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Abstract

Wireless sensor networks (WSNs) have many applications in climate monitoring, fire detection, smart homes, and
smart cities, as well as detecting and monitoring dynamic, spatio-temporal events such as storms, traffic, and animal
movement. WSNs are an important component of the Internet of Things (IoT), and they play an important role in
monitoring and collecting surrounding context and reporting the sensed data. In this paper, we consider a WSN
deployed to monitor spatio-temporal events and a mobile sink which acts as the gateway between the IoT and the
WSN. Data gathering is a challenging problem in WSNs and IoT since the algorithms have to be energy-efficient
and the information has to be available to the end user in a timely manner and without redundancies.
In this paper, we propose an improvement of the reactive, anchor-based routing protocol with constrained
flooding and dynamic clustering from Aranzazu-Suescun and Cardei (Spatio-temporal event detection and
reporting in mobile-sink wireless sensors networks, 2017). We propose a new event-based clustering mechanism
and a new dynamic clustering technique. This improvement results in reduced energy consumption and a higher
number of packets processed successfully by the sink compared to Aranzazu-Suescun and Cardei (Spatio-temporal
event detection and reporting in mobile-sink wireless sensors networks, 2017). Data collected by the mobile sink
are shared to the end users through the IoT infrastructure. We conducted simulations using WSNet, an event-driven
simulator for WSNs. We measured various performance metrics, such as the average residual energy, the number of
active clusters, and the percentage of events processed successfully by the sink.
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1 Introduction
Interconnecting devices to generate a “smart” environ-
ment is the basic concept in the Internet of Things
(IoT), and the sensor-actuator-internet is the framework
to achieve this smart environment [5]. Wireless sensor
networks (WSNs) have been widely used in many IoT
applications due to ubiquitous sensor devices [3, 5, 19].
Extensive research activities in the areas of security [18,
20], topology [24], synergies with other technologies
[17], and energy consumption [5] in WSNs for IoT have
been conducted recently.
WSN data collection and event reporting are import-

ant research topics in the IoT. The IoT is a worldwide
network where all devices are interconnected and infor-
mation has to be available fast and efficiently, thus
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redundancies and useless information have to be elimi-
nated. A key approach for efficient interconnection is to
give devices a “smart” behavior where they can commu-
nicate, process information, and take decisions without
human intervention [13].
Designing energy-efficient communication protocols

in WSNs is vital. Most of the sensors are battery pow-
ered, and sometimes it is impractical or infeasible to re-
place or recharge the nodes. In addition, WSNs may be
deployed in areas where access is difficult and monitor-
ing has to be done over a long period of time. Due to
the power constraint characteristic of WSNs, the appli-
cations using WSNs employ different mechanisms to
minimize the energy consumption in order to prolong
the network lifetime [1].
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Depending on the application, events can change their
shape, can appear/disappear (e.g., fire events), and can
move (e.g., storms such as hurricanes, tornadoes). These
events are called spatio-temporal events or dynamic
events [23]. Spatio-temporal events have the characteristic
that their shape, size, and speed of movement can change
over time. Different mechanisms have been developed by
researchers in order to save energy in the network. One
mechanism is using clustering for data collection. Cluster
heads are in charge of collecting data from its cluster
members, aggregate it, and send it to the sink [2, 4, 6].
Also, if events are sparse and expected to occur sporadic-
ally, then a reactive protocol could be used. In this case,
when there is no event, no energy is wasted to maintain
an updated path to the sink [7, 8, 16].
In this paper, we improve the solution proposed in [1],

where the authors address the problem of detecting and
reporting a composite mobile event to a mobile sink.
We design a new event-based clustering mechanism and
we revised the dynamic clustering technique. This im-
provement results in reduced energy consumption and a
higher number of packets processed successfully by the
sink compared to [1]. The rest of the paper is organized
as follows. Section 2 describes the design methods of
our routing protocol and summarizes the experiments.
Section 3 introduces the state of the art in monitoring
spatio-temporal events. Section 4 presents the event
model. Section 5 describes the problem definition. In
Section 6, we present our anchor-based routing protocol
for spatio-temporal event detection and reporting. The
performance of our algorithm is illustrated in Sections 7
and 8, where we conduct simulations using WSNet [22].
The conclusions are stated in Section 9.

