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Abstract

Mobile edge computing is becoming a promising computing architecture to overcome the resource limitation of
mobile devices and bandwidth bottleneck of the core networks in mobile cloud computing. Although offloading
applications to the cloud can extend the performance for the mobile devices, it may also lead to greater processing
latency. Usually, the mobile users have to pay for the cloudlet resource or cloud resource they used. In this paper, we
bring a thorough study on the energy consumption, time consumption, and cost of using the resource of cloudlet
and cloud for workflow applications in mobile edge computing. Based on theoretical analysis, a multi-objective
optimization model is established. In addition, a corresponding multi-objective computation offloading method
based on non-dominated sorting genetic algorithm II is proposed to find the optimal offloading strategy for all the
workflow applications. Finally, extensive experimental evaluations are performed to show that our proposed method
is effective and energy- and cost-aware for workflow applications in MEC.

Keywords: Mobile edge computing, Computation offloading, Time consumption, Multi-objective, Energy
consumption, Cost

1 Introduction
With the development of computer network, cloud com-
puting, as well as wireless sensor network, mobile devices
(MDs) have become an indispensable part of people’s
daily lives [1–7]. In addition, the development of cyber-
physical-social systems and big data has further affected
people’s life [8–14]. However, compared to a traditional
device such as personal computer, a MD has certain lim-
itations in computing power, storage capacity, especially
for the battery capacity. Mobile cloud computing (MCC)
brings new services and facilities to mobile users (MUs)
to take full advantage of cloud computing [15–20]. How-
ever, the remote cloud is usually located far away from
the MUs, which may result in high network latency in
the process of data transmission. This inevitably reduces
the quality of user service (QoS), in particular, for some
applications, such as workflow applications (WAs), which
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generally have strict execution deadlines. The taskmay fail
to be finished if the transmission latency is too large.
To solve the issue of network latency, a new paradigm

called mobile edge computing (MEC) has been proposed
[21–23]. MEC has become a key technology for realiz-
ing the Internet of Things and 5G [24]. The MEC can be
regarded as a special example of MCC. A cloudlet is a
type of edge server that provides various services to users
in close proximity to MDs [25–27]. That means it can
reduce the latency and energy consumption by offloading
the WAs to cloudlet.
It is assumed that the resources of cloud are unlimited

in MCC. Meanwhile, the resources of the MEC are lim-
ited. If there are multiple MUs requesting services from
the cloudlet at the same time, a queue latency will occur.
When a MU requests a service that exceeds the ability
of a cloudlet, the cloudlet service cannot be obtained. In
order to ensure the successful execution of the WA, fur-
ther consideration needs to be taken to execute the task
locally or offload them to the cloud. Moreover, the execu-
tion of WA by cloudlet or cloud needs to meet the task
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deadline constraint, which further increases the difficulty
of computing offloading.
Although the computation offloading issue in MCC

has been well investigated (to list a few here [28–33],
they cannot be used directly in computation offload-
ing in MEC. The main reason is that MEC and MCC
have completely different architectures. Existing studies
on computation offloading in MEC have mainly focused
on the optimization of a single objective (time consump-
tion or energy consumption) [34, 35], but seldom con-
siders multi-objective optimization. It is still a challenge
to balance the multi-objective. Moreover, they focus on
general applications and pay little attention to computa-
tion offloading of WAs in MEC [36]. For WA, it is very
important to consider time constraints [37, 38].
Inspired by the idea that the MU has to pay for the

resources they used in cloudlet or the cloud [36], in
this study, we consider a joint energy consumption, time
consumption, and price-cost optimization for WAs in
MEC while the completion time of WA is considered as
a constraint condition. The main contributions can be
summarized as follows:
(1) The computation offloading for WAs in MEC has

been well investigated in this paper. Both the energy con-
sumption and time consumption, as well as the cost ofMU
by using cloudlet or cloud, are considered as the optimiza-
tion objectives. Besides, based on theoretical analysis, a
multi-objective optimization model is established.
(2) We propose a method named multi-objective com-

putation offloading method forWAs (MCOWA) based on
non-dominated sorting genetic algorithm for the solution.
Some parameters in the algorithm step are improved to
suit the needs of this problem.
(3) Compared to the other methods, such as the no

offloading method, full offloading to cloud method, and
full offloading to cloudlet method, extensive experiments
and simulations have shown that our proposed method is
effective and can provide optimization offloading strategy
for MUs.
The abbreviations in this paper are shown in Table 1.

