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Abstract

In this paper, a super-resolution direction-of-arrival (DoA) algorithm for strictly non-circular sources is introduced. The
proposed algorithm is based on subspace-weighted mixed-norm minimization. Firstly, we augment the array aperture
for efficiently exploiting the non-circularity of signal source. Then, we transform the augmented array matrix to the real
array matrix due to the centro-Hermitian of the augmented array matrix. To this end, a subspace-weighted mixed-norm
minimization problem is formulated for the DoA estimation. In the proposed algorithm, we utilize singular value
decomposition (SVD) to reduce the dimension of matrix, which improves the computational efficiency. We design
the weighted scheme by utilizing the orthogonality of the noise subspace and the array manifold dictionary, which
increases the reliability of the sparse DoA estimation. As shown by simulations, the proposed algorithm outperforms
the state-of-the-art algorithms in difficult scenarios, such as low signal-to-noise ratio, small snapshots, and correlated
source. Moreover, the proposed algorithm exhibits a superior performance for the DoA estimation in the
underdetermined case.

Keywords: DoA estimation, Uniform linear array, Subspace-weighted mixed-norm minimization, Strictly non-circular
source

1 Introduction
Direction finding has gained great interest in array sig-
nal processing field over the past decades, which is widely
used in radar, underwater acoustics, wireless commu-
nication, and seismic [1–3]. In this area, most of the
studies have assumed that the signal follows complex
circular Gaussian distribution, such as multiple signal
classification (MUSIC) [4], estimation of signal param-
eters via rotational invariance technique (ESPRIT) [5].
However, this is not an accurate assumption; in prac-
tical application systems, many signals follow complex
non-circular Gaussian distribution, such as binary phase
shift keying (BPSK),Mary amplitude shift keying (MASK),
and binary pulse amplitude modulated (PAM). Therefore,
how to exploit the second-order non-circularity of com-
plex signals to improve the angle estimation performance
becomes an urgent issue in signal processing [6–8].
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So far, a large number of subspace-based parameter esti-
mation algorithm, which exploited the non-circular prop-
erty of the signal, had been proposed in the literatures, for
example, non-circular multiple signal classification (NC-
MUSIC) [9], polynomial rooting NC-MUSIC (NC-Root-
MUSIC) [10], fourth-order NC-Root-MUSIC (NC-Root-
FO-MUSIC) [11], and unitary ESPRIT for non-circular
sources (NC-unitary-ESPRIT) [12], which aim to increase
degree of freedom (DoF) and improve angular estima-
tion accuracy. For example, the work in [13] utilized the
conjugation information of the partial received signal to
extend the virtual aperture as well as the joint virtual array,
by using a forward spatial smoothing technique in order
to handle the coherent source. The main challenge for
the super-resolution direction-of-arrival (DoA) estima-
tion is to resolve the closely spaced sources with small-size
sample, and even to resolve the coherent source. Com-
pared with the conventional high-resolution estimation
algorithms, source localization algorithms which based
on sparse signal recovery (SSR), showed the predominant
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performance in the estimation accuracy [14–16]. Specif-
ically, the authors in [17] proposed an l1-SVD algorithm
which uses singular value decomposition (SVD) of the
measurements to reduce the data dimension. The authors
in [18] presented a subspace-weighted l2,1-SVD algorithm
which exploits the MUSIC-like spectrum to design the
weighted matrix. Furthermore, the authors in [19] pro-
posed a unitary subspace-weighted l2,1-SVD algorithm by
applying the spatial smoothing technique, which doubles
the number of snapshots and benefits the DoA estima-
tion accuracy. Moreover, by employing unitary transfor-
mation, the unitary l2,1-SVD algorithm puts the sparse
constraint on real-data matrix and further reduces the
computational complexity. For the past two decades, the
non-circular SSR-based algorithms have attracted a great
number of researchers’ attention, [20–22], and by exploit-
ing the non-circular property of the signal sources, the
performance of the DoA estimation algorithms can be
effectively improved.
In this paper, we propose a weighted subspace mixed-

