slope. μ = 1 means up-chirp
and μ = −1 means down-chirp.
According to Eqs. 3 and 4, Eq. 1 can be represented as

c (t) =rect
( t
T

) · ej(2π fct+πμKt2) (5)

By signal spreading, the energy of the signal is evenly
distributed throughout the symbol period, so the system
can use a low instantaneous power to transmit high energy
for a longer distance.
The LoRa modulation technology mainly has four

key parameters: carrier frequency (fC), bandwidth (BW),
spreading factor (SF), and code rate (CR). LoRa uses the
above parameters to realize the control of signal modula-
tion and entire wireless communication system.

3.2 LoRa frame structure
The LoRa frame structure [38] is shown in Fig. 1. The
LoRa physical layer frame starts with a preamble, which
is used to keep the receiver synchronized with the

transmitter. There are two types of physical layer head-
ers (PHDR): explicit headers and implicit headers. When
communicating with the explicit header, PHDR contains
the length of the data information, error correction coding
rate, and the indication whether the end of the frame car-
ries the cyclic redundancy check (CRC) of the data load. In
addition, PHDR also contains its own CRC, so the receiver
can firstly check the PHDR_CRC to verify the integrity of
the packet. If the payload length, CR, and CRC are known
or fixed, the implicit header mode can be selected, which
will improve efficiency and reduce transmission time and
power consumption.
It can be seen from the frame structure that the physical

layer load is related to the data information while the pre-
vious part is independent of the data, which provides con-
ditions for extracting data-independent RF fingerprinting
features in the frame.

4 Fingerprinting LoRa
Although LoRa devices are designed according to the
same standard, there are differences existed in the specific
circuit implementations and chip solutions. Especially
when the number of terminals is very large, the differences
between the Rf fingerprint will be huge, which provides
the premise for terminal identification based on the RF
fingerprinting features.

4.1 Acquisition of LoRa signal
The LoRa signal is generated by the SX1278 wireless
transmitting module of Semtech company. A total of six
LoRa transmitting modules are sampled, as shown in
Fig. 2. fC is set to 433 MHz, SF is set to 7, BW is set to
125 kHz, PHDR is set to implicit header mode, and data
sending interval is 50 ms.
The experiment uses the Universal Software Radio

Peripheral (USRP) equipment for data sampling with the
sampling frequency fs of 5 MHz, and the LoRa transmitter
modules are placed in a fixed position. The sampling pro-
cess starts after the LoRa transmitter works for a while to
be stabilized.

4.2 Signal preprocessing
In order to analyze and extract the RF fingerprints of
different LoRa devices, it is necessary to preprocess the

Fig. 1 LoRa frame structure
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Fig. 2 LoRa signal transmitter

collected data. For each data sample, the valid signal in
the sampled data needs to be extracted firstly, and then do
normalization and other pre-processing operations to the
signal. After the pre-processing operation, RF fingerprint
transformation are executed to extract the device-related
features.
According to the transmitter setting parameters, the

symbol rate of LoRa modulation RS can be represented as

RS = BW
2SF

= 125kHz
27

= 976.5625 symbol/s (6)

and the sampling points for each LoRa symbol can be
calculated as

N = fS
RS

= 5MHz
976.5625Hz

= 5120 (7)

The original LoRa signal is sampled with fixed length
of sampling points and its waveform is shown in Fig. 3.
The time interval between adjacent data segments is 50

ms, and the amplitude of the data segments are equal,
indicating that the transmitter is under steady state.
Then, each valid segment is extracted for analysis. The

data shown in Fig. 4a is one segment with energy nor-
malization and Fig. 4b is the data segment enlarged from
part of Fig. 4a. As shown in Fig. 4b, the LoRa signal is
composed of continuous chirp symbols.
4096-point fast Fourier transformation (FFT) are per-

formed on the signal shown in Fig. 4a, and the result is
shown in Fig. 5 with the frequency shifted to the spec-
trum center. It can be seen that the center frequency of the
LoRa signal is 433 MHz and the signal bandwidth is about
125 kHz.

