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Abstract

In this paper, we consider a cellular network in which the locations of the base stations are spatially correlated. We
introduce an analytical framework for computing the distribution of the conditional coverage probability given the
point process, which is referred to as the meta distribution and provides one with fine-grained information on the
performance of cellular networks beyond spatial averages. To this end, we approximate, from the typical user
standpoint, the spatially correlated (non-Poisson) cellular network with an inhomogeneous Poisson point process. In
addition, we employ a new and recently proposed definition of the coverage probability and introduce an efficient
numerical method for computing the meta distribution. The accuracy of the proposed approach is validated with the
aid of numerical simulations.
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1 Methods/experimental
The methods used in the present paper are based on
the mathematical tools of inhomogeneous Poisson point
processes and stochastic geometry. A new analytical
framework for performance analysis is introduced. The
theoretical framework is validated against Monte Carlo
simulations.

2 Introduction
Stochastic geometry and point processes are well known
and widely used analytical tools for modeling, analyzing,
and optimizing cellular networks [1]. The Poisson Point
Process (PPP), in particular, is the most widely used spa-
tial model to describe the locations of the base stations
(BSs) in cellular networks [2–6]. This is due to its inherent
analytical tractability. In practice, however, the locations
of cellular BSs are distributed according to complex spa-
tial patterns that are difficult to model analytically and, in
general, differ from the PPP [7].
To overcome the analytical complexity of modeling and

analyzing non-Poisson, i.e., spatially correlated, cellular
networks, we have introduced an approximation based
on inhomogeneous PPP, which is referred to as inhomo-
geneous double thinning (IDT) approximation [7]. The
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IDT approach allows one to model both spatially repul-
sive and spatially attractive (clustered) cellular network
deployments in a mathematically tractable manner. In
[7], in particular, the suitability of the IDT approach has
been tested against several cellular network deployments
obtained from publicly available datasets, and a good
accuracy has been obtained.
In [7], however, the IDT approach is used to compute

the spatially averaged coverage probability in cellular net-
works. More precisely, the coverage probability is first
formulated by conditioning upon the point process that
describes the locations of the cellular BSs, and then the
expectation with respect to the point process is com-
puted. As remarked in [8], the spatially averaged coverage
probability is an important performance metric, but it
does not completely characterize the variability of the
coverage probability around its (spatial) mean value. To
overcome this limitation, the author of [8] has introduced
the concept of meta distribution, which provides one with
finer-grained information on the network performance.
Notably, the meta distribution allows one to character-
ize the performance of user percentiles. More precisely,
the coverage probability is first formulated by condition-
ing upon the point process that describes the locations
of the cellular BSs, and, then, its complementary cumula-
tive distribution function with respect to the point process
is computed. The spatially averaged coverage probability
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can be retrieved from the meta distribution via a simple
integration.
In the present paper, motivated by these considerations

and by [9], we generalize the IDT approach for computing
the meta distribution in non-Poisson cellular networks.
We consider a recent and improved definition of the cov-
erage probability, which allows one to account for the
signal quality during the cell association and data trans-
mission phases [10], [11]. We show, notably, that the meta
distribution cannot be approximated, in general, by using
the beta distribution. As remarked in [12–14], however,
the numerical computation of the meta distribution is
usually not straightforward by employing the Gil-Pelaez
inversion theorem [15]. We prove, on the other hand,
that the meta distribution can be efficiently computed by
employing the trapezoidal integration rule and the Euler
sum method, for which a bound for the approximation
error is known [16, 17]. With the proposed approach,
the meta distribution in spatially correlated (non-Poisson)
cellular networks can be obtained efficiently and accu-
rately. The suitability of the proposed approach is substan-
tiated with the aid of numerical simulations.
The reminder of this paper is organized as follows. In

Section 3, the system model and the IDT approach are
introduced. In Section 4, the meta distribution is formu-
lated and an efficient method for its computation is given.
In Section 5, analytical expressions for the moments of the
coverage probability conditioned upon the point process
that describes the locations of cellular BSs are derived.
In Section 6, Poisson and non-Poisson cellular networks
are compared against each other. In Section 7, numeri-
cal simulations to validate the suitability and accuracy of
the proposed approach are illustrated. Finally, Section 8
concludes this paper.

3 Systemmodel
In this section, we describe the system model and sum-
marize the essence of the IDT approach for modeling
non-Poisson cellular networks. The adopted definition of
coverage probability is introduced as well.