norm DoA estimation algorithm for non-circular signal.
The algorithm makes the most of the non-circularity
of the sources and formulates the DoA estimation as a
weighted subspace mixed-norm minimization problem.
The offered improvement mainly displays in two aspects:
For one thing, the algorithm takes advantage of the strictly
non-circular sources, enhances the DoF to two times of
the number of sensors, which increases the number of
detectable sources and decreases the estimation error. For
another, the subspace weighting scheme exploits the rela-
tionship between the over-complete dictionary and the
noise subspace, which improves the reliability of weighted
coefficient and further enforces the sparsity of the sig-
nal. Results verify that our proposed algorithm provides
superior performance than l1-SVD and SW-l2,1-SVD algo-
rithms under small snapshots and low SNR regime. More-
over, the proposed algorithm offers the ability to estimate
DoAs in underdetermined conditions.
The rest of the paper is organized as follows. In

Section 2, we introduce the system model and problem
description. In Section 3, we present a weighted subspace
mixed-norm DoA estimation algorithm. In Section 4, we
provide the detailed experimental simulations and discus-
sion. Finally, we conclude the whole paper in Section 6.
Notation: A vector and a matrix are denoted by a andA,

respectively. For a matrixD,D∗ denotes the conjugate,DT

and DH account for transpose and conjugate transpose,
respectively, [D]i,k is the ith row and the kth column ele-
ment in matrix D, Di,· is the elements of the ith row in D.
‖D‖F accounts for the Frobenius norm, [u](l2) stands for a
vector u whose ith entries equals to the l2-norm of its ith
row. IM denotes an M × M identity matrix. ���M accounts
for the M × M exchange matrix with elements 1s in its
anti-diagonal and zeros elsewhere, and diag(u) represents

a diagonal matrix, whose diagonal elements consist of the
vector u .

2 Systemmodel and problem description
2.1 Systemmodel
Consider an uniform linear array (ULA) with M isotropic
elements, whose inter-element space is half-wavelength
d = λ/2 and λ accounts for the carrier wavelength. K
independent far-field narrowband sources impinge on the
ULA sk(t) from the distinct directions θ1, θ2, · · · , θK , as
depicted in Fig. 1. Therefore, the received signal array
vector y(t) is given by

y(t) =
K∑

k=1
a(θk)sk(t) + n(t) = A(θθθ)s(t) + n(t), (1)

in which A(θθθ) = [a(θ1), a(θ2), · · · , a(θK )] represents
array manifold matrix with M × K dimension, and

a(θk) =
[
1, ej2π

d
λ
sin(θk), · · · , ej2π(M−1) d

λ
sin(θk)

]T
accounts

for an array steering vector with M × 1 dimen-
sion, s(t) =[ s1(t), · · · , sK (t)]T is the non-circular
incident signal vector with M × 1 dimension, and
n(t) =[ n1(t), n2(t), · · · , nM(t)]T ∈ C

M×1 is the additive
noise vector, whose entries follow the circularly symmet-
ric complex Gaussian distribution (CSCG) with zeromean
and variance σ 2

n [23–25].
For convenience, the sign t is omitted and N snapshots

are collected, then the model of (1) can be expressed as a
matrix form, which holds that

Y = A(θ)S + N, (2)

in which Y = [
y(1), · · · , y(N)

]
is a received matrix of

K ×N dimension, and the source symbol matrix S and the
noise matrix N are defined the same way as Y.
When the received signal is a strictly second-order non-

circular signal, the complex symbol amplitudes of each
received signal locate on a rotated line in the complex
plane. According to this property, the signal S is denoted
as an array form as follows:

S = �(φ)Sr , (3)

where Sr accounts for a real-valued symbol vector of
K × 1 dimension, and ��� = diag

{[
ejφ1 , ejφ2 , · · · , ejφK

]}
,

φk ∈[ 0◦, 180◦], and φφφ is the complex phase shift, called
non-circular phase [26, 27]. Here, we just consider the
strictly second-order non-circular signal case with the
non-circular phase is zero.

