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Abstract

For the uplink multicell massive multiple-input multiple-output (MIMO) block fading systems, a two-dimensional
smoothed l0 channel estimation method (2D-SL0-CE) with the aid of virtual channel representation is firstly exploited
in this paper, which can jointly estimate the desired multiuser channels of the target cell and the interference links
from neighbor cells without inducing pilot contamination. Then, a 2D-SL0 signal detection method (2D-SL0-SD) with
the aid of sparse decomposing and the modified 2D sl0 recovery algorithm is proposed, which can jointly decode
M-ary phase-shift keying (MPSK) signal block for whole desired users. Moreover, an improved 2D-SL0-SD is also
proposed to remove multiuser interference of neighbor cells in high SNR scenario. Simulation results show that the
2D-SL0-CE method can remove performance floor induced by pilot contamination and need less pilot overhead than
the conventional least square (LS) method. When detecting QPSK signal blocks at 12 dB SNR, the 2D-SL0-SD method
with perfect channel state information (CSI) can obtain 10−2 BER. Moreover, in the case of 8PSK signals, the 2D-SL0-SD
joining with the 2D-SL0-CE can obtain 10−2 BER at 20 dB SNR.

Keywords: Massive MIMO, Sparse channel estimation, Data block detection, Two-dimensional smoothed l0 (2D-SL0)

1 Introduction
The high energy and spectrum efficiency of massive
multiple-input multiple-output (MIMO) systems heavily
build on the premise that the base stations (BS) obtain
channel state information (CSI) with reasonable quality,
which is generally estimated via pilot sequences [1]. How-
ever, in the uplink massive MIMO systems, the pilot over-
head demanded should be proportional to the number of
users and would be prohibitively large as the number of
users increase. In the uplink multicell massiveMIMO, this
results in pilot contamination as the same pilot sequences
have to be reused by neighbor cells to serve a large num-
ber of users [2]. Moreover, the pilot contamination is a
major limiting factor to system performance [3]. Hence,
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the massive MIMO urgently needs efficient channel esti-
mation scheme without producing pilot contamination
and requiring too much pilot overhead. Based on the
estimated CSI, the signals received at base stations are
typically detected through linear methods with low com-
plexity, such as zero-forcing [4–6] and matched filter
[7, 8]. However, the performances of linear detector are
typically far inferior to the optimal maximum likelihood
(ML) detector whose computational complexity exponen-
tially scales up with the signal constellation size and the
number of antennas [9]. Thus, the development of com-
putationally efficient and reliable detector for massive
MIMO also needs to be thoroughly addressed [10].
In the past few years, several types of schemes have

been exploited to mitigate or reduce the impact of pilot
contamination in multicell massive MIMO systems. (1)
Semi-blind or blind approaches, such as [11–14]—the
eigenvalue decomposition-based method with a short
training sequence was proposed in [11]. Hu et al. [12]
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proposed a semi-blind method without requiring the sta-
tistical information of channels. Another low-complexity
semi-blind approach was proposed in [13], which the
received signal are firstly projected onto the subspace with
minimal interference, then alternatively refined the chan-
nel estimation and detected the data symbols. Applying
the theory of large randommatrices, [14] proposed a blind
pilot decontamination with subspace projection. (2) Opti-
mization design of non-orthogonal pilot signals, such as
[15–18]—when training slots are not large enough to con-
struct the orthogonal pilot signals, [15] exploits a pilot
design criterion and shows that the line packing on a com-
plex Grassmannian manifold is the optimization scheme,
which is based on minimal mean square error (MMSE)
estimator. A generalized Welch-bound equality-based
pilot signal design method is proposed in [16], which
has low correlation coefficients and ensures the network
to satisfy the requirement of user capacity. For a given
pilot length, [17] proposes an alternating minimization-
based pilot design algorithm. (3) The precoding-based
approaches, such as [19–21]—a MMSE-based precoding
is exploited in [19] to alleviate the impact of pilot contam-
ination. A pilot contamination mitigation method along
with zero-forcing precoding is proposed in [20], which
can generate orthogonal pilot signals across neighbor-
ing cells through multiplying the Zadoff-Chu sequences
element-wise with a specific orthogonal variable spread-
ing factor code.
Some significant efforts have been made to reduce the