The remainder of this paper is recognized as follows. In
Section 2, system model and problem formulation are
introduced. Section 3 elaborates multi-objective compu-
tation offloading algorithm forWAs (MCOWA). Section 4
presents the comparison analysis and performance evalua-
tion. Section 5 summarizes the related work, and Section 6
concludes the paper and describes the future work.

2 Systemmodel and problem formulation
In this section, system model and problem formulation
are presented. The basic architecture of MEC is described
firstly. And then the basic mode is introduced. In addition,
the time consumption mode, the energy consumption
mode, and the cost mode are described.

Table 1 The abbreviations in this paper

Local area network LAN

Multi-objective computation offloading method for
workflow application

MCOWA

Mobile device(s) MD(s)

Mobile edge computing MEC

Mobile user(s) MU(s)

Non-dominated sorting genetic algorithm II NSGA-II

Quality of service QoS

Virtual machine(s) VMs

Workflow application(s) WA(s)

Wide area network WAN

The complete organization of MEC is shown in Fig. 1.
Cloud is a combination of data centers. MD could be
mobile phone or tablet. Each MD have one or more WAs
which need to be processed. In general, these applications
are time constrained. These applications can be executed
directly locally, and users can migrate a part of the appli-
cation or full application to cloudlet via local area network
(LAN) or cloud via wide area network (WAN) according
to their needs, to reduce user execution time or energy
consumption or both of them.

2.1 Basic mode
As shown in Fig. 2, the WA is modeled by a direct acyclic
graph Gf (V ,E), where f represents the f th WA(1 ≤ f ≤
F) and F represents the total number of the WAs. Each
application consists of multiple tasks and any node in
Fig. 2 can be seen as a task. V = {v1,f , v2,f , . . . , vN ,f } rep-
resents the set of tasks, and edge in E represents the set
of dependency between any two tasks. Each edge is asso-
ciated with a weight di,j which represents the size of data
transmission from task vi,f to task vj,f . Cloudlet is con-
figured as multiple virtual machines(VMs) for concurrent
processing the WAs, which is modeled by a 3-tuple and
denoted as CIT = (M, fcl, LLAN) . It is assumed that the
capacity of cloudlet equals to the number of VMs in the
cloudlet, thus M is the number of VMs in the cloudlet,
fcl is the processing capacity of the cloudlet and LLANis
the transmission latency in LAN. Each task vi,f inV is
modeled as a 2-tuple vi,f = (wi,f , si,f ) , where wi,f is the
average number of instructions of task vi,f , and si,f is the
offloading strategy for task vi,f which can be expressed as
a one-dimensional vector S = {si,f |i = 1, 2, . . . ,Nf , f =
1, 2, . . . , F}, where Nf represents the number of the tasks
in the f th WA and si,f = 0 represents the task vi,f is pro-
cessed locally, si,f = 1 represents vi,f is offloaded to the
cloudlet. Similarly, vi,f = 2 represents vi,f is offloaded to
the cloud.
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Fig. 1MEC architecture

2.2 Time consumptionmode
Thetotal time consumptionmainly contains three aspects,
namely, waiting time,processing time, and transmission time.

2.2.1 Average waiting time
It is assumed that the interval of the task arrival time obeys the
negative exponentialdistributionof the parameter λ, and the
service time of the cloudlet is subjected to the negative
exponential distribution of the parameter μ . Based on the
queuingtheory [39], thewaiting timemodecanbeestablished.
The probability that the cloudlet in idle is expressed as

p0 =
[M−1∑

n=0
+ ρM

M! (1 − ρM)

]−1

(1)

where ρ = λ
μ

indicates the utilization of cloudlets and
ρM= ρ

M . Let pn be the probability that the queue size reaches
whenthecloudlet is running ina steady state.Then, pn is givenas

Fig. 2 Direct acyclic graph of workflow application

pn =

⎧⎪⎨
⎪⎩

pn

M!Mn−M · p0 n ≥ M

pn

n!
· p0 n < M

(2)

When n ≥ M , the probability of the tasks waiting in the
cloudlet is given as

Cw(M, ρ) =
∞∑

n=M
pn = ρM

M! (1 − ρM)
· p0 (3)