2.2 Problem description
The conventional SSR-based algorithm for source local-
ization depends on the array model in (2). In order to
describe the DoA estimation problem through a sparse
representation framework, an over-complete dictionary
A(θ̃θθ) with the M × P dimension needs to be constructed
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Fig. 1 Uniform linear array model

by discretizing the spatial angle range [−90◦, 90◦] at the
angular grid θ̃θθ =

[
θ̃1, θ̃2, · · · , θ̃P

]T
, P is the number of

atoms in dictionary. Assuming that the angle grid point
is dense enough, in general P � K , such that the true
angle exactly lies in each grid. Then, the P × N dimen-
sional row-sparse signal matrix S̃ =[ s̃1, s̃2, · · · , s̃P]T can
be defined as:

sTk =
{
s̃Tp if θk = θ̃p
0 otherwise

, (4)

where the kth row corresponds to the signal comes from
a source at θ̃k . Obviously, when the rows of S̃ are non-
zero elements, the real DoA information can be attained.
The system model in (2) can be formulated as a sparse
representation problem

Y = A(θ̃)S̃ + N. (5)

Under the sparse representation framework, the matrix
S̃ in (5) can be solved by using the sparse constrained
minimization problem, which satisfied the following
expression

min
S̃

∥∥∥S̃
∥∥∥
2,0

s.t. ‖Y − A
(
θ̃
)
S̃‖2F < η2, (6)

where

‖X‖2,0 �
L∑

l=1
δ(‖Xi,·‖2 > 0), (7)

and δ(‖Xi,·‖2 > 0) is an indication function,

δ(x) =
{
1 if x > 0
0 otherwise , (8)

η is an error fitting bound and η2 ≥ ‖N‖2F . Here, we select
the upper value of ‖N‖2 with a 99% confidence interval as
the value of η.
Unfortunately, the problem in (6) is an NP-hard prob-

lem and the optimal solution can be found only with an
exponential complexity. However, we can arrive at a sub-
optimal solution through a simpler way, by using a convex
relaxation technique, which replaces the l2,0 norm by its
closest convex surrogate l2,1 norm. In this case, (6) can be
transformed to

min
S̃

∥∥∥S̃
∥∥∥
2,1

s.t. ‖Y − A
(
θ̃
)
S̃‖2F < η2, (9)

where

‖X‖2,1 �
L∑

l=1

( K∑

k=1
|[X]l,k |2

) 1
2

, (10)

This is a l2,1 mixed-norm which defined by the Eq. (10).
The problem in (9) can be solved through standard convex
optimization techniques.
Nevertheless, the SSR-based DoA algorithm in (10) does

not take into account the non-circular property of the
signal. It is necessary to make a deeper study on how
to effectively exploit the statistic property of the sources
to improve the estimation performance of the SSR-based
DoA algorithm.

3 The proposed algorithm
In this section, we present a SSR-based DoA estimation
algorithm which is based on weighted mixed-norm min-
imization. The algorithm mainly include three steps: the
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first step is augmenting array matrix and spatial smooth-
ing processing, the second step is real-value matrix trans-
formation and reducing the dimension of the matrix via
SVD, and the last step is utilizing the weighted mixed-
norm minimization to estimate the DoAs.

3.1 Augmented array aperture and spatial smoothing
processing

In order to take full use of non-circular property of sig-
nal sources, we stack the received measurement matrix
of the array and its complex conjugate counterpart and
construct an augmented matrix Y(nc) ∈ C

2M×N as:

Y(nc) =
[

Y
�MY∗

]

=
[

A(θ)���(φ)

�MA∗(θ)���∗(φ)

]
S0 +

[
N
���MN∗

], (11)

which can be simplified as

Y(nc) = A(nc)(θ ,φ)S0 + N(nc). (12)

Under the above consideration, we consider the first
element on the left of the array as the phase reference.
According to the center-symmetric characteristic of the
ULAs [28], it holds that

�MA∗ = A�A, (13)

where �A accounts for a unitary diagonal matrix, which
is related to the phase reference of the array, whose non-
zero elements consist of the last row of A. Combined with
the formula (13), the array manifold matrix of augmented
array can be further simplified as