4.3 Differential constellation trace figure
The features including the transient part and the modu-
lation part are extracted from receiving signals for iden-
tification. The transient part measures the turn-on/off
signal or transmitting signal variations, while the modu-
lation part evaluates the frequency, phase, amplitude, and
I/Q samples for the entire signal. Differential constella-
tion trace figure is leveraged for identification extraction
of LoRa device in the proposed method for three rea-
sons. The first is that the differential constellation trace
figure is belonged to the modulation part, which is proved
to be more stable than the transient part. The second
is that the features of the modulation part are extracted
with different methods respectively, but the differen-
tial constellation trace figure can evaluate the frequency
error, synchronization correlation, I/Q origin offset, mag-
nitude errors, and phase errors in one figure. The third
is that comparing to the traditional constellation figure,
the unique physical characteristics of the signal can be
reflected in the trace of constellation trace figure by
oversampling. The detailed proposed method is described
as follows.

Fig. 3 Original sampled signal
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Fig. 4 Valid data extraction

The oversampled data of I/Q signal are drawn on the
coordinate plane to obtain the constellation trace figure,
which intuitively reflects the characteristics and relation-
ships between signals and provides a convenient way to
study the digital communication system. Image recogni-
tion methods can be used to extract RF fingerprinting
features in the constellation trace figure to distinguish
different devices. However, when the constellation trace
figure is used to analyze the RF characteristics of the
device directly, the receiving symbol deviates from its
original position due to the influence of the frequency off-
set. As the time accumulates, a concentric ring is finally
obtained for different devices, as shown in Fig. 6, which
leads to a confused result of recognition. By performing

differential processing on the received baseband signal,
the rotation of the received symbol due to the frequency
offset can be eliminated.
Under normal circumstances, the transmitter and the

receiver have errors such as frequency offset, resulting in
instability of the constellation trace figure. If the transmit-
ter carrier frequency is fct1 and the baseband signal isX(t),
the transmit signal S(t) can be expressed as

S(t) = X(t)e−j2π fct1t (8)

For an ideal channel environment, the received signal
R(t) is equal to S(t). After the frequency down conver-
sion, R(t) is converted to Y (t), and the procedure can be
expressed as

Fig. 5 LoRa signal frequency spectrum
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Fig. 6 Constellation figure without differential processing

Y (t) = R(t)ej(2π fct2t+ϕ) = S(t)ej(2π fct2t+ϕ) (9)

where fct2 is the carrier frequency of receiver and ϕ is
the received signal phase offset. Since the transmitter and
receiver have a frequency offset �f = fct2 − fct1, so

Y (t) = X(t) · e−j2π fct1t · ej(2π fct2t+ϕ) = X(t) · ej(2π�ft+ϕ)

(10)

The received signal contains a rotation factor ej2π�ft ,
so that the constellation trace figure continuously rotates
with time t, which erases the characteristics of the RF sig-
nal due to the position rotation of the constellation point.
In order to solve the problem of instability of the constel-
lation figure and let the frequency offset stably reflected
on the figure, differential operation is processed to the
data that

D(t) = Y (t) ∗ Y ∗(t + n)

= X(t) · ej(2π�ft+ϕ) · X∗(t + n) · e−j(2π�f (t+n)+ϕ)

= X(t) · X∗(t + n) · e−j2π�fn (11)

where X∗(t) is the conjugated value of X(t) and n is the
differential interval.
After differential operation of signals, the result still has

a rotation factor e−j2π�fn, but it is a stable value deter-
mined by n and �f . The rotation factor directly reflects
the frequency offset characteristic of the signal in the con-
stellation trace figure, which makes it feasible to perform
subsequent differential constellation trace figure based RF
fingerprint extraction.
Differential operation is processed to the sampled data

to obtain a differential constellation trace figure. By
adding different delays to the I/Q data respectively, the

characteristics of the signal differential constellation trace
figure can be more obvious and convenient for RF feature
extraction. In order to show the image features of differ-
ential constellation trace figure more intuitively, different
colors are utilized to represent the density of symbols at
different positions in the constellation figure. The larger
the density of the symbols, the closer to red the color of a
point. Then, the final differential constellation trace figure
is drawn as shown in Fig. 7.
As shown in the figure, the differential constellation

trace figure of the LoRa signal has only one clustering
center with red color. The symbol distribution is very
concentrated with little noise interference and the signal
energy is stable. Therefore, the coordinate of the cluster-
ing center can be considered as the steady characteristic
of the device.
By adding delay to the I/Q channel of the LoRa sig-

nal, the feature of the differential constellation trace figure
can be more obvious. The distribution and shape features
will appear in the high-density clustering area as shown
in Fig. 8, which increases the discrimination between
different differential constellation trace figures.