Based on the little theorem, the average waiting queue
length Lq and the average queue length LM are given as

Lq =
∞∑

n=M+1
(n − M)pn = pn · ρM

M!
·

∞∑
n=M

(n − M)ρn−M
M

(4)

LM = Lq + ρ (5)
Overall, the average waiting time for tasks in the

cloudlet is given as

Wq = LM
λ

− 1
μ

= 1
M · μ − λ

Cw(M, ρ) (6)

2.2.2 Processing time and transmission time
It is assumed that MD has a single CPU with processing
capacity fl, and the processing capacity of cloud is denoted
as fc. In addition, the processing capacity of each VMs in
cloudlet is denoted as fcl. If si,f = 0, the local processing
time for the task vi,f is given as
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Tpro(vi,f ) = wi,f

fl
(7)

If si,f = 1, the processing time of the task vi,f is given as

Tpro(vi,f ) = Wq + wi,f

fcl
+ LLAN (8)

where LLAN represents the transmission delay between
the MD and the cloudlet. If si,f = 2, the processing time of
the task vi,f is descried as

Tpro(vi,f ) = wi,f

fc
+ LWAN (9)

where LWAN represents the transmission delay between
the MD and the cloud. Let R denote the data rate of the
wireless communication between theMD and the cloudlet
or cloud. The computation time of data transmitted from
the task vi,f to vj,f is given as

Ttrans(vi,f , vj,f ) = di,j
R

(10)

It is assumed that if task vi,f and task vj,f are processed
at the same side, si,f = sj,f ,Ttrans = 0. If (si,f , sj,f ) ∈
{(0, 1), (1, 0)}, it means the data is communicated between
MD and cloudlet through LAN with the rate Rcl. If
(si,f , sj,f ) ∈ {(0, 2), (2, 0)}, it means the data is commu-
nicated between MD and cloud through WAN with the
rate Rc. If (si,f , sj,f ) ∈ {(1, 2), (2, 1)}, it means the data is
transmitted between cloudlet and cloud and the transmis-
sion time can be ignored, namely Ttrans = 0. Therefore,
the total time consumption of the f − th WA which
includes the average waiting time, the processing time and
transmission time is given as follows.

Twa,f (S) =
N∑
i=1

Tpro(vi,f ) +
j−1∑
i=1

N∑
j
Ttrans(vi,f , vj,f ) (11)

2.3 Energy consumptionmodel
The total energy consumption of WA consists of the
energy consumption of processing and transmission.
Epro(vi,f ) indicates the energy consumption generated
during the processing of the task vi,f , while Etrans(vi,f , vj,f )
represents the energy consumption generated by the data
transmission from the task vi,f to the task vj,f onMDs. The
formulation is given as

Epro(vi,f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wi,f

fl
· pA si,f = 0(

Wq + wi,f

fcl
+ LLAN

)
· pI si,f = 1(wi,f

fc
+ LLAN

)
· pI si,f = 2

(12)

wherepA andpI , respectively, represent the power when the
MD is in the active state and idle state. The transmission
energy consumption fromtask vi,f to task vj,f is described as

Etrans(vi,f , vj,f ) = di,j
B

· pT (13)

where, pT represents thetransmittedpowerof theMD.Therefore,
thetotalenergy consumptionof the f thWAisgivenas

Ewa,f (S) =
∑
vi,f ∈V

Epro(vi,f ) +
j−1∑
i=1

N∑
j
Etrans(vi,f , vj,f )

(14)

2.4 Cost mode
Additionally, the MU has to pay for the resources it used in
the cloudlet or thecloud. It is assumed that the per price for
the cloudlet is a and the remote cloud is 2a. The expression
means that if theuser’s task is processed locally and the cost
is 0. If the task is offloaded to the cloudlet for processing,
the cost will be a. Similarly, if the task is offloaded to the
cloud, the cost will be 2a. The average cost of WA is given
by Eq. (16), where N is the total nodes (tasks) of a WA.