3.1 Cellular network modeling
The cellular network model is the same as in [7]. In partic-
ular, a downlink cellular network is considered. The BSs
are modeled as points of a motion-invariant point pro-
cess, denoted by �BS, of density λBS. The locations of the
BSs are denoted by x ∈ �BS ⊆ R

2. The mobile termi-
nals (MTs) are distributed independently of each other
and uniformly at random in R

2. The density of the MTs
is denoted by λMT. A fully loaded assumption is consid-
ered, i.e., λMT � λBS, which implies that all the BSs
are active and have MTs to serve. The BSs and MTs are
equipped with a single omnidirectional antenna. Each BS
transmits with a constant power denoted by Ptx. Thanks to

the assumption of motion-invariance, the point process of
the BSs is stationary and isotropic. As a result, the analyti-
cal frameworks are developed for the typical MT, denoted
by MT0, that is located at the origin. The BS serving MT0
is denoted by BS0. Its location is denoted by x0 ∈ �BS.
All available BSs transmit on the same physical channel as
BS0. The point process of the interfering BSs is denoted
by �

(I)
BS, and the generic interfering BS is denoted by BSi.

Besides the inter-cell interference, the Gaussian noise with
power σ 2

N is taken into account as well.
All BS-to-MT0 links are assumed to be mutually inde-

pendent and identically distributed (i.i.d.). For each BS-to-
MT0 link, path-loss and fast-fading channel impairments
are considered. The path-loss is defined as l (x) = κ‖x‖γ ,
where κ and γ > 2 are the path-loss constant and the
path-loss slope (exponent), respectively. The power gain
due to the fast-fading is assumed to follow an exponential
distribution with mean 1 and is denoted by gx for x ∈ �BS.
A cell association criterion based on the highest average

received power is considered. Let x ∈ �BS be the location
of a generic BS. The location, x0, of the serving BS, BS0, is
obtained as follows:

x0 = argmax
x∈�BS

{1/l (x)} = argmax
x∈�BS

{1/Lx} (1)

where Lx = l (x) is a shorthand notation. As far as
the intended link is concerned, we have L0 = l (x0) =
minx∈�BS {Lx}.

3.2 Coverage probability
The definition of (spatially averaged) coverage probabil-
ity recently introduced in [10] and [11] is considered. Let
γD and γA be the reliability thresholds for the success-
ful decoding of information data and for the successful
detection of the serving BS, BS0, respectively. The cover-
age probability, Pcov, of the typical MT, MT0, is as follows:

Pcov (γD, γA) = Pr
{
SIR ≥ γD, SNR ≥ γA

}
(2)

where the signal-to-interference ratio (SIR) and the aver-
age signal-to-noise ratio (SNR) can be formulated, for the
network model under analysis, as follows:

SIR = Ptx g0/L0∑
BSi∈�

(I)
BS

Ptx gi/Li1 (Li > L0)

SNR = Ptx/L0
σ 2
N

(3)

where 1 (·) denotes the indicator function and SNR is
averaged with respect to the fast-fading power gain g0 of
the intended link.
It is worth mentioning that the definition of Pcov in (3)

reduces to the conventional definition of coverage proba-
bility [1] by setting γA = 0. This implies that the results
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obtained in the present paper apply unaltered even if the
conventional definition of coverage probability based only
on the SIR is employed.

3.3 Inhomogeneous double thinning approach
The computation of the coverage probability in (3) is ana-
lytically tractable if the point process of the BSs is a PPP
[11]. If it is not a PPP, on the other hand, the coverage
probability cannot, in general, be formulated in a tractable
analytical form [7]. To overcome this issue and enable
one to analyze non-Poisson cellular networks, we have
proposed the IDT approach in [7]. The essence of the
approach consists of introducing an equivalent (approx-
imated) network abstraction, for modeling non-Poisson
cellular networks, that is based on inhomogeneous PPPs.
The equivalent network model, in particular, is consti-
tuted by two independent inhomogeneous PPPs, �(F)

BS and
�

(K)
BS , which are constructed with the purpose of approxi-

mating a motion-invariant point process from the point of
view of the typical MT. Further details and discussions on
the IDT approach and its interpretation from the typical
MT standpoint can be found in [7].
Let the inhomogeneous PPPs �

(F)
BS and �

(K)
BS have inten-

sity measures �
�

(F)
BS

(·) and �
�

(K)
BS

(·), respectively. The BS
serving the probe MT is assumed to belong to �

(F)
BS , and

the interfering BSs are assumed to belong to �
(K)
BS . In

particular, the location of the serving BS and the inhomo-
geneous PPP, �(I)

BS, of interfering BSs can be formulated as
follows:

x(F)
0 = argmax

x∈�
(F)
BS

{1/l (x)}

�
(I)
BS = �

(I)
BS

(
x(F)
0

)
=
{
x ∈ �

(K)
BS : l (x) > L(F)

0 = l
(
x(F)
0

)}

(4)

It is worth mentioning, in particular, that the inhomo-
geneous PPPs �

(F)
BS and �

(I)
BS are only conditionally, i.e.,

upon x(F)
0 , independent. As described in detail in [7], the

intensity measures of �
(F)
BS and �

(K)
BS are determined from

the F-function and K-function of the original motion-
invariant point process. Therefore, they depend only on
the spatial characteristics of the point process (spatial
model) being used. In [7], we have shown, in particu-
lar, that a convenient choice, which provides one with a
good trade-off between modeling accuracy and analyti-
cal tractability, for the intensity measures �

�
(F)
BS

(·) and
�

�
(K)
BS

(·) is the following:

�
�

(F)
BS

(B (0, r)) = 2π
∫ r

0
λ

(F)
BS (ζ ) ζdζ

�
�

(K)
BS

(B (0, r)) = 2π
∫ r

0
λ

(K)
BS (ζ ) ζdζ

(5)

where B (0, r) denotes the ball centered at the origin
and of radius r and λ

(F)
BS (·) and λ

(K)
BS (·) are the inten-

sity functions of �
(F)
BS and �

(K)
BS , respectively, which are

distance-dependent and angle-independent.
In particular, λ

(F)
BS (·) and λ

(K)
BS (·) have different forms

depending on whether the original motion-invariant
point process is spatially repulsive or spatially attractive.