pilot overhead for massive MIMO systems, which can be
divided into two broad categories. (1) Low-rank channel
covariance matrices based methods, such as [22–24]—the
finite scattering environment and small angular spread
result in high correlation of different paths between the
user and the BS [25–29] and low-rank channel covariance
matrix. Through exploiting the correlation characteristic
of channel vectors, the joint spatial division and multi-
plexing (JSDM) was proposed in [23] which significantly
reduced the overhead of downlink training and uplink
feedback for frequency division duplexing (FDD) massive
MIMO systems. When the number of pilot signals is no
less than the rank of channel covariance matrix and the
noise interference disappear, [24] proves that the MMSE
estimator can recovery channel vectors exactly. (2) Com-
pressed channel sensing method—exploiting the channel
sparsity and applying the compressed sensing (CS) to
reduce the overhead of CSI feedback has been investigated
in [30–32]. A spare channel estimation method applying
Gaussian-mixture Bayesian learning has been proposed
in [33] to estimate the whole channel parameters includ-
ing the desired and interference links, which can mitigate
pilot contamination and reduce pilot overhead, but every
time, the approach just can estimate the channel response
at one beam.

An iterative MIMO detector with relaxed ML con-
straints using sparse decomposition has been proposed to
preserve a low computational cost even increase the sig-
nal size, but the method just suit to detect a vector [34].
In block fading systems, the detection target at the BS
usually is a multiuser data frame, i.e., a two-dimensional
(2D) signal block. To detect the 2D signals, the method
in [34] should run the decoding process many times
or convert the 2D signal detection problem to a vector
detection problem. However, the converting method will
substantially increase the required memory and process-
ing load which would make it become non-competitive
when applied to massive MIMO block fading systems. For
example, the converting approach can be represented as:

Y = AXBT ⇐⇒ y = �x (1)

with A ∈ R60×200, B ∈ R30×100, x = vec(X), and y =
vec(Y), which results in � = B ⊗ A with dimensions
1800 × 20, 000. The signs of vec() and

⊗
denote vector-

ization of a matrix and Kronecker product, respectively.
In this paper, the multiuser channel estimation prob-

lem and the multiuser signal decoding problem in uplink
massive MIMO systems are modelled as two-dimensional
sparse signal recovery problems in compressed sensing,
respectively. Although [35, 36] researched the 2D com-
pressed sensing channel estimation schemes for massive
MIMO, it is the FDD model discussed in [35, 36] which
is different from the time division duplexing (TDD) mul-
ticell multiuser system model considered in this paper.
The main contributions of this paper are summarized as
follows:

• We propose a channel estimation method named as
2D-SL0-CE applying the two-dimensional smoothed
l0-norm compressed sensing recovery algorithm
[37, 38], which are able to jointly estimate multiuser
CSI. Using virtual channel representation, the
2D-SL0-CE formulates the joint channel estimation
problem, comprising both the target and interference
channels, as a 2D sparse signal reconstruction
problem in CS, which not only can mitigate the pilot
contamination but also can significantly reduce pilot
overhead.

• We propose a signal detection method named as
2D-SL0-SD using our modified 2D-SL0 algorithm,
which can decode multiuser M-ary phase-shift keying
(MPSK) signal block. Applying sparse decomposition,
the 2D-SL0-SD models the detection problem of
multiuser signal block as a 2D sparse signal
reconstruction problem whose elements are binaries
{0, 1}. Moreover, in the high SNR scenario, through
exploiting the estimated CSI of interference links, an
improved 2D-SL0-SD is also proposed to remove the
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decoding bottleneck induced by interference from
neighboring cells.

The remaining paper is organized as follows. The sys-
tem model and the least square (LS) channel estimation
methods are described in Section 2. Section 3 models the
multicell multiuser channel estimation problem as a two-
dimensional compressed sensing problem and describes
the proposed channel estimation algorithm. Section 4
models the signal decoding problem of multiuser as a
2D sparse signal recovery problem and presents the steps
of the proposed 2D-SL0-SD method. Section 5 gives and
analyzes the numerical results. Section 6 draws a conclu-
sion of the whole paper.
Notations: diag(x) represents a diagonal matrix with

diagonal elements being the vector x. Superscripts T and
† denote the transpose and pseudo-inverse, respectively.
CN(0, 1) denotes complex Gaussian variables with zero
mean and unit variance.