A(nc)(θ ,φ) =
[

A(θ)���(φφφ)

A(θ)�A���∗(φφφ)

]
. (14)

Herein, we consider the case that the non-circular phase
is zero, then (14) can be converted to

B(nc)(θ) =
[

A(θ)

A(θ)�A

]
, (15)

and (12) can be represented as:

Y(nc) = B(nc)(θ)S̃0 + N(nc). (16)

We observe that the B(nc)(θ) has the center-symmetric
characteristic, so B(nc)(θ) holds that

�2MB(nc)∗ = B(nc)�B(nc) , (17)

in which �B is a unitary diagonal matrix, in which the
definition is the same as the definition of �A.
Furthermore, incorporating the spatial smoothing tech-

nique and with the help of identical formula in (17), the
new measurement Y(nc) can be converted to a centro-
Hermitian matrix Z ∈ C

2M×2N as:

Z =
[
Y(nc),�2MY(nc)∗�T

]
= B(nc)Ŝ0 + N̂(nc), (18)

where

Ŝ0 =
[
S̃0,���B(nc) S̃

∗
0�T

]
, (19)

and

N̂(nc) =
[
N(nc),���2MN(nc)∗�T

]
. (20)

3.2 Unitary transformation and SVD
Aiming to reduce the computation complexity, we will
utilize the centro-Hermitian of Z to convert the complex
data to real data by unitary transformation. The received
real-data matrix can be constructed as:

Zr � QH
2MZQ2T = QH

2M

(
B(nc)Ŝ0 + N̂(nc))Q2T . (21)

Here, we define the even-order unitary matrix as

Q2n = 1√
2

[
In jIn
���n j�n

]
. (22)

It is worth noting that the matrix Zr ∈ R
2M×K is the

real-value matrix due to the centro-Hermitian property of
the matrix Z, whose unitary transformation is real matrix.
Furthermore, in order to derive a reduced 2M × K

dimensional signal space, we represent the dominant
component by using the K largest singular vectors of the
matrix Zr , which is corresponding to the signal subspace.
We perform SVD operation on the matrix Zr results to

Zr = U���VH =[Us,Un]���[Vs,Vn]H , (23)

where ��� is singular value matrix with the dimension the
2M × N , U and V are called left and right singular vec-
tor matrix for Zr , respectively, which are the orthogonal
matrixes. The singular vectors of matrix U corresponding
to non-zero singular value form the signal subspace Us.
Ideally, the number of non-zero singular value of matrix
Zr is K . The 2M − K singular vectors of matrix U cor-
responding to the smaller singular values form the noise
subspace Un.
Let

ZSV = U���DK = ZrVDK = ZrVs, (24)

where DK =[ IK , 0]T with IK being the identity matrix of
K × K dimension and 0 being the zero matrix of K ×
(N − K) dimension. Also, we define SSV = Ŝ0Q2TVs and
NSV = QH

2MN(nc)Q2T V̂s; we can obtain

ZSV = QH
2MB(nc)SSV + NSV . (25)

Now, we can apply the sparse recovery framework to
this model that reduces the dimension of the equation.

3.3 DoA estimation based on weightedmixed-norm
minimization

The same as the discussion in Section 2.2, the array man-
ifold dictionary Dθ̄ = [

B(nc) (
θ̄1

)
, · · · ,B(nc) (

θ̄L
)]

can be
constructed by extending the B(nc)(θ) on spatial angular
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grid
{
θ̄1, θ̄l, · · · , θ̄L

}
(L � K). Now, the DoA estimation

can be reformulated as a sparse signal recovery problem:

min
ŜSV

∥∥∥ŜSV
∥∥∥
2,1

s.t. ‖ZSV − D(nc)ŜSV‖2F < β2
, (26)

where D(nc) = QH
2MD, β is a new error fitting bound,

β2 ≥ ‖N̂SV‖2F which can be determined distribution with
χ2 degrees of freedom 2M × K and 99% probability [17].
As mentioned above, the l2,1 norm is used in (26) as an

approximation to l2,0 norm; therefore, the solution is sub-
optimal. In order to increase the accuracy of this solution,
we adopt the subspace-weighted strategy. Specifically, in
D(nc), there are K steering vectors which corresponded to
the actual targets. Based on the orthogonality between the
steering vector D(nc) and the noise subspace Un, for the

true target DoA, θk holds that
[
D(nc)HUn

]l2 → 0 when
N → ∞. Then, the weighted vector is given by:

w =
[
D(nc)HUn

](l2)

max
{[

D(nc)HUN
](l2)