Spatially repulsive point process: If the point process
�BS is spatially repulsive, then:

λ
(F)
BS (r) = λBSčF min

{(
ǎF/čF

)
r + b̌F/čF, 1

}

λ
(K)
BS (r) = λBS min

{
ǎKr + b̌K, čK

} (6)

where
(
ǎF, b̌F, čF

)
and

(
ǎK, b̌K, čK

)
are two triplets of

non-negative real numbers such that čF ≥ b̌F ≥ 1 and
b̌K ≤ čK ≤ 1.

Spatially attractive point process: If the point process
�BS is spatially attractive, then:

λ
(F)
BS (r) = λBS max

{
−âFr + b̂F, ĉF

}

λ
(K)
BS (r) = λBSb̂K max

{
−
(
âK/b̂K

)
r + 1, ĉK/b̂K

} (7)

where
(
âF, b̂F, ĉF

)
and

(
âK, b̂K, ĉK

)
are two triplets of non-

negative real numbers such that ĉF ≤ b̂F ≤ 1 and b̂K ≥
ĉK ≥ 1.
The intensity measures in (5) can be formulated in

closed-form from (6) and (7), as described in [7]. Since for
spatially repulsive and spatially attractive point processes
the intensity measures in (5) have the same analytical
expression as a function of the triplets of parameters, we
use, in the sequel, the general notation (aF, bF, cF) and
(aK, bK, cK) for both case studies.

4 Meta distribution
In this section, we introduce the meta distribution,
overview the most common approaches for computing it,
and show that it can be efficiently computed, within a
given and bounded error, by using the trapezoidal integra-
tion rule and the Euler sum method. In what follows, we
consider the equivalent networkmodel based on the inho-
mogeneous PPPs �

(F)
BS and �

(K)
BS . For ease of writing, we

employ the notation �BS =
{
�

(F)
BS ,�

(K)
BS

}
.

4.1 Definition
According to [8], the meta distribution is defined as fol-
lows:

FPcov (γD, γA, z) = Pr�BS {Pcov (γD, γA| �BS) ≥ z}
with z ∈ [0, 1]

(8)
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where Pcov (γD, γA| �BS) is the coverage probability con-
ditioned upon �BS (and by assuming that the typical MT
is at the origin), which is defined as follows:

Pcov (γD, γA| �BS) = Pr
{
SIR ≥ γD, SNR ≥ γA

∣∣∣�BS
}

(9)

It is worth mentioning that, in (8), we have emphasized
that the probability is computed only with respect to �BS.
The spatially averaged coverage probability in (2) can be

retrieved from the meta distribution in (7) directly from
its definition, as follows:

Pcov (γD, γA)=E�BS {Pcov (γD, γA| �BS)}=
∫ 1

0
FPcov (z) dz

(10)

In practical terms, the meta distribution provides one
with the fraction of links whose SIR is greater than γD
and whose average SNR is greater than γA with probability
at least equal to z in each network realization. Therefore,
it yields a more general statistical characterization of the
performance of cellular networks beyond spatial averages.

4.2 Computation: Gil-Pelaez method
As discussed in [8], the direct computation of the meta
distribution in (8) is not straightforward. A general
approach to overcome this issue is to capitalize on the Gil-
Pelaez inversion theorem [15], which allows one to formu-
late the meta distribution as a function of the moments of
the (conditional) coverage probability in (9).
In particular, the following holds [8]:

FPcov (γD, γA, z) =
1
2

+ 1
π

∫ +∞

0

Im
{
Mjt (γD, γA) exp

(−jt ln (z)
)}

t
dt

(11)

where j = √−1 is the imaginary unit, Im {·} denotes
the imaginary part operator, and Mb (γD, γA) is the
bth moment of the (conditional) coverage probability
Pcov (γD, γA| �BS), which is defined as follows:

Mb (γD, γA) = E�BS

{
(Pcov (γD, γA| �BS))

b
}

=
∫ 1

0
bzb−1FPcov (z) dz

(12)

Therefore, the meta distribution can be obtained by
first computing themoments of the (conditional) coverage
probability Pcov (γD, γA| �BS) in (12) and by then comput-
ing the integral in (11). As remarked in [12–14], however,
the computation of (11) is not always straightforward.
Other methods need, in general, to be used instead, e.g.,
the Fourier-Jacobi expansion [12], and the Mnatsakanov’s
theorem [13, 14].
An alternative approach relies on approximating the

meta distribution with another distribution. A nota-

ble example is using the beta distribution for approximat-
ing it over the entire range of values z ∈[ 0, 1]. As remarked
in [14], however, this approach cannot be applied if the
actual distribution does not fulfill the class of the beta dis-
tribution. The following lemma shows, e.g., that this is the
case if the coverage probability is defined in terms of SIR
and SNR.