2 Methods/experimental
In this paper, we propose an energy-efficient and distrib-
uted routing mechanism for event detection and reporting
to a mobile sink. We consider that events can be mobile,
thus the set of sensor nodes which detect a certain event
change over time. To deal with the sink and event mobil-
ity, we use several important techniques in our algorithm
design. First, we use a dynamic anchor mechanism. A set
of anchors may be active at a certain time, and this set
may change over time depending on the sink movement.
Another important technique is the use of a dynamic,
event-based clustering, which allows the collection of in-
formation about the moving events. The cluster (or clus-
ters) monitoring a certain event may change over time,
according to the movement of the event. This dynamic
clustering mechanism reduces the number of
event-reporting messages sent to the sink, thus the overall
energy consumed by the network is decreased.
We conduct simulations using the WSNet [22] net-

work simulator and measure various performance
metrics such as the average residual energy, the number
of clusters which are active, and the percentage of com-
posite events processed successfully by the sink. Simula-
tion results show that the newly proposed mechanism has
the best performance in terms of energy efficiency and
percentage of events detected successfully by the sink.

3 Related works
According to [23], spatio-temporal events can be diffuse.
This means that the events can spread in space similar to
a fire or they can move similar to a tornado. The authors
use extended linear-chain conditional random fields,
which are undirected graphs that use a specific group of
features to encode a conditional probability distribution.
The authors incorporate temporal constraints to a spatial
field in order to determine the spatio-temporal dependen-
cies among observations and events in the network. In this
way, the sensors can determine if the event is diffuse or
whether it is moving. In our work, the events can be fixed
or moving, and we address the problem of reporting the
event detection to the sink.
An example of using WSNs for IoT is illustrated in

[12]. An indoor distributed sensor system with an intelli-
gent processing unit is used to track a fire. When sensor
reading exceeds a given threshold, the sensor node sends
its reading and location to the base station (or process-
ing unit). The base station calculates a function f (x, y, z)
and its gradient using the coordinates x, y, and z of the
node. The results are plotted as vectors. The readings
closer to the center of the event will have bigger vectors.
The base station sends a “start sensing process message”
to the 1-hop neighbors of the border of the event nodes,
to continue tracking the movement of the fire. The base
station can also calculate the direction of the event
movement using the relative weighting of the i, j, and k
components of the gradient. Our work is different in
several ways. We are not restricted to indoor detection,
both the sink and the event are mobile in our case, and
we use energy-efficient techniques such as clustering.
Article [11] presents an IoT mechanism for detecting

a forest fire using artificial neural network. A multi-layer
back-propagation artificial neural network algorithm is
used to detect multiple criteria that depend on specific
attributes of a forest fire (e.g., temperature, radiation,
and light). The neural network is feeded with environ-
mental information collected by heterogeneous sensor
nodes, and the correct alarm decisions. With this infor-
mation, the system is capable of learning and making de-
cisions when new information is feeded in the system. In
our work, we assume that the detection is performed by
the sensor nodes, and we use energy-efficient techniques
to reduce the energy consumed by the WSNs.
WSNs can be used in IoT applications for monitoring

environmental changes, people, and animal movements.
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Article [15] presents an IoT application developed to
monitor the Australian Great Barrier Reef using big data
analytics and a hierarchical heterogeneous sensor net-
work. Sensor nodes collect environmental data from the
ocean such as salinity, temperature and level of chloro-
phyll. The sensor nodes collect information, then aggre-
gate, and send it to a buoy. The buoys are connected to
poles which are in charge of sending the aggregated data
to the base station. The elliptical summaries anomaly
detection (ESAD) algorithm uses artificial intelligence to
detect anomalous patterns based on the data collected.
The algorithm measures data dissimilarities, forms clus-
ters of similar information, and extracts the anomalous
clusters. This article has a very important practical ap-
plicability, and it is different from our work since it as-
sumes a certain hierarchical infrastructure. Works [9,
10] also deal with monitoring diffuse events. In this case,
the sensor network is used to detect the boundaries of
the event. A sensor detecting an event (also called “af-
fected” node) checks whether its neighbors detect the
event too. If all neighbors are affected as well, then the
node proclaims itself a non-boundary node. But if at
least one neighbor did not detect the event, then the
node broadcasts the result of a function computed based
on the event detected and the number of neighbors af-
fected. The node then waits to receive the evaluation of
the same function from its neighbors. The node with the
smallest function value becomes a boundary node. Then,
the boundary node sends the information to the sink
using a multi-hop routing protocol. The process is re-
peated periodically to track the changes in the size of
the event. In our work, the algorithm continuously mon-
itors and reports the event, not only the changes in the
boundary of the event.
Article [14] proposes an algorithm that uses probabil-