⊗
denotes Kronecker product.

Vectors and matrices are denoted by boldface lowercase
and uppercase letters, respectively.

2 Systemmodel
Consider a multicell massive MIMO system in which each
target cell shares the same frequency band with L − 1
adjacent cells. Each cell has one BS with a uniform linear
array (ULA) of M antennas that serves K (K << M) sin-
gle antenna users. The uplink channel vector from the kth
terminal in ith cell to jth BS is modelled as:

hjik =
√

βjikgjik , (2)

where gjik is the fast fading vector, and large-scale fading
factor βjik describes the quasi-static shadow fading and
the path loss. Different channel vectors are assumed to be
independent. Consequently, the channel matrix between
the K users in ith cell and the jth BS can be represented as:

Hji=GjiDji (3)

with Hji =[hji1, · · · ,hjiK ], Gji =[ gji1, · · · , gjiK ] and Dji =
diag

(√
βji1, · · · ,√βjiK

)
.

In a block fading channel, the training signal received at
the jth BS becomes:

Ytr
j = √

Ptr
L∑

i=1
HjiXtr

i + Ntr
j , (4)

where Ptr denotes the training signal-to-noise ratio (SNR),
the rows of Xtr

i ∈ CK×Ttr are the pilot sequences of ith
cell, and Ntr

j is the noise with i.i.d. elements distributed as
CN(0, 1).
The jth cell is assumed as the target cell. One natural

choice to find a channel estimate based on the training
signal without employing any prior information is the LS
method which is given by:

ĤLS
jj = 1√

Ptr
Ytr
j

(
Xtr
j

)†
(5)

= Hjj +
L∑

i=1,i�=j
Hji + 1√

Ptr
Ntr

j ,

where the second term denotes pilot contamination
resulting in the same orthogonal pilots reused by adjacent
cells.

3 2D-SL0-CE channel estimationmethod
The key idea of our exploited channel estimation is to
explore the sparsity in the virtual channel representa-
tion, which applies spatial beams at fixed virtual direc-
tions to characterize the physical channel matrix. The
virtual channel matrix Gv

ji can be linked to the above
described physical channel matrix Gji by the following
transformation:

Gji = ARGv
ji, (6)

where AR = [aR(θ1), · · · , aR(θM)] with the receiver
response vectors given by:

aR(θm) = 1√
M

[
1, e−j2πθm , · · · , e−j2π(M−1)θm

]T
. (7)

The direction θm is related to the physical angle φm ∈
[−π/2,π/2] as θm = dsin(φm)/λ with λ being the car-
rier wavelength and d being the antenna spacing [39]. We
uniformly sample the principal θ period to set the vir-
tual spatial angles, i.e., θm = m/M, and resulting in an
M×M unitary discrete Fourier transformmatrixAR. The
element Gv

ji,mk of M × K matrix Gv
ji represents the cou-

pling gain from the kth terminal to themth virtual receive
angle θm. Therefore, the element will be zero when there
is no corresponding coupling, and the Gv

ji will be a sparse
matrix when the number of non-zero elements is much
smaller than that of the total elements.
Substituting (6) into (4) yields the following received

training signal at the jth BS:

Ytr
j = √

Ptr
L∑

i=1
ARGv

jiDjiXtr
i + Ntr

j . (8)
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Furthermore, taking the transpose operation to (8), we can
obtain:

1√
Ptr

(Ytr
j )T

︸ ︷︷ ︸
=Y

=
L∑

i=1

(
Xtr
i
)T Dji

(
Gv
ji

)T
AR+ 1√

Ptr

(
Ntr

j

)T

=[ (Xtr
1

)T ,· · ·, (Xtr
L

)T

︸ ︷︷ ︸
=X

]

⎡

⎢
⎢
⎢
⎢
⎣

Dj1
(
Gv
j1

)T

...