Lemma 1 Let (aF, bF, cF) be the generic triplet of param-
eters introduced in (6) and (7), and denote dF =
(cF − bF)/aF ≥ 0. The meta distribution in (11) satisfies
the following properties:

FPcov (γD, γA, z → 0) =

1−exp

⎛
⎝−2πλBS�

⎛
⎝
(

Ptx
κσ 2

NγA

)1/γ

; aF, bF, cF

⎞
⎠
⎞
⎠ (13)

FPcov (γD, γA, z → 1) = 0 (14)

0≤FPcov (γD, γA, z) ≤ 1

−exp

⎛
⎝−2πλBS�

⎛
⎝
(

Ptx
κσ 2

NγA

)1/γ

; aF, bF, cF

⎞
⎠
⎞
⎠ (15)

where �
�

(F)
BS

(B (0, r)) = 2πλBS� (r; aF, bF, cF), and:

� (r; aF, bF, cF)=
(
aF
3
r3 + bF

2
r2
)
1 (r ≤ dF)

+
(
(bF − cF)3

6a2F
+ cF

2
r2
)
1(r > dF)

(16)

Proof See Appendix A.

From Lemma 1, we evince that the meta distri-
bution lies in the range [ 0, 1] only if γA = 0, i.e.,
the conventional definition of coverage probability
based only on the SIR is used [11]. If γA �= 0, on the
other hand, the meta distribution lies in the range[
0, 1 − exp

(
−2πλBS�

((
Ptx/

(
κσ 2

NγA
))1/γ ; aF, bF, cF

))]
.

This implies that the beta distribution is not necessarily a
good approximation for the meta distribution, since the
former distribution lies always in the range [ 0, 1].

4.3 Computation: Euler summethod
In this section, motivated by the considerations just made,
we show that the meta distribution can be efficiently com-
puted, with a known and bounded approximation error, by
using the trapezoidal integration rule and the Euler sum
method as originally proposed in [16] and recently used,
e.g., in [17]. The following proposition states the result in
rigorous terms.
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Proposition 1 Let A, N, and Q be three positive integer
numbers. Let us define the following functions:

β0 = 2
βn = 1 for n = 1, 2, . . . ,N
sn = A+2π jn

2 for n = 0, 1, . . . ,N
(17)

The meta distribution can be formulated as follows:

FPcov (γD, γA, z) ≈ 2−Q exp (A/2)
ln2 (z)

Q∑
q=0

(
Q
q

)

N+q∑
n=0

(−1)n

βn
Re
{M−sn/ln(z) (γD, γA)

sn

}

+ |E (A,N ,Q)|
(18)

where Re {·} is the real part operator, Mb (γD, γA) is the
bth moment in (12), and E (A,N ,Q) is the approximation
error as follows:

|E (A,N ,Q)| ≈ 1
exp (A) − 1

+
∣∣∣∣∣∣
2−Q exp (A/2)

ln2 (z)

Q∑
q=0

(
Q
q

)
(−1)N+1+q

Re
{M−sN+1+q/ln(z) (γD, γA)

sN+1+q

}∣∣∣∣
(19)

Proof See Appendix B.

There are three main advantages in favor of using the
Euler sum method instead of the Gil-Pelaez method: (1)
Eq. 18 does not need the explicit computation of an inte-
gral, which makes the numerical estimation of the meta
distribution easier; (2) the method can be applied to any
family of non-negative meta distributions; and (3) the
approximation error in (19) is known in closed-form and
the accuracy of the numerical computation can be con-
trolled by using the triplet of parameters (A,N ,Q). As
discussed in [16], in particular, typical values of these
parameters are A = 10 ln (10), which guarantees a dis-
cretization error of the order of 10−10, andN andQ of the
order of 10 or 20.

5 Computation of themoments
From (18), it is apparent that the meta distribution can be
easily obtained from themoments defined in (12). The fol-
lowing theorem provides one with these moments for the
system model under analysis based on the IDT modeling
approximation for non-Poisson cellular networks.