istic graphical models to detect spatio-temporal events.
The authors use a graph representation of the nodes,
where every node is a random variable and the edges are
the probabilistic interaction between them. The process
of detection and reporting has two phases. In the first
phase, a temporal dependency modeling of the events is
done using a first-order Markov chain model. The nodes
predict the next state of their sensed values (cold, mild,
hot) based on their own information. The second phase
is the spatial dependency model of the event that uses
Markov random fields. In this case, the nodes predict
their sensing values using the information of its neigh-
bors. Every time a node senses an event, it informs its
neighbors so that they can start the process of detecting
the event. The detection mechanism used in our case is
different, see Section 4, and we are also concerned with
employing energy-efficient techniques.
To track a diffuse event in IoT, article [21] uses a

Bayesian trust model and a network consisting of a grid
of nodes. Each node has a virtual cluster, the node being
the center of the cluster. Its members are the neighbors
within communication range. The node calculates a
trust index with a probability density function. If the
value of this trust index is less than some predefined
threshold, then the node readings do not match one or
more readings of its neighbors. To adjust the trust index,
the node uses a Bayesian filtering procedure to incorpor-
ate neighbors’ readings to its own readings. The result of
this procedure is e = 1 or e = 0, where e = 1 means that
the node is detecting the event and e = 0 means that the
event is not detected. Every time period T, the node
sends to the sink its Id and the value of e. Based on the
information received from the nodes, the sink recon-
structs the map of the network and the progression and
size of the event. In our case, we assume that the nodes
are randomly deployed rather than in a grid. We devel-
oped an event-based clustering, where only the nodes
detecting the event are involved in reporting the event.
In this paper, we propose a reactive anchor-based rout-

ing protocol with constrained flooding and dynamic
clustering for spatio-temporal event detection and
reporting. Our work improves on the solution presented
in [1] and which will be detailed in Section 6.
4 Description of the event model
We define an event as an observable occurrence of a
phenomenon during some specific time in a specific area.
We use the concepts of atomic events and composite
events, given in [4]. An atomic event is triggered when a
single sensing value (or attribute) exceeds some given
threshold and it is denoted by e(t, s, R) where t is the time
when the event occurs, s is the location of the event, and
R is a logical expression defining the conditions when the
event occurs. To detect complex events, we use composite
events, where variations in different attributes are de-
tected. A composite event is denoted by the following:

E e1; δ1ð Þ; e2; δ2ð Þ;…; ek ; δkð Þ;Ct ;Cs; δð Þ
¼ R1∧R2∧…∧Rk∧Ct∧Cs; δð Þ

where ei, i = 1 to k, is an atomic event. δi with 0 ≤ δi ≤ 1
is the confidence of ei, indicating the probability of E oc-
curring when ei occurs. Ct is the constraint on atomic
events’ times t1, t2, …, tk. Cs is the constraint on atomic
events’ locations s1, s2, …, sk. The confidence δ of the com-
posite event is defined as δ = δ1 + δ2 +… + δk, and it is ex-
pected to satisfy the property δ1 + δ2 +… + δk = 1 [4].
We consider spatio-temporal events similar to [1, 23].

Our event moves with a certain speed, but it maintains
the same circular shape and moves on a random path,
see Fig. 1.



Fig. 1 Spatio-temporal event
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5 Problem definition
We consider a heterogeneous WSN consisting of n
nodes N1, N2, …, Nn and one mobile sink S. The nodes
are randomly deployed in an area A. The nodes have the
same communication range Rc and the same initial en-
ergy Einit. We consider a mobile sink with a communica-
tion range Rc and infinite energy. Each node has one or
multiple sensing components from the set {s1, s2, …, sm}.
Each sensing component can be used to detect an

atomic event for that attribute [1]. Table 1 shows the
main notations in the paper. We consider the following
assumptions for our work:
Table 1 Notations

E Composite event

δ Confidence of the composite event

ei Atomic event i

δi Confidence of atomic event i

n Number of nodes

m Maximum number of sensing components

T Convergecast tree rooted at S

Tcluster Cluster tree rooted at CH

Nj Node j, 1 ≤ j≤ n

Nj.{sj1, sj2, …, sjk} Sensing components of node Nj, 1≤ k≤m

Nj.Eresidual Residual energy of node Nj

Nj .tp Parent of node Nj in T

Nj .cp Parent of node Nj in Tcluster

Rc Node communication range

A Deployment area

A.L Length of the side of the area

Einit Initial energy of each node
– The nodes have synchronized clocks, so we do not
deal with node synchronization in this work.