5 Experiments and results
5.1 Identification method based on clustering center
Due to the hardware differences between different LoRa
devices, the differential constellation trace figures drawn
by different modules’ sampled data are different in the
position and shape of accumulation points of symbol data,
while the figure features of the same LoRa device are
approximately the same. Unlike other modulation meth-
ods such as QPSK and MSK, the differential constellation

Fig. 7 Differential constellation trace figure of LoRa signal
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Fig. 8 Differential constellation trace figure with I/Q delay

trace figure of the LoRa modulation signal has only one
cluster center in the figure.
Based on the feature of differential constellation trace

figure, a recognition method based on the clustering cen-
ter is proposed. Firstly, by filtering the differential constel-
lation trace figure, only the pixels whose density are higher
than the presented threshold are retained. Sixty sets of
data are collected from 6 different LoRa modules with 12
sets as training data and the remaining for testing. After
processing the training samples, the clustering centers for
different device data are drawn in Fig. 9.
As shown in Fig. 9, the six modules can be recog-

nized intuitively, so the coordinates can be used as the
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Fig. 9 Clustering centers of different LoRa modules

identities of each LoRa device. In identification process,
the coordinates of the cluster center are first obtained,
and the distance between the obtained and known clus-
ter centers is calculated respectively. When the distance
is less than the preset value, the device can be identified
as the known terminal. Otherwise, it is recognized as an
unknown device.

5.2 Recognition results with noise
The above classification and identification methods for
LoRa devices are performed in a high SNR environment.
Good classification results are achieved under low noise
conditions and all devices can be classified correctly. In
this section, the influence of artificial noise on the dif-
ferential constellation trace figure based identification
method is discussed.
Under the condition of negative SNR, valid RF finger-

printing features of devices can still be extracted due to
the modulation way adopted by LoRa technology. The
LoRa communication can be correctly performed in a
low SNR environment, because the signal is transmitted
within a large frequency band by using high spreading fac-
tor. When the received signal is completely submerged
in the noise, the autocorrelation of the chirp pulse sig-
nal can be utilized to extract the data from the noise. The
noise signal has no correlation, so it can be separated from
useful signal.
The accuracy of the classification and identification

methods of LoRa devices based on clustering center is
evaluated with artificial noise and the result is shown in
Fig. 10.
As shown in Fig. 10, when the SNR is higher than − 10

dB, the identification accuracy of the system for the six
LoRa modules can reach 100% even under the condition
of negative SNR. As the SNR decreases, the system iden-
tification accuracy begins to decline rapidly. In general,
the proposedmethod has certain resistance to the channel
noise interference.

5.3 Comparative experiments
The proposed method belongs to the security mechanism
of physical layer, while as mentioned in Section 1 , most
of the recent security mechanisms for LoRa are based on
transport layer and application layer.
Firstly, we compare the security methods of these three

layers from four aspects. In contrast to the traditional
upper-layer security policies, physical layer-based identity
is difficult to be counterfeited or tampered. The enhanced
security method based on physical layer do not need to
modify the original system architecture and the termi-
nals, so it is convenient to add physical layer security
policies to the system. The authentication process of the
physical layer is simple and no information interaction
is required, which reduces the risk of protocol attacks.
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Fig. 10 Accuracy under different SNR

The physical layer-based authentication method has high
requirements on the signal quality, and therefore, the anti-
interference ability is poor. The comparison results are
shown in Table 1.
Secondly, the proposed method is compared with

the existing physical layer-based methods. Unfortunately,
most of the current methods are designed for specific
wireless terminals and cannot be directly used for the
LoRa module. The supervised machine learning (SML)
method in [33] applied to LoRa terminals is compared
with the proposed method. In general, these two meth-
ods belong to different types and the main differences are
summarized as follows.
The proposed method is designed for the features of

LoRa signal and the SML method can be considered as
a universal method for wireless signal. In contrast to
the SML method, the proposed method used the dedi-
cated algorithm which brings high efficiency. As long as
the stable features are determined, the proposed algo-
rithm does not need training for new terminals. Then,
we evaluate the performance of the two types of meth-
ods with different fingerprinting experiments and the
SML methods involved in the assessment includes mul-
tilayer perceptron (MLP), convolutional neural network
(CNN), and SVM.