DjL
(
Gv
jL

)T

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=G

AR+ 1√
Ptr

(
Ntr

j

)T

︸ ︷︷ ︸
=N

.

(9)

Now, based on the linear model Y = XGAR + N, the
channel estimation problem is modelled as a 2D sparse
signal reconstruction problem in compressed sensing.
Then, we estimate Hj =[Hj1, · · · ,HjL] based on Y, X,
andAR, using the 2D-SL0 sparse reconstruction algorithm
[38]. The proposed channel estimation method 2D-SL0-
CE is summarized in Algorithm 1. Different from other
types of compressed sensing recovery algorithms, the SL0
and 2D − SL0 applied the following function to approxi-
mate the l0-norm of b, i.e., ||b||0.

{
Fσ (b) = ∑M

i=1 exp
(−b2i
2σ 2

)
,

||b||0 ≈ M − Fσ (b), σ → 0,
(10)

where b ∈ RM×1 is a sparse vector, and the parameter
σ determines the quality of the approximation and how
smooth the function Fσ (b). Consequently, the minimum
l0-norm solution can be found by maximizing Fσ (b). In
Algorithm 1, steps 2–9 gradually decrease the value of σ

and maximize the objective function for each value of σ .

4 2D-SL0-SD signal detectionmethod
In a block fading scenario, the received data signal at the
jth BS can be written as:

Yj = √
PdataHjjXj +

√
Pdata

L∑

i=1,i�=j
HjiXi + Nj

︸ ︷︷ ︸
=Wj

, (11)

where Yj ∈ CM×N is the received data,
√
Pdata denotes

the uplink SNR, Xi denotes the transmitted data matrix
of the ith cell whose element is selected from a finite
alphabet constellation defined as {s1, · · · , sQ}withQ being
the finite alphabet cardinal, Nj is the noise with elements
distributed as CN(01), and Wj represents the noise plus
interference faced by the received data of jth BS.
The transmitted symbol of the ith cell can be sparse rep-

resented as (12) through exploiting the prior knowledge
that each transmitted element Xi,mn belongs to a discrete

Algorithm 1 2D-SL0-CE channel estimation method [38]
Inputs: Y, X, DFT matrix AR, threshold value σmin,

descent factor ρ, step size μ, iteration number P.
1: Set Ĝ = X†Y(AR)† and σ = 2 ∗ maxu,v(|Ĝuv|), where

Ĝuv denotes the (u, v)-th element of Ĝ.
2: while σ > σmin do
3: Maximize the object function Fσ (G) =∑

u,v exp(−G2
uv/(2σ 2)) at the feasible set

{G|Y = XGAR} using P iterations of steepest ascent
algorithm with the beginning at Ĝ as follows.

4: for p = 1, · · · ,P do
5: Set matrix D with element Du,v =

exp(−Ĝ2
uv/(2σ 2)).

6: Let Ĝ ← Ĝ − μD, and project Ĝ back onto the
feasible set as Ĝ ← Ĝ − X†(XĜAR − Y)A−1

R .
7: end for
8: Let σ ← ρσ .
9: end while

10: Compute Ĥj = (ĜAR)T .

and finite alphabet constellation:

Xi,mn = sei,mn, (12)

where Xi,mn denotes the nth symbol ofmth user in ith cell,
s =[ s1, · · · , sQ] is the discrete and finite constellation vec-
tor, and ei,mn =[ ei,mn(s1), · · · , ei,mn(sQ)]T with ei,mn(sq)
being equal to 1 if Xi,mn = sq or 0 otherwise (1 � q � Q).
Applying this sparse representation into all symbols, the
transmitted data matrix in the ith cell can be expressed in
function of a sparse matrix as:

Xi = BsEi, (13)

where Bs = IK
⊗

s is a block diagonal matrix of
size K × KQ, and the nth column of the matrix Ei is
[
(ei,1n)T , · · · , (ei,Kn)T