} . (27)

Also, the vector w can be divided into the following two
parts:

w =
(
ws

wn

)
, (28)

where ws corresponds to the true DoAs, and wn consists
of the remaining elements of w. The reweighted vector
can be written as w = [w1,w2, · · · ,w2M]T , with wi being
the reweighted coefficient, and i = 1, 2, · · · , 2M. The val-
ues in ws and wn satisfy ws(k) → 0 and 0 < wn(j) ≤ 1,
respectively, and ws(k) < wn(j).
Now, we can formulate a new weighted l2,1 mixed-norm

minimization for the DoA estimation as:

min
ŜSV

∥∥∥ŜSV
∥∥∥
w;2,1

s.t. ‖ZSV − D(nc)ŜSV‖2F < β2
, (29)

where

‖X‖w;2,1 �
L∑

l=1
wl

( K∑

k=1
|[X]l,k |2

) 1
2

, (30)

wl accounts for the lth element ofw. It is worth noting that
(29) is treated as a second-order cone program (SOCP)
problem, which is efficiently checked by utilizing standard
software packages, as the CVX [29], which is used in this
paper.
Once we attain the estimation of ŜSV , the spatial spec-

trum can be caculated by averaging the rows of ŜSV (i.e.,
the solution of (29))

p̂l = 1
K

K∑

k=1

∣∣∣∣
[
ŜSV

]

l,k

∣∣∣∣
2
. (31)

The angular information θ̂ can be estimated by search-
ing the non-zero rows of ŜSV , which corresponding to the
K peaks of p̂. The proposed algorithm is summarized in
Algorithm 1.

Algorithm 1 The proposed sparse DoA estimation algo-
rithm for non-circular signal source.
1: Input: array measurement matrix Y, the number of

signal source K.
2: Calculate the augmented array matrix Y(nc) by (11);
3: Spatial smoothing processing by (18);
4: Real value transformation by (21);
5: Reduce the matrix dimension by (24) ;
6: Calculate the weighted matrix w by (27);
7: Solve the convex problem (29);
8: Output: The DoA estimation θ̂i (i = 1, 2, · · · ,K ).

3.4 Computational complexity analysis
For the subspace-based algorithm, the computa-
tional complexity of MUSIC is O

(
M2N + M2L

)
,

whose main computational cost is the spectral search.
The computational complexity of NC-MUSIC is
O

(
4M2N + 16M3 − 4M2K + 4

(
M2 + 2M

)
L2

)
. For the

l1-SVD algorithm, from the conclusion in [17], we know
that the main computational cost is the sparse recovery
process, which solves (9) via the SOCP, the computa-
tional complexity of is O(KL)3. For the SW-l2,1-SVD
algorithm, we consider the computation cost in the
formulation of the weighted matrix w, which requires
O

(
M2N + M3 + LM(M − K)

)
. We note that the l1-SVD

algorithm is realized that complex multiplication costs
four times as much as that of real multiplication [12];
in the proposed algorithm, we transform the complex-
valued problem into a real-valued one by the real-valued
transformation, and the computational complexity is
reduced by a quarter, which means that the computa-
tional cost of the sparse recovery process in (29) can be
decreased as O

( 1
4KL

)3. In the proposed algorithm, we
also use the weighted strategy; due to aperture expansion,
the computation cost of the formulation of the weighted
matrix w requiresO((2M)2N + (2M)3 + 2LM(2M −K)).
In Table 1, we have given the computational complexity
of the subspace-based algorithm and the sparse-based
algorithm. From Table 1, we observe that the compu-
tational complexity of the proposed algorithm is lower
than other sparse-based algorithms. Although the pro-
posed algorithm is higher than the subspace-based
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Table 1 Computational complexity