– The network is heterogeneous, that means sensor
nodes may be equipped with different sensing
components. This occurs since nodes may be
manufactured with different sensing capabilities,
some nodes may have purposely turned off some
sensing components to save energy, and some
sensing components may fail over time.

– Events are fixed or mobile.
– Nodes are resource constrained in terms of power,

bandwidth, memory, and computing capabilities.

5.1 Problem definition—spatio-temporal composite event
detection and reporting (STCEDR) in mobile-sink WSNs
Given a WSN deployed in an area A, consisting of n
nodes with different sensing components from the set
{s1, s2, …, sm} and a mobile sink S, designing an
energy-efficient and distributed algorithm for detecting
and reporting a spatio-temporal composite event E in-
quired by the sink S, the composite event E is defined
using atomic events corresponding to the sensing com-
ponents {s1, s2, …, sm}.

6 ARER—anchor-based routing protocol for event
reporting in mobile-sink WSNs
In this section, we propose ARER, anchor-based routing
for event reporting, an improvement of the anchor-based
routing protocol with constrained flooding and dynamic
clustering presented in [1]. The improvement has two
components: a new event-based clustering mechanism
and a new rule for dynamic clustering, which will be de-
scribed later in this section. These mechanisms result in a
reduced energy consumption and an increased percentage
of composite events processed successfully by the sink,
which will be illustrated in Section 8.
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Figure 2 shows the main phases of the protocol. In
phase 1 the sink S selects the first anchor A1 using the
following mechanism. S broadcasts FindClosestNode and
the nodes in range reply with their ID and residual en-
ergy after a small delay. The sink chooses the closest
node based on the signal strength, and in case of a tie
the residual energy and the smallest ID are used. The
sink S then sends the request for monitoring the com-
posite event E to A1, who is in charge of flooding the
CompositeEventRequest(S, A1, E, δth, hops) through the
network, where E is the composite event and δth is the
threshold parameter for the composite event.
As the message floods the network, a convergecast

tree T is formed, where A1 is the root. Each node Nj that
Fig. 2 Main phases of the ARER protocol
receives the message will set-up its parent Nj .tp to the
sending node, will increment the hops field of the mes-
sage, and will resend CompositeEventRequest(Nj, E, δth,
hops). At the end of this phase, each node has a pointer
to its parent in the convergecast tree T rooted at A1.
In phase 2, the nodes that satisfy the location require-

ment Cs and are equipped with sensing components
needed to detect one or more atomic events e1, …, ek,
start monitoring the event for a time duration Ct.
In phase 3, one or more nodes start detecting the

event. The nodes form one or more clusters. Each clus-
ter selects a cluster head (CH) and initiates the mechan-
ism for event reporting. Our event-based clustering is
described in Section 6.1.
6.1 Event-based clustering
A node can become CH only if it detects at least one
atomic event and if its residual energy is larger than a
predefined threshold. Based on its residual energy and
ID (used to break ties between nodes with the same re-
sidual energy), a node proclaims itself CH and sends a
message NewCluster over hcluster hops. This message
contains the ID of the CH and event ID. All the nodes
within the hcluster hops distance join the cluster and re-
send the message as long as the number of hops is less
than hcluster. As the NewCluster message is forwarded, a
cluster tree Tcluster rooted at the CH is formed. The
nodes will not send any ack message back to the CH.
Depending on the size of the event and the number of