Theorem 1 Let (aF, bF, cF) and (aK, bK, cK) be the two
triplets of parameters that quantify the spatial correlation
properties of the point process that describes the locations
of the cellular BSs. Let us define dF = (cF − bF)/aF ≥ 0
and dK = (cK − bK)/aK ≥ 0. The moments in (12) can be
formulated as follows:

Mb (γD, γA) = E�BS

{
(Pcov (γD, γA| �BS))

b
}

= 2πλBS

∫ (
Ptx/

(
κσ 2

NγA
))1/γ

0
exp (−2πλBS� (r; γD)) ϒ (r) dr

(20)

where the following functions are defined:

� (r; γD) = aK
3
r3
(
2F1

(
b,− 3

γ
, 1 − 3

γ
, γD

)
− 1
)
1 (r ≤ dK)

+ bK
2
r2
(
2F1

(
b,− 2

γ
, 1 − 2

γ
, γD
)

− 1
)
1 (r ≤ dK)

− aK
3
d3K

(
2F1

(
b,− 3

γ
, 1 − 3

γ
,− rγ

dγ
K

γD

)
− 1
)
1 (r ≤ dK)

+ cK − bK
2

d2K

(
2F1

(
b,− 2

γ
, 1 − 2

γ
,− rγ

dγ
K

γD

)
−1
)
1(r ≤ dK)

+ cK
2
r2
(
2F1

(
b,− 2

γ
, 1 − 2

γ
,−γD

)
− 1
)
1 (r > dK)

(21)

ϒ (r) = (aFr2 + bFr
)
exp

(
−2πλBS

(
aF
3
r3 + bF

2
r2
))

1 (r ≤ dF)

+ cFr exp
(

−2πλBS

(
(bF − cF)3

6a2F
+ cF

2
r2
))

1 (r > dF)

(22)

Proof See Appendix C.

The analytical framework in (20) can be applied to
any non-Poisson spatial model that can be well approx-
imated by using inhomogeneous PPPs with the aid of
the IDT approach. The conventional Poisson cellular net-
work model can be retrieved directly from Theorem 1, as
reported in the following corollary.

Corollary 1 In (homogeneous) Poisson cellular net-
works, the moments in (12) can be formulated as follows:

Mb (γD, γA)

= E�BS

{
(Pcov ( γD, γA| �BS))

b
}

=
1 − exp

(
−πλBS

(
Ptx

κσ 2
NγA

)2/γ
2F1
(
b,− 2

γ
, 1 − 2

γ
,−γD

))

2F1
(
b,− 2

γ
, 1 − 2

γ
,−γD

)

(23)
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Proof It follows from (20) by setting bF = cF = 1 and
bK = cK = 1, and by computing the integral.

By direct inspection of (23), in particular, we note that
the moments reduce to those computed in [8] if γA = 0.

6 Comparison between Poisson and non-Poisson
cellular networks

With the aid of the expression of the meta distribution in
(18), and of its moments in (20) and (23) for non-Poisson
and Poisson cellular networks, respectively, it is worth
studying the impact of spatial correlations in cellular net-
works. By considering the spatially averaged definition
of the coverage probability in (10), we have proved in
[7], notably, that spatially repulsive and spatially attrac-
tive cellular networks provide better and worse coverage
probability than Poisson cellular networks, respectively.
Such a general result and comparison are, however, dif-
ficult to obtain for the meta distribution, since it can
only be computed numerically, as shown in (18), and sim-
ple closed-form solutions for it are not available yet and
are unknown. The following two propositions, however,
provide one with some important information about this
comparison.

Proposition 2 Let z be sufficiently small, i.e., z → 0. Let
F(PPP)

Pcov (·), F(Rep)
Pcov (·), and F(Attr)

Pcov (·) be the meta distributions
of Poisson, spatially repulsive, and spatially attractive cel-
lular networks, respectively. Then, the following holds:

F(Rep)
Pcov (γD, γA, z → 0) ≥ F(PPP)

Pcov (γD, γA, z → 0)

F(Attr)
Pcov (γD, γA, z → 0) ≤ F(PPP)

Pcov (γD, γA, z → 0)
(24)

Proof Let �
(PPP)

�
(F)
BS

(·), �
(Rep)
�

(F)
BS

(·), and �
(Attr)
�

(F)
BS

(·) be the

intensity measures in (5) for Poisson, spatially repulsive,
and spatially attractive cellular networks, respectively.
In [7, Lemma 5] and [7, Lemma 6], it is proved that
�

(Rep)
�

(F)
BS

(B (0, r)) ≥ �
(PPP)

�
(F)
BS

(B (0, r)) and �
(PPP)

�
(F)
BS

(B (0, r)) ≥
�

(Attr)
�

(F)
BS

(B (0, r)), respectively. Then, the proof follows
immediately from Lemma 1.

Proposition 3 Let M(PPP)

b (·), M(Rep)
b (·), and

M(Attr)
b (·) be the bth moment in (12) for Poisson, spa-

tially repulsive, and spatially attractive cellular networks,
respectively. Then, for every b ∈ R, the following holds:

M(Rep)
b (γD, γA) ≥ M(PPP)

b (γD, γA)

M(PPP)

b (γD, γA) ≥ M(Attr)
b (γD, γA)

(25)

Proof See Appendix D.