Algorithm Computational complexities

MUSIC O
(
M2N + M2L

)

NC-MUSIC O4M2N + 16M3 − 4M2K + 4
(
M2 + 2M

)
L2)

l1-SVD O
(
(KL)3

)

SW-l2,1-SVD O
(
M2N + M3 + LM(M − K) + (KL)3

)

The proposed algorithm O(2M)2N + (2M)3 + 2LM(2M − K) + 1
4 (KL)3)

algorithms, it can work in the small-size snapshots and
the underdetermined case.

4 Experimental simulations and discussion
This section provides the Monte-Carlo simulations to val-
idate the efficiency of the subspace-weighted mixed-norm
algorithm and further compares the performance with
the MUSIC [4], NC-MUSIC [9], l1-SVD [17], and SW-
l2,1-SVD [18]. Experimental simulations are performed by
Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, RAM 8G,
MATLAB 2017a.
In simulations, an ULA with number M = 10 of

isotropic sensors is considered, and the inter-element
spacing is half-wavelength. The non-circular signal is
BPSK modulation signal. For each snapshot and individ-
ual signal at the sensor, the input SNR is defined as SNR =
10 log10

(‖S‖2F/‖N‖2F
)
. In all algorithm, the angle grid is

uniform which divided from− 90 to 90◦ with step interval
0.1◦. Unless otherwise specified, N = 200 snapshots are
collected.
To evaluate the DOA estimation performance, we use

the root-mean-square error (RMSE) as the performance
indicator, which is defined as:

RMSE =

√√√√√ 1
Q

Q∑

q=1

K∑

k=1
‖θ̂i − θi‖, (32)

where θ̂i and θi represent the estimated and true DoA of
the ith signal in the qth trial, respectively. Q accounts for
the number of Monte-Carlo trials. All simulation results
derived through Q = 500 Monte-Carlo trials.
We evaluate the DoA estimation performance of the

proposed algorithm in the underdetermined case. In this
simulation, 11 far-field narrowband BPSK signals uni-
formly distribute between − 55 to 55◦. The SNR is fixed
to 0 dB. From Fig. 2, it can be seen that the proposed
algorithm can work well in underdetermined DOA esti-
mation, i.e., the proposed algorithm is capable of handling
more sources than sensors. In general, we assume that
the number of sources is smaller than the number of sen-
sors in the subspace-based algorithms. When the number
of sensors is M, the subspace-based algorithm at most
identifies the M- 1 source, that is incapable of resolving
more sources than sensors. From Fig. 2, we can conclude

that the proposed algorithm presents better performance
when the number of sources is greater than the number of
sensors. The reason is that the proposed algorithm does
not only increase the degree of freedom by exploiting the
non-circular property of the signal source, but also employ
the weighted scheme which utilizes the relationship of the
noise subspace and array manifold dictionary and further
enhances the reliability of the sparse DoA estimation.
Figure 3 shows the RMSE of DoA estimation against

the SNR for different algorithms. Three uncorrelated nar-
rowband BPSK-modulated signals impinge on the ULA
from [− 10◦, 0◦, 8◦]. From Fig. 3, it is observed that the
proposed algorithm provides the optimal performance
for the DoA estimation compared with the other algo-
rithms since the proposed algorithm takes full advan-
tage of the DoF of augmented array, which benefit from
non-circular signal, and the proposed algorithm exploits
the forward/backward spatial smoothing to improve the
robust of the algorithm. We also observe that the pro-
posed algorithm outperforms than SW-l1-SVD when the
SNR is less than 0 dB; the reason for the improvement
of the DoA estimation is benefited from the aperture
extension and subspace weighting.
Figure 4 shows the RMSE versus the snapshots with

the different algorithms. Three uncorrelated narrowband
BPSK-modulated signals are located [− 10◦, 0◦, 8◦]. The
SNR is fixed to 0 dB, and we vary the number of snapshots
from 20 to 200 with the step interval 20. From Fig. 4, it
can be seen that the proposed algorithm achieves better
performance of angle estimation compared to other algo-
rithms for all snapshots, even in the small-size snapshot
case. This indicates that the proposed algorithm improves
the DoA estimation performance for different snapshots.
Figure 5 depicts the RMSE of DoA estimation perfor-