hops in the NewCluster message, more than one cluster
may form. The CH receives atomic events from its clus-
ter members, and as messages are sent from cluster
members to the CH, aggregation is performed.
6.2 Event reporting
The event report messages flow from the nodes to the CH,
from the CH to A1 along T, and from A1 to S. Since S is
mobile, A1 sends beacons (or data) periodically to the sink
to maintain the communication with S. If S does not hear a
beacon (or data) from A1 for α periods, where α is an input
parameter, then S selects a new anchor A2 as follows. S
broadcasts a message NewAnchorRequest(S, A1). If a node
Nj receives both A1’s beacons (or data) and S’s message,
then it waits a time based on the signal strength of the mes-
sage NewAnchorRequest and sends a message NewAnchor-
Reply(S, A1, Nj) to the sink. The node Nj from which the
sink receives the first reply becomes the second anchor.
If S moves out of the range of A2, then the process re-

peats and a new anchor A3 is selected, see Fig. 3a. In this
case, the data travels from the node to A1, A2, A3, and
then the sink S, respectively. After the maximum num-
ber of anchors β is reached, the anchor selection process
resets, that means a new anchor A1 is selected.



Fig. 3 Example showing a the new anchor selection and b the shortcut mechanism
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To save energy and to reduce the event-reporting delay,
we implement a shortcut mechanism. If a node Nj in T re-
ceives beacons from the last anchor, then Nj stores this an-
chor as its parent Nj .tp. Then Nj sends data directly to the
last anchor instead of sending it through the rest of the
path. This mechanism is illustrated in Fig. 3b.
To address the case when events cease to exist, a

time-out procedure is implemented. If no data (event re-
ports) are sent for a duration γ, then the fields Nj .tp are
marked obsolete. Similarly, the anchor status of a node be-
comes obsolete if no data is forwarded toward the sink for
a duration γ. Thus, our data collection mechanism is re-
active, where the data collection infrastructure forms and
is maintained only when there are events to report. If the
parent field is obsolete, then a CH has to find a path to
reach the sink S. The CH broadcasts RouteRequest. When
S receives the message, it selects an anchor A1 using the
mechanism described previously. A1 then floods the whole
network with a RouteReply message which contains the
parameters of the composite event. As the RouteReply
message is sent, a convergecast tree rooted at A1 is
formed. A1 floods the reply message since often times
more clusters are formed, and in this way we avoid other
RouteRequest messages being initiated by other CHs.
Note that some nodes might have the tp attribute active,

while others may have this attribute obsolete. To reduce
the energy consumption, a “constrained flooding” algo-
rithm is proposed, which is basically an incremental
ring-search mechanism. Rather than flooding the whole
network, first, the CH broadcasts the RouteRequest mes-
sage to h hops. If a node Nj with an active tp attribute re-
ceives the message, then it sends back a RouteReply
message to the CH which contains the number of hops to
A1 or the number of hops to the last anchor if the shortcut
mechanism was applied. If the CH receives more than one
RouteRequest, then it sets its tp attribute to the node that
has the smallest number of hops to the sink. If no
RouteRequest is received, then the CH increases the num-
ber of hops, and after a number of unsuccessful iterations
it floods the network to find a path to the sink.

6.3 Dynamic clustering
When spatio-temporal events move, additional clusters
are formed to report the event to the sink S. As the
event moves, some of the clusters (or parts of clusters)
may not detect the event, while new nodes start detect-
ing the event. These new nodes will form new clusters.
When a new cluster is formed, the CH sends a New-

Cluster message, as described previously in phase 3. The
nodes which do not belong to any cluster and detect
atomic events join the new cluster.
To reduce the number of clusters active in the net-

work, a dynamic clustering mechanism is proposed. A
node Nj which belongs to a cluster and receives a New-
Cluster message for an event with the same ID, but from
another CH, joins the newer cluster. Actually, if more
NewCluster messages are received by a node Nj for the
same event ID, then Nj joins the newest cluster using a
time-stamp field in the NewCluster message.
A node Nj belongs to a cluster and acts as a relay node

for prior clusters in which it belonged. Nj has a table con-
taining the parent node for both current and prior clus-
ters. Let us assume that Nj was a member of the cluster
C1, and it is now a member of C2. Nj sends its data reports
to the CH of C2. At the same time, Nj acts as a relay node
for the nodes transmitting data to the CH of C1. The data
reporting messages are sent to the CH along the paths in
the cluster tree, as explained previously.
The dynamic clustering technique is expected to re-

duce the number of event-reporting messages circulating
from CHs to the sink, since older clusters will have no
event reporting sooner. Then, less energy is consumed.
Message complexity is discussed next. The number of