]T .
Substituting (13) into (11) generates

Yj = √
PdataHjjBsEj + Wj = AjEjIN + Wj (14)

with Aj = √
PdataHjjBs. The detection problem of sig-

nal block has been modelled as a 2D sparse binary {0, 1}
reconstruction problem in CS, then based on Yj, Aj, and
IN , the signal block Xj can be detected using the mod-
ify 2D-SL0 algorithm which suits to reconstruct 2D sparse
binary {0, 1} signal. The process of 2D-SL0-SD is summa-
rized in Algorithm 2. Because the elements of Ej needed
to be recovered are 0 or 1, but the elements recovered by
the original 2D-SL0 algorithm are not exactly 0 or 1, step
10 of Algorithm 2 is added to find which element of êj,mn
maybe 1 with highest probability and reset such element
to 1 and others to 0.
In the high SNR scenario, such as Nj → 0, it can

be observed from (11) that the main factor restricting
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Algorithm 2 2D-SL0-SD signal detection method [38]
Inputs: Yj, Aj, identity matrix IN , Bs, threshold value

σmin, descent factor ρ, step size μ, iteration number P.

1: Set Êj = A†
j YjIN and σ = 2 ∗ maxu,v(|Êj,uv|).

2: while σ > σmin do
3: Maximize the object function Fσ (Ej) =∑

u,v exp(−E2j,uv/(2σ 2)) at the feasible set
{Ej|Yj = AjEjIN } using P iterations of steep-
est ascent algorithm with the beginning at Êj as
follows.

4: for p = 1, · · · ,P do
5: Set matrix D with element Du,v =

exp(−Ê2
j,uv/(2σ 2)).

6: Let Êj ← Êj − μD, and project Êj back onto the
feasible set as Êj ← Êj − A†

j (AjÊjIN − Yj)IN .
7: end for
8: Let σ ← ρσ .
9: end while

10: Compare the real-part of each element in êj,mn and
reset the element corresponding to the largest real-
part to 1 and others to 0, here 1 � m � K and
1 � n � N .

11: Compute and output X̂j = BsÊj.

the decoding performance is not the noise but the inter-
ference from neighboring cells. Thus, the performance
of 2D-SL0-SD will meet floor as the SNR increases. In
order to resolve this problem, the CSI of interference
links are exploited and an improved 2D-SL0-SD method
is proposed, which does not treat the signals from neigh-
bor cells as interference, moreover, decodes them jointly
with the desired signals. Specifically, exploiting the CSI of
whole links estimated by the above proposed 2D-SL0-CE
method, the received data signal at the jth BS in (11) can
be rewritten as:

Yj = √
Pdata[Hj1,· · ·,HjL] [ (X1)

T ,· · ·, (XL)
T ]T +Nj.

(15)

Moreover, substituting (13) into (15) can generate:

Yj=
√
Pdata[Hj1Bs, · · ·,HjLBs]

︸ ︷︷ ︸
=A

[ (E1)
T , · · ·, (EL)

T ]T
︸ ︷︷ ︸

=E

IN

+ Nj.
(16)

Now, the decoding problem without multiuser interfer-
ence has also been modelled as a 2D sparse {0, 1} signal
reconstruction problem, which has the same form as
that of (14), and can be solved through the processes of

Algorithm 2 whose Aj needs to be replaced by A. Here-
after, the improved 2D-SL0-SD with interference cancel is
named as 2D-SL0-SD-IC. Comparing (16) with (14), it can
be observed that the recovery object of the 2D-SL0-SD-IC
is E, including not only the Ej of the objective cell but also
the Ei of the L − 1 neighbor cells (i = 1, · · · L, i �= j), and
the noise is the only interference source.
It is worth noting that the proposed 2D-SL0-SD is

only suitable to decode constant modulus signal, such as
MPSK. Since there is only one element of ei,mn in (12)
equaling to 1 and the others are zeros, Algorithm 2 needs
a ruler to reset the values of the estimated êi,mn. In step 10
of Algorithm 2, the ruler is that the element of êj,mn with
the largest real part is viewed as such element whose value
is 1 with the highest probability. Such ruler requires that
the elements of s in (12) have the same modulus.