C =

⎧⎪⎨
⎪⎩

0 si,f = 0
a si,f = 1

2a si,f = 2
(15)

Ewa,f (S) = 1
N

·
∑
vi,f ∈V

C (16)

2.5 Problem formulation
The object in this study is to optimize the energy con-
sumption and time consumption, as well as cost of allWAs
while meeting the deadline constraint given by WAs. It
can be formulated as follows

Min Twa,f (S), ∀f ∈ {1, 2 . . . F} (17)

Min Ewa,f (S), ∀f ∈ {1, 2 . . . F} (18)

Min Cwa,f (S), ∀f ∈ {1, 2 . . . F} (19)

s.t. Twa,f (S) ≤ D(f ), ∀f ∈ {1, 2 . . . F} (20)

si ∈ {0, 1, 2} (21)

where D(f ) represents the deadline of the f th WA which
is given in advance.
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3 Multi-objective computation offloading
algorithm for workflow applications (MCOWA)

In this section, the details of MCOWA are described.
We firstly introduce the main steps of the MCOWA
in Section 3.1, and then the description and the corre-
sponding algorithm pseudocode of MCOWA are shown
in Section 3.2.

3.1 The main steps of mCOWA
In this paper, our objective is to optimize the energy con-
sumption, time consumption, and cost for multi-WA. The
computation offloading problem is defined as a multi-
objective problem. NSGA-II [40] is used to obtain the
optimal computation offloading strategies for all WAs.
Compared to the traditional genetic algorithm, NSGA-

II can find the global optimal solutions among the feasible
solutions quickly and accurately. The implementation of
NSGA-II is shown in Fig. 3, which consists of five steps.
Notice that the detail implementation of step 4 is shown
in Algorithm 1 and we also introduce how it will be called
by Algorithm 2 in Section 3.2. The details of each step are
shown as follows.

3.1.1 Step 1: Encoding
The WA is numbered by using the results of a topologi-
cal with an integer index and starts from {0, 1, . . . ,}. The
gene denotes the value of each decision variable and also
represents the offloading strategy of each task of WA.
Multiple genes form a complete chromosome which can
also be seen as an individual, representing one solution to
the optimization problem. Numbers of individuals form
a population, which indicates the diversity of solution.

Each chromosome represents a computational offloading
strategy for F WAs. The integer coding method is used,
namely, each offloading strategy is encoded as {0, 1, 2}.
The number 0 indicates that each task of WA is processed
by MD itself and the number 1 represents the task of WA
is offloaded to the cloudlet. Similarly, the number 2 repre-
sents the task of WA is offloaded to the cloud on the basis
of the offloading strategies.
As shown in the Fig. 4, an example of encoding is given.

Each box on the lower chromosome represents a gene
and also indicates a task of the WA. The possible value
of each gene is {0, 1, 2} and denoted as vi = 0 vi = 1
ovi = 2, which is represented above the gene. In addition,
the gene with the same color means that they have the
same offloading strategy.

3.1.2 Step 2: Fitness functions and constraints
Fitness function is the criterion for evaluating individual
quality, which is given by Eqs. (17), (18), and (19). The
three fitness functions of the computing offloading model
(17), (18), (19) represent the time consumption, the energy
consumption and the cost, respectively. It is necessary to
make tradeoffs among the multiple objective functions.
Namely, we need to obtain the best offloading strategy to
make these three fitness functions well.
Additionally, for each WA, the completion time is

obtained according to the computation offloading strat-
egy. If the time constraint of formula (20) is not satisfied,
the chromosome represented by the offloading strategy
will not be considered in the selection process. The chro-
mosome that satisfies the time constraint is called the
valid chromosome.

Fig. 3 The implementation of NSGA-II
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Fig. 4 An example of encoding

3.1.3 Step 3: Initialization, selection, crossover, mutation
To generate initialized population P0 randomly and then
the binary tournament selection, crossover and mutation
are performed on P0 to obtain new population Q0.
The crossover operation is to cross the corresponding

genes of two individuals and select two points on chro-
mosome based on the gene fragments which enhance the
adaptability, i.e., crossover point, to exchange the middle
part of gene value vi. An example of crossover operation is
shown in Fig. 5.
A mutation operation based on enhancing population

adaptability is proposed in MCOWA. Each gene value of
each individual is mutated with the mutation probability,
which is given in advance. And the gene fragment with an
added value of 1 is mutated. An example of mutation is
given in Fig. 6.