mance as a function of the angular separation between
two targets. Two uncorrelated equal power BPSK sources
is located at θ1 = −10◦ and θ1 = −10◦ + �θ , where �θ

varies from 2 to 20◦. From Fig. 5, it is shown that the per-
formance of DoA estimation is improved with the angular
separation larger compared to MUSIC, NC-MUSIC, l1-
SVD, and SW-l2,1-SVD. For closely space targets, the pro-
posed algorithm has theminimumRMSE, which indicates
that the proposed algorithm can achieve higher spatial
angle resolution than the other algorithms.
Figure 6 displays the RMSE of DoA estimation per-

formance as a function of correlation coefficient, where
two correlated narrowband BPSK-modulated signals are
located [− 10◦, 8◦], the SNR is fixed to 0 dB, and the
snapshot number is 100. As we can see from Fig. 6,
the proposed method exhibits the best estimation per-
formance among all the algorithms. The performance of
the subspace-based algorithms, such as MUSIC and NC-
MUSIC, are degrading with the correlation coefficient
increasing; the performance of the other sparse-based
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Fig. 2 Spatial spectral for NC-MUSIC, NC-l2,1-SVD, and the proposed algorithm

algorithms like the l1-SVD and SW-l2,1-SVD also are
affected by correlation coefficient, but the performance
of the sparse-based algorithms are better than that of the
subspace-based algorithms. As indicated in Fig. 6, the pro-
posed algorithm have the best estimation performance
among all the algorithms. The reason is that the pro-
posed algorithm utilizes the spatial-smoothing process to

mitigate the impact of correlated source; in addition, the
sparse-based algorithm also is robust to the correlated
source.

5 Methods
A weighted subspace mixed-norm minimization DoA
estimation algorithm is proposed for strictly non-circular
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100

Fig. 3 RMSEs of MUSIC, NC-MUSIC, l1 − SVD, SW− l2,1 − SVD, and the proposed method as a function of SNR in the Gaussian white noise for N = 200
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Fig. 4 RMSEs of MUSIC, NC-MUSIC, l1 − SVD, SW − l2,1 − SVD, and the proposed method as a function of the snapshots for SNR = 0 dB

signal source. The proposed algorithm employs the non-
circular property of signal source to extend the array
aperture. Then, the spatial smoothing technique and the
unitary transformation are implemented to handle the
correlate source and convert the complex value matrix
to real-value matrix. Furthermore, reducing the matrix
dimension process is employed by SVD. In the end, the

DoA estimation formulated a weighted subspace mix-
norm minimization problem. The SOCP is employed to
solve the convex optimization problem.

6 Conclusions
A super-resolution SSR-based DoA estimation algorithm
was proposed for strictly non-circular sources in this

2 4 6 8 10 12 14 16 18 20

10-1

100

101

Fig. 5 RMSEs of MUSIC, NC-MUSIC, l1 − SVD, SW − l2,1 − SVD, and the proposed method as a function of the angular separation between two
source for SNR = 0 dB and N = 200
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Fig. 6 RMSE versus the correlation coefficient with the SNR = 0 dB, N = 100

paper, which is based on weighted subspace mixed-
norm minimization. The proposed algorithm increased
the degree of array freedom by exploiting the non-circular
property of the signal, transformed the array data to real-
value domain by utilizing the centro-Hermitian of the
augmented matrix, and reduced the dimension of matrix
by SVD operation which effectively lower the computa-
tional complexity. Last but not the least, we exploited the
weighted strategy to enhance the liability of the sparse
DoA estimation. The results showed that the proposed
algorithm achieved the optimal performance of DoA esti-
mation in the angular resolution and estimation accuracy
and can well work in the underdetermined case. In the
future, we will incorporate some other wireless communi-
cation techniques such as [30–34] to further improve the
performance of the 5G mobile communication system.
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