5 Numerical results and discussion
The spectral efficiency and estimation accuracy of the
proposed 2D-SL0-CE sparse channel estimation method
and the decode performance of the proposed 2D-SL0-SD
are investigated. A multicell scenario with L cells shar-
ing the same frequency band is considered. The fading
coefficient is modelled as βjik = zjik/(rjik/rh)α , in which
zjik ∼ lnN

(
0, σ 2

shadow
)
is a lognormal random variable, rjik

denotes the distance between the BS and the correspond-
ing terminal, and rh is the cell-hole radius. The number
of non-zero elements in each column of Gv

ji, which means
the number of multipath, is assumed to S, whose positions
are randomly selected and values are generated through
CN(0, 1). The pilot sequence of each user is randomly gen-
erated using the complex normal distribution and then is
normalized to unity. The normalized mean square error
(NMSE) defined as 1

NMC

∑NMC
i=1

‖Ĥi−Hi‖2F
‖Hi‖2F

is used to evalu-
ate the estimation accuracy, where NMC means the num-
ber of Monte-Carlo simulations, Hi and Ĥi are the actual
and estimated channel impulse response of ith Monte-
Carlo trial, respectively. The parameters of the system and
the 2D-SL0 algorithm are summarized in Table 1.

Table 1 System and algorithm parameter values

Parameters Values Parameters Values

Number of BS antennasM 256 Standard
deviation σshadow

8 dB

Number of cells L 7 Threshold
value σmin

10−4

Cell radius R 1000 m Descent factor ρ 0.6

Cell-hole radius rh 50 m Step size μ 2

Path loss exponent α 3.5 Number of
iterations P

3

Number of users in each cell K 20 Number of
simulations NMC

1000
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Firstly, at the scenario of S = 5, the NMSE of the
2D-SL0-CE and the bit error rate (BER) of the 2D-SL0-
SD detection QPSK signals with various CSI, including
perfect and estimated CSI, are investigated. The whole
number of multicell users is 20 × 7 = 140; thus, the LS
method should require orthogonal pilot sequences with
length being not less than 140 to avoid pilot contamina-
tion. Figure 1 shows that the 2D-SL0-CE method applying
random pilot sequences with a length of 12 can outper-
form LS with 140 pilots nearly 5 dB. Moreover, the NMSE
of 2D-SL0-CE is approximate linear reducing with the
SNR increasing when the pilot length is not less than 12.
While in the case that 20 orthogonal pilot sequences are
reused by the objective cell and neighbor cells, Fig. 1 also
shows that the LS method will meet a performance floor
caused by pilot contamination. In a block fading scenario
with signal length N = 200, Fig. 2 plots the BER per-
formance of the 2D-SL0-SD detection QPSK signal block
using various CSIs. Applying perfect CSI at 10 dB SNR,
the 2D-SL0-SD can approach near to 10−2 BER. More-
over, its BER is approximate linear reducing with the
SNR increasing, which shows its reliable detection ability.
Using the CSI estimated through the 2D-SL0-CE, where
each user applies random non-orthogonal pilot sequence
with length being 32, the obtained BER of 2D-SL0-SD at
15 dB SNR is slightly better than 10−2, which shows joint
the 2D-SL0-CE with 2D-SL0-SD for channel estimation
and decoding QPSK signals is a feasible scheme.
Then, applying perfect CSI and estimated CSI through

2D-SL0-CE, respectively, Figs. 3 and 4 show the BER
of 2D-SL0-SD and its improved version 2D-SL0-SD-IC

detecting various PSK data block with length N = 200. In
both cases, the BER of 2D-SL0-SD is better than 2D-SL0-
SD-IC within a SNR threshold value. This is because the
received energy of interference data is usually smaller than
that of target data, which induces more difficult to decode
interference data. The decoding object in 2D-SL0-SD-IC
includes the target and interference data, which means
the decoding result of two parts will affect each other.
Thus, in the low-SNR scenario, the low correct decoding
probability of interference data leads to 2D-SL0-SD-IC has
higher BER than 2D-SL0-SD.With the SNR increasing and
exceeding a threshold value, the 2D-SL0-SD will gradu-
ally meet a performance bound induced by interference.
However, the BER of 2D-SL0-SD-IC will be still approx-
imately linear reducing owing to gradually high correct
decoding probability of interference data. In theory, with
the distance of the two neighbor signal points in constel-
lation diagram gradually reducing, it will be more difficult
to decode the signals correctly. In Figs. 3 and 4, it can be
observed that the BERs of QPSK, 8PSK, and 16PSK are
gradually increasing at the same SNR.
Finally, the NMSE of 2D-SL0-CE method with fixed