messages exchanged for phase 1 (see Fig. 2) is O(n), where



Table 3 Types of sensors used

Sensor type Confidence Threshold

Temperature 0.35 150

Pressure 0.1 50

Humidity 0.15 10

Smoke 0.3 100

Light 0.1 80
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n is the number of sensor nodes. In phase 2, no messages
are exchanged. In phase 3, each cluster formation has
message complexity O(n), and as the event moves, more
clusters may form. Thus the overall message complexity
for clustering is O(n2). CHs report data to the sink follow-
ing the parent path in the convergecast tree T, with mes-
sage complexity O(n). The overall message complexity of
the protocol is O(n2).
7 Simulation specifications
We compare the performance of three algorithms:

– ASC(CF), which is the protocol proposed by
Aranzazu-Suescun and Cardei in [1], the option that
uses only the constraint flooding (CF)

– ASC(CF&DC), which is the protocol proposed in
[1], the option that uses both the constraint flooding
(CF) and the dynamic clustering (DC) mechanisms

– ARER (CF&DC), which is the protocol presented in
Section 6

We conduct simulations using WSNet [22], an
open-source event-driven simulator for WSNs. WSNet
uses the object-oriented C + + language, Linux operating
system, and provides support for energy model and
event modeling. Tables 2, 3, 4, and 5 present the main
parameters used in the simulations.
Our WSN is deployed into a square area with side

length A.L = 1100m, with a sink S located in the middle
of the right side at the beginning of the simulation.
The WSN has n = 3125 nodes randomly deployed in

the area A. Each node is equipped with a random num-
ber between 1 and 5 of sensing components. We define
a composite event with five atomic events shown in
Table 3. The composite event that the sensor network
monitors is defined as: E((e1, 0.35), (e2, 0.1), (e3, 0.15),
(e4, 0.3), (e5, 0.1), ts, A, δ), where ts is the simulation time
after the request is sent by the sink S and A is the de-
ployment area.
The initial energy of each node is Einit = 1 Joule. To

measure the energy consumption in the simulations, we
use the energy model from LEACH [6]:
Table 2 Simulation parameters

Simulation time 1 h

Antenna type omnidirectional

MAC layer 802.11

Einit 1 J

Node communication range Rc 100m

Packet length 132 bytes

Confidence threshold δth 0.75
ETxðl; dÞ ¼ Eelec � l þ Eamp � l � d2

ERxðlÞ ¼ Eelec � l
where Eelec = 50 nJ/bit, Eamp = 100 pJ/bit/m2, and d is

the distance between nodes.
A node can become a CH if its residual energy exceeds

the threshold of 900 mJ. In the simulations, we assume
that events have a circular area. Events move using the
random walk model with speeds indicated in the
Table 5.The center of the event is generated randomly.
We consider three types of events

– small events, where event radius is 45 m
– medium events, where event radius is 200 m
– large events, where event radius is 400 m

The simulation time is 1 h. Nodes detecting an event
send data messages to the sink S periodically, every 5 s.
In the ASC algorithms, cluster membership becomes ob-
solete after 10 periods. A composite event occurs if the
confidence exceeds the threshold value 0.75. We run
each simulation scenario 10 times using different seed
values and report the average values in the graphs.
8 Results and discussion
Figure 4 shows the average residual energy of the net-
work for n = 3125 nodes, A.L = 1100m, medium size
events, and average sink speed 5 m/s. We vary the aver-
age event speed to 1 m/s, 9 m/s, and 18 m/s, respectively.
There is only one continuous event in all the experi-
ments and the duration of the event is 25% and 75% of
the total time of the simulation. For example,
ASC(CF)(25%) means that the duration of the event is
25% of 1 h, which is 15 min.
In all the experiments, ARER(CF&DC) consumes less

energy than the ASC protocols. Both algorithms with
dynamic clustering (DC) consume less energy than
ASC(CF). This points out the benefits of dynamic
Table 4 Sink speed

Average speed (m/s) Maximum speed (m/s)

1 2

5 10

12.5 25



Table 5 Event speed

Average speed (m/s) Maximum speed (m/s)