3.1.4 Step 4: Non-dominated sort
Form a new group population Rt = Pt

⋃
Qt , where t =

0. Additionally, the non-dominated front-end F1, F2, . . . is
obtained by non-dominated sort of Rt .
The main steps are shown as follows [40, 41]
(1) The parameters are initialed, and the population

size SCALE is determined at the same time. In addition,
the attribute of the individual chromosomes dominated
the number of those in the tagged population is set, if
dominated = 0, then the individual chromosome set the
individual dominated empty.
(2) An individual chromosome is selected sequentially

in the population, which is compared to other individu-
als in the population based on the dominance relation. If
the compared individual dominate the selected individual
chromosome, let dominated = dominated + 1; if the

Fig. 5 An example of crossover



Peng et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:207 Page 7 of 15

Fig. 6 An example of mutation

compared individual is dominated by the selected indi-
vidual, add the compared individual to the individual set
which is dominated by the chromosome.
(3) Repeat (2) until processing the dominated attribute

of theN chromosomes and their dominated individual set.
(4) The population is traversed and the chromosome

whose dominated attribute is 0 is added to the rank 1.
(5) The individual chromosome in the rank established

is selected sequentially in (2), meanwhile, all of the indi-
viduals’ attribute in the set of individuals is operated by
auto-decrement, and thus, dominated = dominated − 1.
If dominated = 0, add the individual to the rank of next
level.
(6) Repeat (5) until it is empty that the dominated

individual set of the individual chromosome is.
The pseudo-code of the fast non-dominated sorting

approach is shown in Algorithm 1.

3.1.5 Step 5: Crowding distance calculation
All Fi are sorted according to the crowding distance com-
parison operation ≺n, and the best N individuals are
selected to form a population Pt+1. The congestion dis-
tance formula is shown in (22)

id = iTd + iEd + iCd =
F∑

f=1

(
|Ti+1

wa,f (S) − Ti−1
wa,f (S)|

)

+
F∑

f=1

(
|Ei+1

wa,f (S) − Ei−1
wa,f (S)|

)
F∑

f=1

(
|Ci+1

wa,f (S) − Ci−1
wa,f (S)|

)
(22)

where id represents the crowding distance of the its
offloading strategy, si,f represents the f th WA. iTd , i

E
d , and

Algorithm 1 Fast Non-dominated Sort(R)
Input: The population of 2Npop size;
Output: Non-dominated sets;
1: for each r ∈ R do
2: Sr = ∅
3: nr = 0
4: for each q ∈ R do
5: if (r ≺ q) then
6: Sr = Sr ∪ q
7: else if (q ≺ r) then
8: nr = nr + 1
9: end if

10: end for
11: if nr = 0 then
12: rrank = 1
13: H1 = H1 ∪ {r}
14: end if
15: end for
16: i = 1
17: while Hi 
= ∅ do
18: Q = ∅
19: for each r ∈ Hi do
20: for each q ∈ Sr do nq = nq − 1
21: if nq = 0 then
22: qrank = i + 1
23: Q = Q ∪ q
24: end if
25: end for
26: i = i + 1
27: Hi = Q
28: end for
29: end while
30: return En;
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iCd represent the objective functions, respectively. Ti+1
wa,f (S)

represents the value of the offloading strategy si+1,f to
the objective function Twa,f (S). In addition, Ei+1

wa,f (S) rep-
resents the value of the offloading strategy si+1,f to the
objective function Ewa,f (S). Similarly, Ci+1

wa,f (S) represents
the value of the offloading strategy si+1,f to the objective
function Cwa,f (S).
The population Pt+1 is subjected to replication,

crossover, and mutation operations to form a population
Qt+1. If the termination condition is true (the maximum
number of iterations is met), then it ends. Otherwise, t =
t + 1 and goes to Step 2.

3.2 MCOWA pseudocode
The pseudocode of MCOWA method is shown in Algo-
rithm 2. The input of the Algorithm 2 are multiple
WA. The algorithm starts from the first iteration (Line
1). Firstly, the population is initialized, the chromo-
somes whose complete time does not satisfy the deadline

Algorithm 2MCOWA
Input: WAs, population size N,the maximum number of

iterations Generationmax
Output: Optimal computation offloading strategy

St ,energy consumption E,time consumption T,cost C
1: Gen = 1, t = 1
2: while Gen ≤ Generationmax do
3: Initialize the populationPt
4: for every chromosome inPt do
5: if each WA completion time meets the time

constraintD(f ) then
6: P,t = Pt − M ‖ P,tvalid chromosome
7: end if
8: end for
9: Qt =selection, crossover and mutationP,t