pilot length at various scenarios, including various spar-
sity and number of users in each cell, is studied in Figs. 5
and 6, respectively. In the case of each cell having 20 users,
applying random pilot sequences with fixed length of 26,
Fig. 5 shows that the NMSE is approximately linear reduc-
ing with the SNR increasing when the S is not larger than
20. In the case of S = 5 and pilot length being 26, Fig. 6
shows that the NMSE is approximately linear reducing
with the SNR increasing when the number of users in each

5 10 15 20 25 30

SNR(dB)

-35

-30

-25

-20

-15

-10

-5

N
M

S
E

(d
B

)

2D-SL0-CE,10 pilots
2D-SL0-CE,11 pilots
2D-SL0-CE,12 pilots
2D-SL0-CE,32 pilots
LS-CE, 140 pilots
LS-CE, 20 pilots

Fig. 1 NMSE performance of 2D-SL0-CE and LS methods
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5 10 15 20 25 30

SNR(dB)

10-5

10-4

10-3

10-2

10-1

B
E

R

Perfect CSI
2D-SL0-CE,32 pilots, CSI
LS-CE,140 pilots,CSI
LS-CE,20 pilots,CSI

Fig. 2 BER performance of 2D-SL0-SD with various CSIs

cell is not larger than 50. In order to recovery a 1D E-
sparse F-length vector successfully with high probability,
[40] presents that the number of measurements needed
is of order O(Elog(F/E)). In the 2D cases, from the best
performance plots in Figs. 5 and 6, it can be obtained that
the number of measurements are 2.15 and 2.23 times of
KLSlog(M/S), respectively, where the value of KLS is the

number of non-zero elements in 2D signals. Thus, ensur-
ing the original 2D signal can be recovered with high
probability, the number of measurements needed is also of
order O(Elog(F/E)), where the E and F denote the num-
bers of non-zero elements and whole elements in the 2D
signal, respectively. In practical, the above ruler can be
used to guide for setting pilot length.
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2D-SL0-SD,8psk
2D-SL0-SD-IC,8psk
2D-SL0-SD,16psk
2D-SL0-SD-IC,16psk

Fig. 3 BER of 2D-SL0-SD with perfect CSI
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Fig. 4 BER of 2D-SL0-SD joint with 2D-SL0-CE

6 Conclusions
This paper has investigated the two challenging prob-
lems for block fading massive MIMO systems. The one
is to exploit efficient uplink channel estimation method
that requires acceptable pilot overhead and can mitigate
pilot contamination. The other one is to jointly decode
multiuser data block. The joint multiuser channel esti-
mation and data block detection problems have both

been modelled and solved as a 2D sparse signal recon-
struction problem in the CS framework. More specifi-
cally, through using a linear virtual channel representation
for ULA, the 2D-SL0-CE compressed channel sensing
method is proposed, which needs less pilot overhead
than LS method, and can jointly estimate the desired
and interference uplinks. Through sparse representation
in a finite alphabet set for each transmitted data symbol,

5 10 15 20 25 30
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-30

-25

-20

-15
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N
M

S
E

(d
B

)

S=33
S=30
S=22
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Fig. 5 NMSE of 2D-SL0-CE with various channel sparsity



Ye et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:238 Page 9 of 10

5 10 15 20 25 30

SNR(dB)

-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

-14

N
M

S
E

(d
B

)

K=76
K=70
K=60
K=50

Fig. 6 NMSE of 2D-SL0-CE with various numbers of users

the 2D-SL0-SD data decoding method is proposed which
can simultaneously decode a MPSK data block for mul-
tiuser. Simulation results demonstrate that joint the 2D-
SL0-CE with 2D-SL0-SD to estimate channel and decode
MPSK data for multiuser massive MIMO is a feasible
scheme.
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