1 2

9 13

18 30
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clustering. Since nodes join new clusters as events move,
fewer clusters are involved in data reporting.
ARER(CF&DC) is more energy-efficient than ASC(CF&DC)
due to the new clustering mechanism which omits acknow-
ledgment messages. A higher speed of the event results in
more clusters, thus the residual energy decreases.
Figure 5 shows the residual energy of the network for

n = 3125 nodes,
Fig. 4 Average residual energy of the network with different speeds of the
Average event speed 18 m/s
A.L = 1100m, medium-size events, and average event
speed of 9 m/s. The average sink speed is 1 m/s, 5 m/s,
and 12.5 m/s, respectively. When the sink moves faster
and events are present, new anchors have to be selected
to maintain the communication between the clusters
and the sink. When the maximum number of anchors is
reached, a new convergecast tree is built. Therefore
more energy is spent on this process, more frequently.
In Fig. 6, the average sink speed is 5 m/s, the aver-

age event speed is 9 m/s, and the number of nodes is
n = 3125. Results are measured for small, medium,
and large events, with one event in the network.
More energy is spent by the network on data report-
ing for larger events since more clusters are formed
and report data to the sink.
event. a Average event speed 1m/s. b Average event speed 9m/s. c



Fig. 5 Average residual energy of the network with different speeds of the sink. a Average sink speed 1m/s. b Average sink speed 5 m/s. c
Average sink speed 12.5 m/s
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In Fig. 7, 15 min of simulation time (or 25% of the
simulation time) are used to compute the average num-
ber of active clusters formed by each algorithm when we
vary the event speed, the event size, and the sink speed.
The network has n = 3125 nodes and A.L = 1100 m. The
number of clusters vary with the event size. Larger
events result in more clusters. A higher event speed re-
sults in more clusters. The speed of the event affects the
number of clusters because the area of coverage by the
event varies, as mentioned previously. The speed of the
sink does not affect the number of clusters formed in
the network because these values are not dependent. In
all measurements, ASC(CF&DC) and ARER(CF&DC)
have a smaller number of clusters than ASC(CF) due to
the dynamic clustering technique.
For medium events with event speed of 9m/s, an aver-
age of 35.42% of the nodes joining a cluster has changed
their cluster at least once. The average number of cluster
changes is 1.83, and the maximum number of times a
node changes its cluster is 2 (e.g., 3 different cluster mem-
berships during the experiment, as the event moves).
Figure 8 shows the percentage of composite events proc-

essed successfully by the sink, when n = 3125 nodes and
A.L = 1100m. The two experiments vary the average speed
of the event and the average speed of the sink, respectively.
We can observe that ARER(CF&DC) improves the per-

centage of composite events processed successfully by the
sink compared to the ASC(CF&DC) protocol. ASC(CF)
and ARER(CF&DC) yield similar results, which are better
than ASC(CF&DC). ASC(CF&DC) has the smallest



Fig. 6 Average residual energy of the network with different size of the event. a Small event. b Medium event. c Large event
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percentage because, when nodes join new clusters (e.g.,
change clusters), some data packets are lost when the
nodes send the acknowledgment to the new cluster head.
In the ARER(CF&DC) protocol, no acknowledgment mes-
sages are sent when nodes join a cluster.
Both higher sink speed and higher event speed nega-

tively impact the percentage of composite events proc-
essed successfully by the sink. A higher sink speed
triggers more frequent reconstruction of the converge-
cast tree, resulting in packets being dropped. A higher
event speed leads to new clusters forming more fre-
quently. Packets may be dropped during the cluster for-
mation when messages for joining the cluster and
acknowledgment are exchanged, and also some possible
contentions and collisions when event-reporting mes-
sages are sent to the sink.
From both experiments in Fig. 8, we can see that the
percentage of composite events processed successfully at
the sink is slightly higher for larger events. This is be-
cause more sensors detect the event, thus the redun-
dancy in event reporting helps alleviate the impact of
packet dropping.
9 Conclusions
This paper presents ARER, an improvement of the
anchor-based routing protocol with constrained flooding
and dynamic clustering from [1]. A new clustering algo-
rithm and a new rule for dynamic clustering are pro-
posed. ARER has a better performance in terms of
energy consumption and composite events detected suc-
cessfully by the sink.



Fig. 7 Average number of clusters in the network. a Different event speeds. b Different event sizes. c Different sink speeds

Fig. 8 Percentage of composite events successfully processed at the sink. a Different speeds of the event. b Different speeds of the sink
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