10: Rt = P,t + Qt
11: F =Algorithm 1(Rt)
12: Pt+1 = ∅
13: i = 0
14: while len(Pt+1) + len(F[ i] ) < N do
15: crowdingdistanceassignment(F[ i] ) by

formula 22
16: Pt+1+ = F[ i]
17: i = i + 1
18: Pt+1+ = F[ i] [ 0 : N − len(Pt+1)]
19: Qt+1=make new generation(Pt+1)
20: t = t + 1
21: gen = gen + 1
22: end while
23: end while
24: return St ,energy consumption E,time consumption

T,cost C

constraint are removed from the population, and the new
generation is denoted as P′

t (Line 3 to 8). Two popula-
tions P′

t and Ot of size N are randomly generated and
form a population Rt with a population size of 2N (Line
9 to 10). The population Rt is divided into multiple non-
dominated layers by calling Algorithm 1(Line 11). F is
prepared for the selection operation, and population Pt+1
is set to empty and store the new generation of the popu-
lation (Line 12). Additionally, the excellent individuals are
selected to fill in a new population of size N according
to crowding distance (Line 13 to 18). Then the offspring
population is generated after the crossover and mutation
and put into Qt+1 (Line 19). The offspring population
is merged with the parent population and iterated again
until the algorithm ends (Line 2 to 22). Finally, the opti-
mal offloading strategies, the time consumption, energy
consumption, and cost of all WAs are output (Line 23).

4 Experimental evaluation
In this section, a comprehensive simulation and exper-
iment are carried out to evaluate the performance of
the proposed MCOWA method. Specifically, the simula-
tion setup is introduced firstly, including the experimental
parameter settings and other comparative methods. Then,
the influence of different WA scales on the energy con-
sumption performance, time consumption performance,
and cost performance of the compared methods and
MCOWA is evaluated.

4.1 Experimental settings
In order to make a comparative analysis, we propose
some other computation offloading methods in addition
to our MCOWA method. The comparative methods are
introduced as follows.

Table 2 Parameter settings

Parameter Value

The power of MDs when CPU is idle state 0.001 W

The power of MDs when CPU is active state 0.5 W

The transmission power of MDs 0.1 W

The processing capacity of MDs 500 MHZ

The processing capacity of the cloudlet 2000 MHZ

The processing capacity of the cloud 3000 MHZ

The latency of LAN 1 ms

The latency of WAN 30 ms

The bandwidth of LAN 100 kb/s

The bandwidth of WAN 50 kb/s

The average waiting time of tasks in the cloudlet 20 ms

The cost of cloudlet for each task 2

The cost of cloud for each task 4
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(a) (b)

(c)
Fig. 7 The energy consumption, time consumption, and cost of each method where WAs = 2. a Energy consumption. b Time consumption. c Cost

(a) (b)

(c)

Fig. 8 The energy consumption, time consumption, and cost of each method where WAs = 3. a Energy consumption. b Time consumption. c Cost



Peng et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:207 Page 10 of 15

(a) (b)

(c)

Fig. 9 The energy consumption, time consumption, and cost of each method where WAs = 4. a Energy consumption. b Time consumption. c Cost

No offloading (NO): All tasks of a WA are processed on
the MD. There is no transmit overhead between any two
tasks. In addition, there is no cost of using resources of
cloudlet of cloud, named as NO.
Full offloading to cloud (FOC): All computation tasks of

WAs are moved from the local MD to the remote cloud
for processing, named as FOC.
Full offloading to cloudlet (FOCL): All computation

tasks ofWAs are moved from the local MD to the cloudlet
for processing, named as FOCL.
MCOWA: With the help of the MCOWA, all tasks are

partitioned into three sets, one for local processing on the
MD and another for remote processing on cloud, and the
other for cloudlet processing.
We use the same parameter settings with reference [42]

and the value of some new parameters are presented. The
details are shown in Table 2. The methods are imple-
mented base on JAVA language by using the tool of Eclipse
on a PC machine with 2 Intel Core i5-5200U 2.20GHz pr
ocessors and 4GB RAM. The operating system isWin7 64.