Table 1 Security comparison of three layers

Physical Transport Application

Anti-counterfeiting Strong Weak Weak

Portability Strong Weak Weak

Protocol complexity Simple Medium Complex

Anti-interference Weak Medium Medium

The first experiment is the accuracy test with the config-
uration same as Section 4.2. The LoRa terminal and USRP
are 5 m apart without obstacles and 1500 symbols are col-
lected for the six terminals with sample rate of 5 Msps.
The comparisons in Table 2 are consistent with the results
in [33], and the proposed method obtains a high accuracy
under the current experimental conditions.
The next experiment is the effect of sample rate. The

SML method can classify devices at low sample rates
and the proposed method needs high sample rate to
present the constellation trace figure. The other condi-
tions are the same as experiment one, and the average
accuracy of six terminals are shown in Table 3. The com-
parison results indicate that the change of sample rate
has higher influence on the proposed method than the
SML method, especially when the sample rate is as low
as 1 Msps.
The third experiment is the effect of location. The ter-

minals are placed in three different locations successively
to acquire the average accuracy. The training data are
collected at location 1 (L1) with the same conditions of
experiment 1 and the results for three locations are shown
in Table 4. When training on signals from their respective
location, the results are shown in Table 5.

Table 2 Accuracy comparison for six terminals

Dev 1 (%) Dev 2 (%) Dev 3 (%) Dev 4 (%) Dev 5 (%) Dev 6 (%)

SVM 71.47 71.20 68.87 72.53 70.67 73.13

CNN 86.6 82.56 83.07 83.67 82.56 82.87

MLP 90.00 88.93 90.27 91.73 90.47 89.23

Proposed 99.00 99.03 99.03 99.33 99.93 98.98
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Table 3 Accuracy comparison for different sample rates

1 Msps (%) 2 Msps (%) 5 Msps (%) 10 Msps (%)

SVM 49.40 58.87 70.07 79.87

CNN 55.27 65.07 82.87 94.80

MLP 56.53 66.33 90.53 96.53

Proposed 52.13 70.03 98.83 99.67

As shows in Tables 4 and 5, the SML method achieves
low accuracy when the model was previously trained on
signals from a different location. Therefore, we can con-
clude that the different channel conditions significantly
impact the accuracy of SML method. Fortunately, the
proposedmethod can resist the channel influence to a cer-
tain extent, which means the extracted characteristics are
more stable than the those of SML method. As the dis-
tance increases and the SNR decreases, the accuracy of the
proposed method decreases, which is consistent with the
results in Section 5.2.

6 Conclusion
In this paper, the principle and implementation of LoRa
modulation technology are analyzed. According to LoRa
modulation, a differential constellation trace figure is
proposed to extract the RF fingerprinting features of
LoRa devices. The unique physical characteristics of the
device are reflected in the trace of the constellation trace
figure. By analyzing the characteristics of the differen-
tial constellation trace figure with the image recognition
algorithm, a classificationmethod based on Euclidean dis-
tance of clustering center of LoRa signal is presented.
In contrast to the security mechanisms of transport
and application layer, the physical layer authentication
method can effectively improve the accessing security
of the IoT device. The experimental results show that
six LoRa transmission modules can be recognized accu-
rately from the differential constellation trace figures. The
proposed method can achieve higher recognition accu-
racy and more stable features than the machine learning
method, which makes it more practical. When the SNR
or sample rate is reduced, the performance of the pro-
posed method will decrease, which will be considered in
future work.

Table 4 Accuracy comparison for different locations with
training set at L1

L1 (5m to USRP) (%) L2 (10m to USRP) (%) L3 (50m to USRP) (%)

SVM 71.20 20.13 19.73

CNN 83.67 21.73 20.80

MLP 90.27 23.20 24.47

Proposed 99.03 98.27 63.07

Table 5 Accuracy comparison for different locations with
training set at respective location

L1 (5m to USRP) (%) L2 (10m to USRP) (%) L3 (50m to USRP) (%)

SVM 71.20 72.53 70.67

CNN 83.67 82.17 82.80

MLP 90.27 89.67 90.27

Proposed 99.03 98.50 70.07
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