Proposition 2, notably, allows one to conclude that, for
low values of z that tends to zero, spatially repulsive cel-
lular networks exhibit first-order stochastic dominance
over Poisson cellular networks, and that Poisson cellu-
lar networks exhibit first-order stochastic dominance over
spatially attractive cellular networks. By using similar
arguments, Proposition 3 allows one to establish similar
moments-based stochastic ordering between Poisson and
non-Poisson cellular networks.

7 Numerical results and validation
In this section, we show some simulation results in order
to substantiate the main findings of the paper. The sim-
ulation setup is reported in Table 1, and the specific
parameters of the point processes are detailed in [7]. The
spatial model denoted by “general case” is chosen in order
to better compare homogeneous, spatially attractive, and
spatially repulsive point processes.
In Fig. 1, we report the moments of the conditional cov-

erage probability. We observe a good agreement between
the proposed analytical framework and Monte Carlo sim-
ulations. We note, in addition, that the findings about
the first-order stochastic dominance of the moments is
confirmed by our numerical illustrations.
In Figs. 2 and 3, we compare the meta distribution by

considering two definitions of coverage probability. The
conventional SIR-based definition and the SIR + SNR-
based definition that is employed in this paper [11]. We
observe that, in both cases, we obtain a good agreement
compared withMonte Carlo simulations. The figures con-
firm, in addition, that the beta distribution may not be
used for approximating the SIR+SNR-based definition of
coverage probability. Our numerical results, on the other
hand, confirm (even though they are not shown for ease
of illustration) that the beta distribution yields a good
approximation for the SIR-based definition of coverage
probability.
In Fig. 4, finally, we compare the meta distribution

of homogeneous, spatially attractive, and spatially repul-
sive point processes. We observe a good agreement with
Monte Carlo simulations. In addition, the figures con-
firms the correctness of the asymptotic value of the meta
distribution for small values of z.

8 Conclusion and discussion
In this paper, we have proved that the inhomogeneous
double thinning approach for modeling and analyzing
spatially correlated (non-Poisson) cellular networks can
be successfully employed for studying the distribution
of the conditional coverage probability given the point
process of cellular base stations, which is referred to
as the meta distribution. We have proved, in addition,
that the meta distribution can be efficiently computed
by using the trapezoidal integration rule and the Euler
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Table 1 Simulation setup

Parameter Value

Ginibre point process
(rural)

λBS = 0.03056 BSs/km2

Log-Gaussian Cox point
process (urban)

λBS = 4.00923 BSs/km2

General case λBS = 0.2346 BSs/km2

Ginibre point process
(rural)

β = 0.225, Area region = 124.578π km2

Log-Gaussian Cox point
process (urban)

β = 0.03, σ 2 = 3.904, μ = −0.5634,
Area region = 28 × 28 km2

Path-loss constant and
exponent

κ = (4π fc/3 × 108)2, γ = 4

Ginibre point process
(rural)

aF = 4.55473414133037 · 10−5

bF = 1.01046879386340

cF = 1.11306423054186

Ginibre point process
(rural)

aK = 0.000400570907629641

bK = 0.0118898483733152

cK = 0.999999810503409

Log-Gaussian Cox point
process (urban)

aF = 3.00375582041718 · 10−3

bF = 0.999992970565002

cF = 0.660720583433523

Log-Gaussian Cox point
process (urban)

aF = 0.254520540961994 · 10−3

bK = 1.17267857020013

cK = 1.00000033357904

General case (repulsive)
aF = 0.2 · 10−3, bF = 1.1, cF = 1.5

aK = 0.2 · 10−3, bK = 0.8, cK = 0.99

General case (attractive)
aF = 0.2 · 10−3, bF = 0.99, cF = 0.8

aK = 0.2 · 10−3, bK = 1.5, cK = 1.1

SIR and SNR thresholds γD = 1, γA = 1

Ginibre point process
(rural)

Ptx = 55 dBm

Log-Gaussian Cox point
process (urban)

Ptx = 20 dBm

General case Ptx = 15 dBm

Ginibre point process
(rural)

BW = 200 kHz

Log-Gaussian Cox point
process (urban)

BW = 200 kHz

General case BW = 2000 kHz

Noise power σ 2
N = −174 + 10log10 (BW) + 10 dBm

sum method, provided that the negative moments of the
conditional coverage probability can be computed. By
using the inhomogeneous double thinning approach, it is
proved that these latter moments can be formulated in
terms of a single integral expression. Finally, some results
on the first-order stochastic dominance of non-Poisson
cellular networks over Poisson cellular networks are
proved.