Table 3 The number of WAs = 2

Location NO FOCL FOC MCOWA

Local 26 0 0 0

Cloudlet 0 26 0 24

Cloud 0 0 26 2

4.2 Performance evaluation
We have received different results under the different
parameters of WAs number. Fifty experiments are per-
formed in the case of convergence for each WA scale.
Firstly, we discuss how MCOWA balance the three
objectives.
As shown in Fig. 7, we can see that MCOWA is effec-

tive for two mobile users. Similary, it also can be used for
the scenario of three users and more users based on the
experimental results which are shown in Figs. 8, 9, 10, 11,
and 12. More specifically, we can conclude that each user
can obtain the best results from the perspective of energy
consumption and time consumption.
We can conclude that MCOWA is effective with the

increasing of number of WAs. More specially, a WA con-
sists of 13 tasks. So two WAs are 26 tasks and so on.
Additionally, as shown in Figs. 7, 8, 9, 10, 11, and 12, com-
pared to FOC and FOCL, MCOWA has a smaller cost. If
we only consider the cost factor, there is no cost for local
processing and it seems that MCOWA is not better than

Table 4 The number of WAs = 3

Location NO FOCL FOC MCOWA

Local 39 0 0 2

Cloudlet 0 39 0 35

Cloud 0 0 39 2



Peng et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:207 Page 11 of 15

Table 5 The number of WAs = 4

Location NO FOCL FOC MCOWA

Local 52 0 0 4

Cloudlet 0 52 0 47

Cloud 0 0 52 1

NO.However,MCOWAminimizes the time consumption
and energy consumption of WA while ensures the cost
is within a certain acceptable range. Overall, MCOWA
is effective as the offloading strategy make these three
objects better, not just to make one of them work best.
Secondly, we discuss how MCOWA provide effective

strategy to balance three offloading destinations, namely
local, cloudlet, and cloud. As shown in Tables 3, 4, 5, 6, 7,
and 8, as the cost is in an acceptable range, the task is
mainly offloaded to the cloudlet. That means the cloudlet
is the optimal offloading destination. If the number of
tasks exceeds the processing capacity of the cloudlet,
some tasks will be offloaded to the cloud in order to
reduce the queue latency while meeting the deadline
constraint of task. In addition, as the number of WAs
increases, the number of corresponding tasks increases.
The competition for computing resources of cloudlet
among WAs will be more intense as cloudlet is still
the first choice to offload. Considering the limitations
of cloudlet resources and the cost processing tasks in
cloud, the number of tasks which are executed locally
will increase and the number of tasks which are offloaded
to the cloud will be decreased, which also proves that
our method strategy is effective and can balance each
offloading destinations well.

5 Related work
MCC brings new services and facilities to MUs to take
full advantage of cloud computing. However, the remote
cloud is usually located far away from theMUs, whichmay
result in high network latency. This inevitably reduces
QoS of MUs. In addition, MUs have to pay for the
resources of cloud they use. MEC is a new paradigm
can be seen as a example of MEC. Different from the
MCC, MEC is a three-layer architecture. The edge server
is a bridge which well connects the MU and cloud.
MU can connect to edge server or cloud according to
requirement of service. There are many kinds of edge
servers [43]. Cloudlet is a type of edge server, which has
been widely used in LAN and WMAN [25–27, 44–46].

Table 6 The number of WAs = 5

Location NO FOCL FOC MCOWA

Local 65 0 0 7

Cloudlet 0 65 0 56

Cloud 0 0 65 2

Table 7 The number of WAs = 6

Location NO FOCL FOC MCOWA

Local 78 0 0 11

Cloudlet 0 78 0 66

Cloud 0 0 78 1

Cloudlet is a low-cost infrastructure with rich computer
resources, high bandwidth, and sufficient power. With the
help of cloudlet, MU can improve QoS by computation
offloading.
Computation offloading was originally studied in MCC

[28–33]. The offloading mode in MEC is similar with the
mode in MCC, but the main difference is the location
of offloading. It is commonly assumed that the offload-
ing destination of computation offloading for MCC is the
remote cloud, while the offloading destination of MEC
is a edge server such as cloudlet. Different from the
cloudlet, it is assumed that the resources in remote cloud
are unlimited. Besides, MCC can be seen as a two-layer
architecture, while MEC can be seen as a three-layer
architecture.
Jia et al. [28] made a thorough study on how to divide

and migrate applications in MCC by using heuristic algo-
rithm. The relationship between tasks in the WA is
abstracted into serial and parallel, and the general WA
is seen as a combination of the two. The core idea is
to reduce the total processing latency of the task by
increasing the parallelism between the local and the cloud.
According to the unstable wireless channel and unstable
service node in the MCC, Wu et al. [29] proposed a min-
cost offload partitioning algorithm to find the best par-
titioning plan and minimize processing time and energy
consumption. In view of the sequence of task processing in
the WA, dynamic voltage and frequency scaling is used to
set a number of flag bits to construct a joint optimization
function of latency and energy consumption in [30]. The
task scheduling strategy based on simulated annealing
algorithm is proposed to optimize the processing time
consumption and energy consumption of the WA.
There are many studies on WA schedule in MCC.