Appendix A: Proof of Lemma 1
By conditioning upon the point process �BS, the SIR is
a random variable and the average SNR is a constant.
Therefore, the (conditional) coverage probability can be
formulated as follows:

Pcov (γD, γA| �BS)

= Pr
{
SIR ≥ γD, SNR ≥ γA

∣∣∣�BS
}

=
⎧⎨
⎩
Pr {SIR ≥ γD| �BS} if r0 ≤

(
Ptx

κσ 2
NγA

)1/γ

0 otherwise
(26)

where r0 = ‖x0‖ is the distance of the serving BS from the
origin.
By definition of meta distribution, i.e., FPcov (γD, γA, z) =

Pr�BS {Pcov (γD, γA| �BS) ≥ z}, and by letting z → 0, we
obtain:

FPcov (γD, γA, z → 0)

= Pr�BS
{
Pcov

(
γD, γA

∣∣�BS
) ≥ z → 0

}

=

⎧⎪⎨
⎪⎩

1 if r0 ≤
(

Ptx
κσ2

NγA

)1/γ

0 otherwise

= Pr

⎧⎨
⎩r0 ≤

(
Ptx

κσ 2
NγA

)1/γ⎫⎬
⎭

= 1 − exp

⎛
⎝−�

�
(F)
BS

⎛
⎝B

⎛
⎝0,

(
Ptx

κσ 2
NγA

)1/γ⎞
⎠
⎞
⎠
⎞
⎠

(27)

where the last identity is obtained from the definition of
F-function of inhomogeneous PPPs.
The proof follows by computing (5) from (6) and (7).

Appendix B: Proof of Proposition 1
By definition of meta distribution, the following holds
true:

FPcov (γD, γA, z) = Pr�BS {Pcov (γD, γA| �BS) ≥ z}
= Pr�BS {ln (Pcov (γD, γA| �BS)) ≥ ln (z)}
= Pr�BS {−ln (Pcov (γD, γA| �BS)) ≤ − ln (z)}
= Pr�BS

{
Y�BS ≤ − ln (z)

}

(28)

where Y�BS = −ln (Pcov (γD, γA| �BS)).
Therefore, the meta distribution can be computed by

using the Euler sum method in [16] from the Laplace
transform of the random variable Y�BS . In particular, the
latter Laplace transform can be formulated as follows:
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Fig. 1Moments of the conditional coverage probability. Setup: General case. Solid lines: Monte Carlo simulations. Markers: IDT framework

LY�BS
(b) = EY�BS

{
exp

(
bY�BS

)}

= E�BS {exp (−bln (Pcov (γD, γA| �BS)))}
= E�BS

{
(Pcov (γD, γA| �BS))

−b
}

= M−b (γD, γA)

(29)

which implies that the meta distribution is determined
by the negative moments of the (conditional) coverage
probability. Then, the proof follows.

Appendix C: Proof of Theorem 1
By definition, the bth moment of the (conditional) cover-
age probability is the following:

Fig. 2Meta distribution: Comparison between the SIR-based and SIR + SNR-based definition of coverage (ASNR=SNR). Setup: Ginibre point process
case. Solid lines: IDT framework. Markers: Monte Carlo simulations
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Fig. 3Meta distribution: Comparison between the SIR-based and SIR + SNR-based definition of coverage (ASNR=SNR). Setup: Log-Gaussian Cox
point process case. Solid lines: IDT framework. Markers: Monte Carlo simulations

Mb (γD, γA) = E�BS

{
(Pcov (γD, γA| �BS))

b
}

(30)

By definition of (conditional) coverage probability, we
obtain the following:

Pcov
(
γD, γA

∣∣�BS
) = Pr

{
SIR ≥ γD, SNR ≥ γA

∣∣∣�BS
}

= Pr
{
SIR ≥ γD|�BS

}
1

⎛
⎝r0 ≤

(
Ptx

κσ2
NγA

)1/γ⎞
⎠

= 1

⎛
⎝r0 ≤

(
Ptx

κσ2
NγA

)1/γ⎞
⎠ ∏

x∈�
(K)
BS

υ
( r0
r

)
(31)

Fig. 4Meta distribution. Setup: General case. Solid lines: IDT framework. Markers: Monte Carlo simulations. Dashed lines: asymptotic limit for z → 0
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where r0 = ‖x0‖, r = ‖x‖, and υ (ξ) = (1 + γDξγ )−b.
Therefore, the moments can be written as follows:

Mb (γD, γA)

= E
�

(F)
BS

⎧⎪⎪⎨
⎪⎪⎩
1

⎛
⎝r0 ≤

(
Ptx

κσ 2
NγA

)1/γ⎞
⎠E

�
(K)
BS

⎧⎪⎪⎨
⎪⎪⎩
∏

x∈�
(K)
BS

υ
( r0
r

)
⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭

=
∫ (Ptx/

(
κσ2

NγA
))1/γ

0
E

�
(K)
BS

⎧⎪⎪⎨
⎪⎪⎩
∏

x∈�
(K)
BS

υ
( r0
r

)
⎫⎪⎪⎬
⎪⎪⎭

× �
(1)
�

(F)
BS

(B (0, r0)) exp
(

−�
�

(F)
BS

(B (0, r0))
)
dr0

(32)

where the last equality follows by applying the void prob-
ability theorem of inhomogeneous PPPs, �

(1)
�

(F)
BS

(B (0, r))
is the first-order derivative of �

�
(F)
BS

(B (0, r)) computed
with respect to r, and, by using the probability generating
functional theorem, we have:

E
�

(K)
BS

⎧
⎪⎨
⎪⎩
∏

x∈�
(K)
BS

υ
( r0
r

)
⎫
⎪⎬
⎪⎭

= exp
(

−
∫ +∞

r0

(
1 − υ

( r0
r

))
�

(1)
�

(K)
BS

(B (0, r)) dr
)

(33)

where �
(1)
�

(K)
BS

(B (0, r)) is the first-order derivative of
�

�
(K)
BS

(B (0, r)) computed with respect to r.
The proof follows by computing the integrals and using

the same steps are those reported in [7].