Deng et al. [31] propose a novel offloading system to
design robust offloading decisions for mobile services.
The dependency relations among component services
are taken into consideration. The objectives of them
are to optimize execution time and energy consump-
tion of mobile services. Xu et al. [32] propose an energy

Table 8 The number of WAs = 7

Location NO FOCL FOC MCOWA

Local 91 0 0 14

Cloudlet 0 91 0 74

Cloud 0 0 91 3
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(a) (b)

(c)
Fig. 10 The energy consumption, time consumption, and cost of each method where WAs = 5. a Energy consumption. b Time consumption. c Cost

consumption model for applications deployed across
cloud computing platforms, and a corresponding energy-
aware resource allocation algorithm for VMs scheduling
to accomplish scientific workflow executions. Aiming at
the problem of scientific WA scheduling with deadline
constraints inmulti-cloud environment, an adaptive discrete
particle swarm optimization algorithm is proposed in
[33], which can reduce the processing cost of WA while
meeting the deadline ofWA. AsMEC andMCChave differ-
ent architectures, the computation offloading methods in
MCC cannot be used for the MEC scenario directly.
Jia et al. [34] proposed a computational offloading algo-

rithm for augmented reality applications in MEC environ-
ment. They hold the opinion that such applications are
multi-user participation and have high latency require-
ments. They have established a multi-user augmented
reality game system model and proposed a corresponding
multi-user computing offloading algorithm. Li et al. [35]
proposed a migration algorithm that divides the applica-
tion into multiple parts and migrates them to multiple
cloudlets to minimize task computation latency. How-
ever, their methods mainly focus on latency optimization.
Liu et al. [36] utilize a queuing theory to study on the
energy consumption, processing latency, and price cost

of offloading process in MEC system. The secularization
scheme and interior point method are used to address the
formulated problem. They are mainly for general applica-
tions in the MEC and do not consider the computation of
WAs in the MEC.
Zhang et al. [47] propose an energy-efficient offload-

ing strategy for home automation applications in MEC.
An improved particle swarm optimization algorithm is
implemented to schedule mobile services which mini-
mizes the total energy consumption of the WAs within a
given constant deadline. However, their approach focuses
on the single-user and single-objective optimization sce-
nario. Huang et al. [48] proposed a computation offload-
ing method for multimedia workflows with deadline
constraints in cloudlet-based mobile cloud. The objec-
tive of them is to minimize the energy consumption with
the constraints of meeting the deadline of each multime-
dia workflow. In addition, a multi-objective computation
offloading method for WA is proposed in terms of energy
consumption and time consumption [42].
Different from the existing research, we investigate the

multi-objective computation offloading for WAs in terms
of time consumption, energy consumption, and cost for
WAs in MEC.
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(a) (b)

(c)
Fig. 11 The energy consumption, time consumption, and cost of each method where WAs = 6. a Energy consumption. b Time consumption. c Cost

(a) (b)

(c)
Fig. 12 The energy consumption, time consumption, and cost of each method where WAs = 7. a Energy consumption. b Time consumption. c Cost
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6 Conclusion
In this paper, we investigate the multi-objective compu-
tation offloading method for WAs in MEC. To tackle
the problem, we have proposed a computation-offloading
algorithm (MCOWA) that finds the optimal application
strategy while meeting the deadline-constrained of WAs.
Extensive experimental evaluations have conducted to show
the efficiency and effectiveness of our proposed method.
In future work, we will focus on multi-objective opti-

mization computation offloading from the perspective of
edge servers in MEC. For one thing, the computation
offloading forWAs inmulti-cloudlet scenario will be stud-
ied [49, 50]. For another, the revenue of the edge server
will be investigated [51].
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