Appendix D: Proof of Proposition 3
For simplicity, we consider the case study of spatially
repulsive cellular networks. A similar approach can be
used to prove Proposition 3 if the cellular network is
spatially repulsive.
From Appendix C, the moments of the (conditional)

coverage probability can be formumated as follows:

M(Rep)
b (γD, γA) =

∫ (
Ptx/

(
κσ 2

NγA
))1/γ

0
G(Rep) (r0)H(Rep) (r0) dr0

(34)

where the following shorthand notation is used:

G(Rep) (r0) = exp
(
−
∫ +∞

r0

(
1−υ

( r0
r

))
�

(1)
�

(K)
BS

(B (0, r)) dr
)

(35)

H(Rep)(r0)=�
(1)
�

(F)
BS

(B (0, r0)) exp
(
−�

�
(F)
BS

(B (0, r0))
)

(36)

Similar analytical expressions can be obtained for
homogenous PPPs. In particular, the following holds true:

M(PPP)

b (γD, γA)=
∫ (

Ptx/
(
κσ 2

NγA
))1/γ

0
G(PPP)(r0)H(PPP)(r0)dr0

(37)

where:

G(PPP)(r0)=exp
(
−πλBSr20

(
2F1
(
b,− 2

γ
; 1 − 2

γ
;−γD

)
−1
))

(38)

H(PPP) (r0) = 2πλBSr0 exp
(−πλBSr20

)
(39)

Since 1 − υ (r0/r) ≥ 0, and the inequality
�

(1)
�

(K)
BS

(B (0, r0)) ≤ �
(1)
PPP (B (0, r0)) was proved in [7],

then we have:

G(Rep) (r0)

= exp
(

−
∫ +∞

r0

(
1 − υ

( r0
r

))
�

(1)
�

(K)
BS

(B (0, r)) dr
)

≥ exp
(

−
∫ +∞

r0

(
1 − υ

( r0
r

))
�

(1)
PPP (B (0, r)) dr

)

= G(PPP) (r0)
(40)

Therefore, we obtain the following:

M(Rep)
b (γD, γA)

=
∫ (

Ptx/
(
κσ 2

NγA
))1/γ

0
G(Rep) (r0)H(Rep) (r0) dr0

≥
∫ (

Ptx/
(
κσ 2

NγA
))1/γ

0
G(PPP) (r0)H(Rep) (r0) dr0

(41)

Let us defineH(Rep) (r0) = 1−exp
(
−�

�
(F)
BS

(B (0, r0))
)
.

Then, we have the following:

J =
∫ (

Ptx/
(
κσ 2

NγA
))1/γ

0
G(PPP) (r0)H(Rep) (r0) dr0

(a)= G(PPP) (r0)H(Rep) (r0)
∣∣∣
(
Ptx/

(
κσ 2

NγA
))1/γ

0

−
∫ (

Ptx/
(
κσ 2

NγA
))1/γ

0

(
dG(PPP) (r0)

dr0

)
H(Rep) (r0) dr0

(b)= G(PPP)

⎛
⎝
(

Ptx
κσ 2

NγA

)1/γ
⎞
⎠H(Rep)

⎛
⎝
(

Ptx
κσ 2

NγA

)1/γ
⎞
⎠

−
∫ (

Ptx/
(
κσ 2

NγA
))1/γ

0

(
dG(PPP) (r0)

dr0

)
H(Rep) (r0) dr0

(42)
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where (a) follows by applying the integration by parts rule,
and (b) follows by taking into account thatH(Rep) (0) = 0.
Since G(PPP) (r0) ≥ 0, dG(PPP) (r0)/dr0 ≤ 0, and it

was proved in [7] that H(Rep) (r0) ≥ H(PPP) (r0) = 1 −
exp

(−πλBSr20
)
, then we have the following:

M(Rep)
b (γD, γA)

≥
∫ (Ptx/(κσ 2

NγA
))1/γ

0
G(PPP) (r0)H(Rep) (r0) dr0

≥ G(PPP)

⎛
⎝
(

Ptx
κσ 2

NγA

)1/γ⎞
⎠H(PPP)

⎛
⎝
(

Ptx
κσ 2

NγA

)1/γ⎞
⎠

−
∫ (Ptx/(κσ 2

NγA
))1/γ

0

(
dG(PPP) (r0)

dr0

)
H(PPP) (r0) dr0

= M(PPP)
b (γD, γA)

(43)

from which the proof follows.
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